
Citation: Yao, H.; Ren, Y.; Yan, J.; Liu,

J.; Hu, J.; Yan, M.; Li, X. Design,

Synthesis, and Evaluation of New

Mesenchymal–Epithelial Transition

Factor (c-Met) Kinase Inhibitors with

Dual Chiral Centers. Molecules 2022,

27, 5359. https://doi.org/10.3390/

molecules27175359

Academic Editor: Qiao-Hong Chen

Received: 22 July 2022

Accepted: 18 August 2022

Published: 23 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

Design, Synthesis, and Evaluation of New
Mesenchymal–Epithelial Transition Factor (c-Met) Kinase
Inhibitors with Dual Chiral Centers
Han Yao 1 , Yuanyuan Ren 1, Jun Yan 1 , Jiadai Liu 1, Jinhui Hu 2,* , Ming Yan 1,* and Xingshu Li 1

1 School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
2 School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
* Correspondence: wyuchemhjh@126.com (J.H.); yanming@mail.sysu.edu.cn (M.Y.)

Abstract: A series of tepotinib derivatives with two chiral centers was designed, synthesized, and
evaluated as anticancer agents. The optimal compound (R, S)-12a strongly exhibited antiprolifer-
ative activity against MHCC97H cell lines with an IC50 value of 0.002 µM, compared to tepotinib
(IC50 = 0.013 µM). Mechanistic studies revealed that compound (R, S)-12a significantly inhibited
c-Met activation, as well as the downstream AKT signaling pathway, and suppressed wound closure.
Moreover, compound (R, S)-12a induced cellular apoptosis and cell cycle arrest at the G1 phase in a
dose-dependent fashion.
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1. Introduction

Cellular mesenchymal–epithelial transition factor (c-Met)—a high-affinity receptor for
the hepatocyte growth factor—is a unique subfamily of receptor tyrosine kinases [1–3]. The
c-Met signaling pathway is vital in invasive growth during embryonic development and
postpartum organ regeneration [4–6]. Normally, in adults, the c-Met signaling pathway
is fully activated only in the process of wound healing and tissue regeneration; however,
the tumor c-Met signaling pathway can be frequently activated by cancer cells to promote
tumor formation, invasive growth, and metastasis [7–9]. Studies have shown that the
c-Met signaling pathway has an abnormal expression or mutation in various types of solid
tumors, such as lung, gastric, liver, breast, skin, and colorectal cancers [10,11]. The c-Met
signaling pathway plays a vital role in the occurrence and development of a variety of
tumors [12,13]. It is becoming a promising target for cancer treatment due to its status as a
proto-oncogene and the disorders associated with poor prognosis [14,15].

Recently, different small-molecule c-Met inhibitors with different binding modes and
selectivity profiles have been developed and have progressed to clinical trials, and some of
them have been approved by the FDA for cancer treatment (Figure 1). A fast-tracked FDA
approval was given to crizotinib, a potent c-Met/ALK dual inhibitor that demonstrated
significant efficacy for a subset of NSCLC patients with an EML4-ALK fusion gene [16,17].
Tivantinib (ARQ-197), belonging to non-ATP competitive small molecule c-Met inhibitors,
shows good antitumor activity in vitro and in vivo [18]. Foretinib, a type II multitargeted c-
Met/VEGFR2 inhibitor bound to the deep hydrophobic back pocket, demonstrated partial
regression or stable disease in patients with papillary renal carcinoma [19]. PF-04217903
showed effective tumor growth inhibition in c-Met-dependent tumor models with good
oral PK properties and an acceptable safety profile in preclinical studies and progressed to
clinical evaluation in a Phase I oncology setting [20]. AMG 337 demonstrated nanomolar
inhibition of Met kinase activity, desirable preclinical pharmacokinetics, and a signifi-
cant Met-dependent mouse efficacy model [21]. In 2021, the FDA approved tepotinib
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(MSC2156119) with excellent in vitro potency, high-kinase selectivity, long half-life after
oral administration, and in vivo antitumor efficacy at low doses [22,23].
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According to the binding mode between small molecules and c-Met kinase, small
molecule inhibitors are mainly divided into two categories [24–26]. Class I is a specific
inhibitor of c-met kinase, which can competitively bind to the ATP binding domain with
ATP in a U-type binding mode. The nitrogen-containing aromatic ring structure in the
inhibitor helps to maintain the U-type binding mode with ATP. At the same time, the
nitrogen atom on the aromatic ring and the amine group and carbonyl group connected
to the ring can form a hydrogen bond interaction with met1160 and pro1158 in the hinge
region of c-met kinase. In addition, the inhibitor can also generate a π-π stacking effect
with the tyr1230 residue of the activation ring. The typical Class I inhibitors are crizotinib,
capmatinib, volitinib, AMG337, and tepotinib [27].

Class II small molecules are often ATP-competitive, multi-target c-met kinase in-
hibitors with a relatively flexible structure, which can recognize the inactive “DFG out”
conformation and bind with it [28]. The representative drugs are cabozantinib, foretinib,
altiratinib, and merestinib [29].

Although pharmaceutical scientists have extensively researched c-Met inhibitors, it
is still necessary to find new antitumor compounds with good antitumor activity and
minimum side effects from a theoretical and practical perspective [5]. Chirality is the
basic feature of nature, and the main substances that make up life, such as amino acids,
carbohydrates, nucleic acids, proteins, enzymes, and receptors, are chiral [30]. The pharma-
cological effects of drugs are achieved through strict recognition with macromolecules in
the body [31]. In many cases, the pharmacological activity, metabolic process, metabolic
rate, and toxicity of chiral compounds of different configurations in an organism have
significant differences [32,33]. In addition, there are differences in absorption, distribution,
and excretion of enantiomers [34,35]. Therefore, it is important to design and synthesize
chiral compounds with different configurations and study their pharmacological activi-
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ties [36]. Herein, inspired by the interesting scaffold of tepotinib and the importance of
chirality in medicine, we have reported the design, synthesis, and activity study of tepotinib
derivatives containing two chiral centers (Figure 2) to determine the leading compounds
with good activity and minor side effects.
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2. Results and Discussion
2.1. Chemistry

The synthetic routes of compounds 4 and 5 are shown in Scheme 1. Specifically, the
asymmetric hydrogen transfer of 4-acetylpyridine with sodium formate afforded chiral
alcohol 2. Compound 2 reacted with methyl iodide, affording salt 3, which was subjected
to reduction by sodium borohydride to give compound 4. The catalytic hydrogenation
reaction of compound 4 yielded N-methyl-1-methylpiperidine-4-methanol 5 [37].

Molecules 2022, 27, x FOR PEER REVIEW 3 of 21 
 

 

feature of nature, and the main substances that make up life, such as amino acids, carbo-
hydrates, nucleic acids, proteins, enzymes, and receptors, are chiral [30]. The pharmaco-
logical effects of drugs are achieved through strict recognition with macromolecules in the 
body [31]. In many cases, the pharmacological activity, metabolic process, metabolic rate, 
and toxicity of chiral compounds of different configurations in an organism have signifi-
cant differences [32,33]. In addition, there are differences in absorption, distribution, and 
excretion of enantiomers [34,35]. Therefore, it is important to design and synthesize chiral 
compounds with different configurations and study their pharmacological activities [36]. 
Herein, inspired by the interesting scaffold of tepotinib and the importance of chirality in 
medicine, we have reported the design, synthesis, and activity study of tepotinib deriva-
tives containing two chiral centers (Figure 2) to determine the leading compounds with 
good activity and minor side effects. 

 
Figure 2. Design of compounds 12a-b. 

2. Results and Discussion 
2.1. Chemistry 

The synthetic routes of compounds 4 and 5 are shown in Scheme 1. Specifically, the 
asymmetric hydrogen transfer of 4-acetylpyridine with sodium formate afforded chiral 
alcohol 2. Compound 2 reacted with methyl iodide, affording salt 3, which was subjected 
to reduction by sodium borohydride to give compound 4. The catalytic hydrogenation 
reaction of compound 4 yielded N-methyl-1-methylpiperidine-4-methanol 5 [37]. 

 
Scheme 1. (a) (S,S,S)-CsDPEN/(R,R,S)-CsDPEN, [RuCl2(p-cymene)]2, HCOONa, DCM/H2O, 25 °C; 
(b) CH3I, CH3CN, 50 °C; (c) NaBH4, MeOH, 0 °C; (d) Pd/C, MeOH, 40 atm, 50 °C. 

The synthetic route of the target compound 12a-b is shown in Scheme 2. The Suzuki 
cross-coupling reaction of 3-acetylphenylboronic acid with 2-chloro-5-fluoropyrimidine 
afforded compound 9. The reaction of compound 9 with chiral alcohols 4 or 5 with sodium 
hydride yielded compounds 10a-b. Asymmetric hydrogen transfer of compounds 10a-b 
with the same procedure, using sodium formate and the chiral catalyst, yielded com-
pounds 11a-b [37]. Finally, the Mitsunobu reaction of chiral alcohols 11a-b with 3-(6-oxo-
1,6-dihydropyridazin-3-yl)benzonitrile 7 afforded the target compounds 12a-b. 

Scheme 1. (a) (S,S,S)-CsDPEN/(R,R,S)-CsDPEN, [RuCl2(p-cymene)]2, HCOONa, DCM/H2O, 25 ◦C;
(b) CH3I, CH3CN, 50 ◦C; (c) NaBH4, MeOH, 0 ◦C; (d) Pd/C, MeOH, 40 atm, 50 ◦C.

The synthetic route of the target compound 12a-b is shown in Scheme 2. The Suzuki
cross-coupling reaction of 3-acetylphenylboronic acid with 2-chloro-5-fluoropyrimidine
afforded compound 9. The reaction of compound 9 with chiral alcohols 4 or 5 with sodium
hydride yielded compounds 10a-b. Asymmetric hydrogen transfer of compounds 10a-b
with the same procedure, using sodium formate and the chiral catalyst, yielded compounds
11a-b [37]. Finally, the Mitsunobu reaction of chiral alcohols 11a-b with 3-(6-oxo-1,6-
dihydropyridazin-3-yl)benzonitrile 7 afforded the target compounds 12a-b.

2.2. The Preperation of Monocrystal

The two chiral centers of compounds 12a-b are formed through an asymmetric hydro-
gen transfer reaction, with (S, S, S)-CsDPEN/Ru or (R, R, S)-CsDPEN/Ru as the catalyst.
We chose compound R-5b, containing a single chiral center, to determine its absolute
configuration. The method for preparing a single crystal of R-5b is as follows: Compound
R-5b (506.6 mg, 1 mmol) was dissolved in freshly re-distilled absolute ethanol. 1 mL of hy-
drochloric acid standard solution in ethyl acetate (concentration of 1 mmol/mL) was added
dropwise into the R-5b solution and then stirred for 1 h. The excess solvent is removed by
rotary evaporation to obtain a pale-yellow solid as the hydrochloride of compound R-5b.
Then, it was dissolved in 5 mL of re-distilled dichloromethane, and 15 mL of re-distilled
ethyl acetate was slowly added. After standing still for 3 days, pale-yellow needle-like
crystals are precipitated, which are used for X-ray single-crystal diffraction.
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2.3. The Result of X-ray Diffraction

In the synthesis of compound R-5b, the S-configuration ligand was used to catalyze
the asymmetric hydrogen transfer reaction and to obtain the S-configuration alcohol. Dur-
ing the Mitsunobu reaction in the last step, the inversion of the configuration occurred.
Therefore, using the (S, S, S)-CsDPEN ligand in the synthesis resulted in an R-configuration
final product. The results of X-ray single crystal diffraction analysis (Figure 3) are consistent
with the above inference. The X-ray statistics of (R)-5b can be fetched in the CSDS database
with the deposition number of 2,132,093 [38].
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2.4. In Vitro Antiproliferative Activities and SARs

In China, hepatocellular carcinoma is one of the leading cancers that endanger human
lives. In our previous work, we synthesized a serial of compounds with mono chiral centers
and investigated the effect of chiral moiety on biological activities [39].

On the basis of our former study, compounds 12a-b were designed and first screened
for their antiproliferative activity against the c-Met-driven human hepatocarcinoma cells
(MHCC97H), using a standard MTT assay [40]. Tepotinib was used as a positive control.

The IC50 values of compounds 12a-b and the optimal compounds, bearing the sin-
gle chiral center of previous work, are listed in Table 1. Generally, the derivatives with
two chiral centers demonstrated potent antiproliferative activities with the IC50 values
ranging from submicromolar to nanomolar levels. First, we examined the activities of
compound 12a, in which the R group was a 1-(1-methylpiperidin-4-yl)ethan-1-yl moiety.
Compound (R, R)-12a showed both chiral carbons in the R configuration and exhibited
potent activity against MHCC97H with the IC50 value of 0.035 µM. Second, compared to
(R, R)-12a, compound (R, S)-12a keeps the configuration of C1 carbon as an R configuration
and changes the C2 to an S configuration, showing the most potent antiproliferative activity
against MHCC97H. The IC50 value of compound (R, S)-12a was 0.0021 µM, which is 10-fold
more than the former compound (R, R)-12a.

Table 1. In vitro c-Met kinase inhibition and antiproliferative activity against MHCC97H of com-
pounds 12a-b.
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However, the antiproliferative activities of the compounds (S, R)-12a and (S, S)-12a
are the opposite. The IC50 value was 0.2052 and 0.0483 µM for compounds (S, R)-12a
and (S, S)-12a, respectively. The former study showed that C1 with an R configuration
presented better antitumor activities. These results indicated that the configurations of
the two chiral carbons are essential for antitumor activities, and the best configuration
combination improves biological activities. The optimum results should be such that C1 is
in the R configuration, and C2 is its opposite. Third, compound 12b, featuring 1-(1-methyl-
1,2,3,6-tetrahydropyridin-4-yl)ethan-1-yl moiety as the R group, displayed considerably
lower antiproliferative activities than the corresponding analog 12a. These results indicated
that the double bond of the R group is unfavorable to antiproliferative activities. The



Molecules 2022, 27, 5359 6 of 20

changes in the antiproliferative activities of compounds 12a-b have the same relationship
with the configuration of a chiral carbon (Figure 4). The above results indicate that only
compounds with a specific configuration can better bind to the target and achieve an
excellent antitumor effect.
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2.5. Toxicity towards Normal Cells

To evaluate the selectivity of (R, S)-12a to MHCC-97H and human normal cells, two
types of human normal cells including HaCat (human immortalized keratinocytes) and
LO2 (human normal liver cells) were used to test the selectivity of (R, S)-12a toward other
cancer cells and normal cells, while tepotinib was used as a positive control. As shown
in Table 2, compound (R, S)-12a exhibited high cytotoxicity toward hepatic carcinoma
MHCC-97H cells and was nearly inactive in the inhibition of human normal cells HaCat
and LO2, with selectivity ratios of 953.5 and 5750.0, respectively, which were superior to
that of tepotinib (150.08 and 671.54).

Table 2. IC50 of compound (R, S)-12a and tepotinib on MHCC-97H, Hacat, and LO2.

Compound MHCC-97H HaCat Selectivity Index LO2 Selectivity Index

Tepotinib 0.013 ± 0.002 µM 1.951 ± 0.349 µM 150.08 8.73 ± 0.841 µM 671.54

(R, S)-12a 0.002 ± 0.002 µM 1.907 ± 0.25 µM 953.5 11.50 ± 1.53 µM 5750.0

2.6. Effects of Compound (R, S)-12a on Tumor Cell Morphology

As the compound (R, S)-12a exhibited excellent antiproliferative activity in the study
of the relationship between structure and activity, it was chosen for studying the effect
on the morphology of MHCC-97H tumor cells. As shown in Figure 5, the control group
showed the normal morphology of adherence. Co-incubation with compound (R, S)-12a
(1, 10, and 50 nM) led to a significant reduction in loss of cell viability. Red arrowheads
indicated distinct morphological changes, such as intracytoplasmic particles increasing, the
cell shape change, and loss of adherent property. Under the treatment of the compound
(R, S)-12a at the concentrations of 10 and 50 nM, the cells shrank and floated and no longer
adhered to the wall. Aggregation, lysis, and cell debris also occurred.
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2.7. Immunofluorescence Staining and Western Blotting

To study the effect of the compound (R, S)-12a on the phosphorylation level of c-Met
and Akt proteins in tumor cells, we performed immunofluorescence and Western blot
assays. As shown in Figure 6A–C, after the MHCC97H cells were treated with compound
(R, S)-12a (2.5 nM) for 48 h, immunofluorescence assays were performed using confocal
microscopy. Staining the nucleus with Hoechst 33,342 and labeling the target protein with
FITC and confocal laser assay showed that the target proteins c-Met, p-c-Met, AKT, and
p-AKT were all located outside the nucleus. After (R, S)-12a treatment at a concentra-
tion of 2.5 nM, the fluorescence intensity of c-Met and AKT in the cells did not change
significantly, that is, the total amount of c-Met and AKT proteins did not change signif-
icantly, but the fluorescence intensity of p-c-Met and p-AKT decreased significantly. In
addition, we examined the expression levels of c-Met, p-c-Met, AKT, and p-AKT proteins
via immunoblotting analysis. As shown in Figure 6D,E, compound (R, S)-12a was found to
decrease the phosphorylation level of c-Met and AKT protein in a dose-dependent fashion,
which is consistent with the results obtained by immunofluorescence assays. These results
implied that compound (R, S)-12a exhibits an effective inhibition of c-Met activation and
downstream signaling pathway AKT [41–43].

2.8. Cell Cycle Study

In the next study, compound (R, S)-12a was examined for its effect on the cell cycle
progression of MHCC-97H tumor cells by a flow cytometry analysis. As shown in Figure 7,
upon the treatment with compound (R, S)-12a at the concentrations of 1, 5, and 10 nM,
the growth cycle changed significantly in a dose-dependent fashion. The proportions of
cells in the G1 phase increased, and the proportions of cells in the G2/M phase decreased.
The effect was most obvious for compound (R, S)-12a at the concentration of 10 nM: the
proportion of cells in the G1 phase increased from 49.16% to 70.99%, and the proportion in
the G2/M phases decreased from 32.37% to 12.44%, compared to the vehicle control. These
results indicated that compound (R, S)-12a could trigger cell cycle arrest in the G1 phase.
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Figure 6. (A,B) Immunofluorescence staining analysis for the expression of c-Met, p-c-Met, AKT, and
p-AKT. MHCC97H cells were treated with vehicle control (0.1% DMSO) and compound (R, S)-12a for
24 h. The expression of c-Met, p-c-Met, AKT, and p-AKT was visualized with FITC antibody, Alex-
aFluor488 (green), and counterstained with Hoechst 33342 (blue) via confocal microscopy. (C) The
average fluorescence intensity of FITC channel (A,B). (D) Western blot images. (E) Histogram
of relative gray value in 6D, which is quantified by Image J and analyzed by GraphPad Prism 8.
“**”, p < 0.01, “***”, p < 0.001.
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Figure 7. Compound (R, S)-12a induced G1 phase arrest in MHCC97H cells. The MHCC97H
cells were treated with compound (R, S)-12a for 48 h, harvested, stained with PI, and analyzed
by flow cytometry. (A) Vehicle control; (B–D) compound (R, S)-12a at the concentrations of 1, 5,
and 10 nM, respectively; (E) histograms showing the proportions of cell distribution; (F) Hoechst
33342 staining of MHCC97H cells with the treatment of compound (R, S)-12a (1, 5, and 10 nM) for
48 h. (G) Representative flow cytometric profiles showing that compound (R, S)-12a (1, 5, and 10 nM)
induces MHCC97H cells apoptosis for 48 h.

2.9. Cellular Apoptosis Analysis

Tumor cell apoptosis is an important stage in the effective treatment of cancer [33].
To evaluate the capacity of compound (R, S)-12a to induce apoptosis in human cancer cell
lines, we used Hoechst 33342 staining to investigate the effect of compound (R, S)-12a
on MHCC97H cells. Hoechst 33342 staining was used to examine apoptosis through
morphological observation. As shown in Figure 7F, obvious nucleolar pyknosis, DNA
fragmentation, and chromatin condensation were observed in the compound (R, S)-12a-
treated cells with stronger blue fluorescence compared to the vehicle control cells.

Moreover, an FITC conjugated Annexin-V/PI assay was performed with MHCC-97H
tumor cells, and the results are shown in Figure 7G. Upon the treatment with compound
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(R, S)-12a, the proportions of early and late apoptosis cells were 8.9% at 1 nM, 33.3% at 5 nM,
and 52.5 at 10 nM. These results implied that compound (R, S)-12a could effectively induce
apoptosis in a dose-dependent manner and thus lead to the death of cancer cells eventually.

2.10. (R, S)-12a Inhibited MHCC-97H Tumor Cell Migration

Tumor metastasis is one of the main causes of patient death [34]. To investigate
whether the compound (R, S)-12a could inhibit tumor cell migration, we conducted a cell
scratch assay in MHCC97H cells. As shown in Figure 8, compound (R, S)-12a significantly
suppressed wound closure in a dose- and time-dependent manner, compared to the vehicle
control. These results suggest that compound (R, S)-12a may have the potential ability to
inhibit tumor cell migration and metastasis.
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2.11. Computational Characterization of the Binding Modes between Compounds 12a and c-Met

To explore the possible binding mode of compounds (R, R)-12a and (R, S)-12a with
c-Met, we used the crystal structure of c-Met as a template (tepotinib in PDB:4R1V) [22], and
a docking operation was conducted to rationalize the inhibition results with Schrödinger



Molecules 2022, 27, 5359 11 of 20

suites (Figure 9). Comparing the binding mode of (R, R)-12a and (R, S)-12a with tepotinib,
we found both of them were type I inhibitors, the same as tepotinib. They occupy c-
Met’s ATP-binding site and compete with ATP molecules by forming hydrogen bonds
with Met 1160 and Asp 1222 motifs and also bind to the active region of c-Met, for the
c-helix and DFG motifs (a usual catalytic triplet in a kinase structure) that adopt an “in”
configuration [43].
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Figure 9. (A) Tepotinib is in cyan; motif 1222, 1223, and 1224 of DFG catalytic triplet are in purple
blue; C-helices are in red. (B) The 2D interaction of tepotinib. (C) (R, R)-12a is in violet; motif 1222,
1223, and 1224 of DFG catalytic triplet are in purple blue; C-helices are in red. (D) The 2D interaction
of (R, R)-12a. (E) (R, S)-12a is in orange; motif 1222, 1223, and 1224 of DFG catalytic triplet are in
purple blue; C-helices are in red. (F) The 2D interaction of (R, S)-12a. (G) RMSD and plots of protein
backbone atoms for c-met structures in complex with (R, S)-12a, (R, R)-12a.
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Unlike tepotinib, the introduction of a methyl group, which constructs the C2 chiral
center, produces a π–π stacking interaction with Tyr 1230, enhancing the inhibitory activity.
Moreover, the methyl group of the C2 chiral center of the two enantiomers induces N-
methylpiperazine moiety in a different direction. Figure 9C shows the direction of the
methyl group in (R, S)-12a that created a salt bridge between Glu1082 and the nitrogen atom
on the piperidine ring. In contrast, the methyl group of (R, R)-12a pointed toward TYR1159,
in a distance of 1.6 Å, which is a steric hindrance (Figure 9B). This could explain why the
compounds in R configuration of the C2 chiral center are less active than in S configuration.

2.12. Molecular Dynamics Simulations

To further study the stability of the docking complex to the target, molecular dynamics
(MD) simulations were performed preliminarily, and the protein RMSD values for each
simulation run were monitored to measure the stability of protein–ligand poses. As the
backbone RMSD value of two complexes in Figure 9, the RMSD value of the system for
the (R, S)-12a complex increased to around 2.0 Å at 4 ns and settled smoothly around 2.2 Å
until the end of the simulation, while the RMSD plot of (R, R)-12a demonstrated the initial
complex system fluctuations till 5.5 ns, and then the plot stabilized around 1.7 Å, indicating
that the system equilibrated at the end of the simulation. These results indicated that the
conformational changes of the docked complexes were within the acceptable limit of 1–3 Å
during the 10 ns simulation [44].

3. Discussion

At present, the total number of drugs used in the world is about 1900. Among them,
about 200 drugs are commonly used in clinical practice, and there are more than 110
kinds of chiral drugs. The discovery of chiral drugs is still one of the main directions
of new drug research. In this paper, we developed a series of tepotinib derivatives with
two chiral centers. Studies on cell proliferation activities show that the configuration of
chiral carbon in the molecular structure has a great influence on antiproliferative activities.
The antiproliferative activities of compounds with different configurations ((R, S)-12a
vs. (S, R)-12a) differ by nearly a hundred-fold. These results indicate that the optimal
compound (R, S)-12a is worthy of further druggability studies.

4. Materials and Methods
4.1. Chemistry
4.1.1. General Methods and Materials for Synthesis

All reagents used in the synthesis were obtained commercially and used without
further purification unless otherwise specified. The 1H NMR and 13C NMR spectra
were recorded using TMS as the internal standard on a Bruker BioSpin GmbH spec-
trometer at 400/500 and 100/125 MHz, respectively. High-resolution mass spectra (HR-
MS) were recorded using a Shimadzu LCMS-ITTOF mass spectrometer (more data at
Supplementary Materials).

The reactions were monitored by thin-layer chromatography (TLC) on glass-packed
precoated silica gel plates and visualized in an iodine chamber or with a UV lamp. Flash
column chromatography was performed using silica gel (200–300 mesh) purchased from
Qingdao Haiyang Chemical Co. Ltd. (Qingdao, China). Chemical and solvents were of
reagent grade and used without further purification.

The purities of all the final synthesized compounds were ≥95% as determined by
high-performance liquid chromatography (HPLC), compound 12a with an Agilent TC-C18
column (4.6 × 250 mm, 5 µm) and compound 12b with Shimadzu GIST-HP C-18 column
(2.1 × 100 mm, 3 µm). The enantiomeric excess of compounds (R, S)-12b and (S, R)-12b
was analyzed using Daicel OJ-H column, eluted with n-hexane/isopropanol (85/15, v/v)
and 1‰ diethylamine as a tailing agent at a low flow rate of 0.5 mL/min. The chiral purities
of the other target chiral compounds were analyzed using Daicel AD-H column, eluted
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with n-hexane/isopropanol (90/10, v/v) and 1‰ diethylamine as a tailing agent at a low
flow rate of 0.5 mL/min.

The preparation of 3-(6-oxo-1,6-dihydropyridazin-3-yl)benzonitrile (7) was carried out
according to the method of literature.

4.1.2. General Procedures for Preparation of Compounds (R)-2 and (S)-2

A suspension formed by mixing of chiral ligand (S, S, S)-CsDPEN/(R, R, S)-CsDPEN
(0.23 mmol, 96 mg) and [RuCl2(p-cymene)]2 (0.11 mmol, 64.5 mg) in water (30 mL) was
stirred at 40 ◦C for 4 h under nitrogen. To the chiral catalyst prepared above, a solution
of 4-acetylpyridine and sodium formate (32.3 mmol, 2.2 g) in dichloromethane/water (30
mL) was added. The reaction mixtures were stirred at room temperature and monitored
with TLC. After 20 h, the organic phase was separated, washed with brine, dried, and
concentrated in vacuo. The crude products were purified with silica gel column chromatog-
raphy using dichloromethane/methanol (10/1, v/v) as eluents to afford compounds (R)-2
and (S)-2. Colorless oil, yield: 73.4%. 1H NMR (400 MHz, CDCl3) δ 8.51–8.27 (m, 2H),
8.11 (s, 1H), 7.79–7.57 (m, 1H), 6.79 (s, 1H), 4.47 (m, 1H), 3.02 (s, 3H).

4.1.3. General Procedures for Preparation of Compounds (R)-4 and (S)-4

To a solution of compound (R)-2 (9.2 mmol, 1.19 g) in acetonitrile (15 mL), methyl
iodide (12.1 mmol, 0.75 mL) was added. The reaction mixture was stirred at 40 ◦C and
checked with TLC to confirm that the reaction was completed. After 3.5 h, the solvents
were removed under reduced pressure. The crude product, crude (R)-3, was used for the
next step. To a solution of compound (R)-3 in methanol (25 mL), sodium borohydride
(37.0 mmol, 1.4 g) was added in batches under an ice bath. The reaction mixture was
stirred for one hour and then slowly warmed to room temperature and checked with TLC.
The reaction was quenched with water (30 mL), and the mixture was extracted with ethyl
acetate (30 × 2 mL). The organic phase was separated, washed, dried, and concentrated
under reduced pressure to provide compounds (R)-4 and (S)-4. Brown oil, yield: 85.5%. 1H
NMR (400 MHz, CDCl3) δ 5.61 (dq, J = 3.1, 1.5 Hz, 1H), 4.18 (q, J = 6.3 Hz, 1H), 2.99 (s, 1H),
2.96 (d, J = 3.0 Hz, 2H), 2.63–2.51 (m, 2H), 2.36 (s, 3H), 2.21 (m, 2H), 1.25 (d, J = 6.5 Hz, 3H).

4.1.4. General Procedures for Preparation of Compounds (R)-5 and (S)-5 [11]

To a solution of chiral alcohol (R)-4 (8 mmol; 1.14 g) in methanol (6 mL) in an autoclave,
palladium on carbon (1.6 mmol, 170 mg) was added. The reaction system was replaced
with hydrogen three times, pressurized to 40 bar, and then stirred at 50 ◦C, monitored by
the iodine cylinder. After 24 h, the mixture was concentrated under reduced pressure to
afford compound (R)-5. Colorless oil, yield: 90.6%. 1H NMR (400 MHz, CDCl3) δ 3.58 (p,
J = 6.3 Hz, 1H), 2.99–2.89 (m, 2H), 2.30 (s, 3H), 2.01–1.91 (m, 2H), 1.87 (dt, J = 13.0, 2.7 Hz,
1H), 1.64 (dt, J = 13.0, 3.0 Hz, 1H), 1.41 (m, 2H), 1.32–1.22 (m, 1H), 1.18 (d, J = 6.3 Hz, 3H).

1-(3-(5-Fluoropyrimidin-2-yl)phenyl)ethan-1-one (9)

A mixture of sodium carbonate (66 mmol, 6.72 g), 5-fluoro-2-chloropyrimidine (33 mmol,
4.32 g), (Ph3P)2PdCl2 (0.68 mmol, 0.48 g), 3-acetylphenylboronic acid (32 mmol, 5.25 g) in a
mixture of toluene (65 mL), ethanol (33 mL), and water (32 mL) was refluxed at 83 ◦C for
11 h under nitrogen. After cooling to room temperature, the reaction mixture was extracted
with ethyl acetate. The organic phase was separated, dried, and concentrated in vacuo. The
crude product was slurried using petroleum ether/ethyl acetate (8:1, v/v) and filtered to
obtain compound 9. Light yellow solid, yield: 80.2%. 1H NMR (400 MHz, CDC13) δ 8.98 (t,
J = 1.6 Hz, 1H), 8.70 (s, 2H), 8.59–8.47 (m, 2H), 7.60 (m, 1H), 2.71(s, 3H).

(S,R)-1-(3-(5-(1-((1-Methyl-1,2,3,6-tetrahydropyridin-4-yl)oxy)ethyl)pyrimidin-2-
yl)phenyl)ethan-1-ol (11)

To a mixture of compound (R)-5 or (S)-5 in DMF (10 mL), sodium hydride (60%,
3.80 g) was added in batches at 0 ◦C. After 15 min, compound 9 (0.59 mmol, 1.28 g) in
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DMF (13 mL) was slowly added to the above mixture at 0 ◦C. The mixture was allowed
to warm to room temperature. After 1.5 h, the reaction mixture was slowly poured into
ice water (30 mL) and extracted with dichloromethane (60 mL). The organic layer was
separated and washed with water three times to remove the DMF to obtain compound 10
in dichloromethane. A suspension formed by mixing chiral ligand (S,S,S)-CsDPEN/(R,R,S)-
CsDPEN (0.23 mmol, 96 mg) and [RuCl2(p-cymene)]2 (0.11 mmol, 64.5 mg) in water (30 mL)
was stirred at 40 ◦C for 4 h under nitrogen. To the chiral catalyst prepared above, a solution
of compound 10 and sodium formate (13.1 mmol, 0.89 g) in dichloromethane/water (30 mL)
was added. The reaction mixtures were stirred at room temperature and monitored with
TLC. The reaction mixtures were stirred at room temperature and monitored with TLC.
After 20 h, the organic phase was separated, washed with brine, dried, and concentrated
in vacuo. The crude products were purified with silica gel column chromatography using
dichloromethane/methanol (30/1→10/1, v/v) as eluents to afford compounds (S,R)-11.
Brown oil, yield: 75.5%. 1H NMR (400 MHz, CDCl3) δ 8.44 (s, 2H), 8.33 (s, 1H), 8.24
(d, J = 6.9 Hz, 1H), 7.48 (d, J = 7.2 Hz, 2H), 5.75 (s, 1H), 4.81 (q, J = 6.1 Hz, 1H), 2.94 (q,
J = 16.6 Hz, 2H), 2.60 (dt, J = 10.6, 5.1 Hz, 1H), 2.43 (dt, J = 11.5, 5.9 Hz, 2H), 2.32 (s, 3H),
2.26 (s, 1H), 2.13 (d, J = 17.4 Hz, 1H), 1.55 (d, J = 6.5 Hz, 3H), 1.52 (d, J = 6.4 Hz, 3H).

General Procedures for Preparation of Compounds 12a-b

To a solution of compound 7 (1.5 mmol, 296 mg), triphenylphosphine (3.0 mmol,
715 mg), and chiral alcohol intermediates 11 (1.3 mmol, 445 mg) in anhydrous tetrahydro-
furan (4 mL) diisopropylazodicarboxylate (551 mg, 2.72 mmol) was added dropwise under
nitrogen. The mixture was allowed to warm to room temperature and stirred overnight.
The reaction mixtures were quenched with ice water, and the mixture was extracted with
ethyl acetate (25 mL). The organic layers were separated, dried, and concentrated under
reduced pressure. The crude products were purified by silica gel column chromatography
using ethyl acetate/petroleum ether/triethylamine (100/25/1, v/v/v) as eluents to afford
compounds 12a-b.

(R,R)-3-(1-(1-(3-(5-(1-((1-Methylpiperidin-4-yl)oxy)ethyl)pyrimidin-2-yl)phenyl)ethyl)-6-
oxo-1,6-dihydropyridazin-3-yl)benzonitrile ((R, R)-12a)

Light yellow solid, yield: 43.2%. 1H NMR (400 MHz, Chloroform-d) δ 8.70 (s, 1H),
8.51 (s, 2H), 8.30 (d, J = 7.8 Hz, 1H), 8.23 (s, 1H), 8.00 (d, J = 8.0 Hz, 1H), 7.71 (d, J = 7.7 Hz,
1H), 7.63–7.54 (m, 3H), 7.45 (t, J = 7.7 Hz, 1H), 7.05 (d, J = 9.7 Hz, 1H), 6.57 (q, J = 7.1 Hz,
1H), 4.35 (p, J = 6.1 Hz, 1H), 2.99 (d, J = 11.2 Hz, 2H), 2.34 (s, 3H), 2.04–1.97 (m, 2H), 1.94
(d, J = 7.1 Hz, 3H), 1.75 (d, J = 12.0 Hz, 1H), 1.65– 1.49 (m, 2H), 1.36 (d, J = 6.2 Hz, 3H);
13C NMR (126 MHz) δ 159.24, 157.57, 150.28, 145.26, 141.88, 140.65, 137.69, 136.32, 132.51,
130.28, 129.83, 129.78, 129.73, 128.81, 128.74, 127.30, 126.92, 118.75, 113.32, 56.19, 54.59, 54.47,
43.82, 38.97, 25.74, 24.47, 20.11, 16.17, and HR-ESI-MS for C31H32N6O4 ([M + H]+) calcd:
521.2660; found: 521.2685.

(R,S)-3-(1-(1-(3-(5-(1-((1-Methylpiperidin-4-yl)oxy)ethyl)pyrimidin-2-yl)phenyl)ethyl)-6-
oxo-1,6-dihydropyridazin-3-yl)benzonitrile ((R, S)-12a)

Light yellow solid, yield: 45.4%. 1H NMR (400 MHz, Chloroform-d) δ 8.71 (s, 1H),
8.51 (s, 2H), 8.31 (d, J = 7.8 Hz, 1H), 8.24 (s, 1H), 8.00 (d, J = 8.5 Hz, 1H), 7.71 (d, J = 7.8 Hz,
1H), 7.63–7.55 (m, 3H), 7.45 (t, J = 7.7 Hz, 1H), 7.05 (d, J = 9.7 Hz, 1H), 6.57 (q, J = 6.9 Hz,
1H), 4.34 (q, J = 6.0 Hz, 1H), 3.01 (d, J = 9.7 Hz, 2H), 2.35 (s, 3H), 2.06–1.99 (m, 2H), 1.94 (d,
J = 7.1 Hz, 3H), 1.76 (d, J = 9.6 Hz, 2H), 1.69–1.59 (m, 3H), 1.37 (d, J = 6.2 Hz, 3H); 13C NMR
(126 MHz, CDCl3) δ 159.25, 157.51, 150.39, 145.25, 141.90, 140.64, 137.70, 136.32, 132.50,
130.26, 129.84, 129.78, 129.67, 128.80, 128.76, 127.28, 126.92, 118.74, 113.30, 56.21, 54.36, 54.22,
43.78, 38.99, 25.59, 24.66, 20.09, 16.28, and HR-ESI-MS for C31H32N6O4 ([M + H]+) calcd:
521.2660; found: 521.2685.
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(S,R)-3-(1-(1-(3-(5-(1-((1-Methylpiperidin-4-yl)oxy)ethyl)pyrimidin-2-yl)phenyl)ethyl)-6-
oxo-1,6-dihydropyridazin-3-yl)benzonitrile ((S, R)-12a)

Light yellow solid, yield: 47.6%. 1H NMR (400 MHz, Chloroform-d) δ 8.70 (s, 1H),
8.51 (s, 2H), 8.30 (d, J = 7.8 Hz, 1H), 8.23 (s, 1H), 8.00 (d, J = 8.0 Hz, 1H), 7.71 (d, J = 7.7 Hz,
1H), 7.63–7.54 (m, 3H), 7.45 (t, J = 7.7 Hz, 1H), 7.05 (d, J = 9.7 Hz, 1H), 6.57 (q, J = 7.1 Hz,
1H), 4.35 (p, J = 6.1 Hz, 1H), 2.99 (d, J = 11.2 Hz, 2H), 2.34 (s, 3H), 2.04–1.97 (m, 2H), 1.94
(d, J = 7.1 Hz, 3H), 1.75 (d, J = 12.0 Hz, 2H), 1.67–1.50 (m, 3H), 1.36 (d, J = 6.2 Hz, 3H).;
13C NMR (126 MHz, CDCl3) δ 159.20, 157.51, 150.38, 145.23, 141.85, 140.63, 137.71, 136.34,
132.47, 130.26, 129.81, 129.76, 129.69, 128.77, 128.71, 127.27, 126.91, 118.72, 113.33, 56.18,
54.35, 54.21, 43.81, 39.05, 29.69, 24.71, 20.10, 16.27, and HR-ESI-MS for C31H32N6O4 ([M +
H]+) calcd: 521.2660; found: 521.2679.

(S,S)-3-(1-(1-(3-(5-(1-((1-Methylpiperidin-4-yl)oxy)ethyl)pyrimidin-2-yl)phenyl)ethyl)-6-
oxo-1,6-dihydropyridazin-3-yl)benzonitrile ((S, S)-12a)

Light yellow solid, yield: 42.7%. 1H NMR (500 MHz) δ 8.69 (s, 1H), 8.51 (s, 2H), 8.28
(d, J = 7.7 Hz, 1H), 8.24 (s, 1H), 7.96 (d, J = 7.9 Hz, 1H), 7.69 (d, J = 7.6 Hz, 1H), 7.63–7.53 (m,
3H), 7.43 (t, J = 7.7 Hz, 1H), 7.03 (d, J = 9.7 Hz, 1H), 6.54 (q, J = 6.9 Hz, 1H), 4.43–4.38 (m,
1H), 3.44 (d, J = 10.0 Hz, 2H), 2.70 (s, 3H), 2.63 (t, J = 11.7 Hz, 2H), 2.11 (d, J = 14.1 Hz, 1H),
2.01 (m, 3H), 1.91 (d, J = 7.1 Hz, 3H), 1.88 –1.82(m,1H); 13C NMR (101 MHz, CDCl3) δ 159.23,
157.38, 150.51, 145.25, 141.85, 140.67, 137.71, 136.28, 132.44, 130.23, 129.84, 129.76, 129.71,
129.46, 128.77, 127.22, 126.87, 118.66, 113.26, 56.27, 54.55, 54.43, 44.21, 39.27, 26.01, 25.19,
20.11, 16.30, and HR-ESI-MS for C31H32N6O4 ([M + H]+) calcd: 521.2660; found: 521.2686.

(R,R)-3-(1-(1-(3-(5-(1-((1-Methyl-1,2,3,6-tetrahydropyridin-4-yl)oxy)ethyl)pyrimidin-2-
yl)phenyl)ethyl)-6-oxo-1,6-dihydropyridazin-3-yl)benzonitrile ((R, R)-12b)

Light yellow solid, yield: 58.2%. 1H NMR (400 MHz, Chloroform-d) δ 8.64 (s, 1H),
8.48 (s, 2H), 8.26 (d, J = 7.8 Hz, 1H), 8.21 (s, 1H), 7.97 (d, J = 8.0 Hz, 1H), 7.69 (d, J = 7.8 Hz,
1H), 7.62–7.53 (m, 3H), 7.44 (d, J = 7.7 Hz, 1H), 7.03 (d, J = 9.7 Hz, 1H), 6.53 (d, J = 7.1 Hz,
1H), 5.78 (s, 1H), 4.86 (q, J = 6.3 Hz, 1H), 3.24 (d, J = 15.8 Hz, 1H), 3.15 (d, J = 16.8 Hz,
1H), 2.90–2.85 (m, 1H), 2.72–2.66 (m, 1H), 2.51 (s, 3H), 2.43 (s, 1H), 2.28 (d, J = 17.4 Hz,
1H), 1.91 (d, J = 7.0 Hz, 3H), 1.54 (d, J = 6.4 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 159.24,
157.45, 150.49, 145.27, 141.80, 140.68, 137.72, 136.28, 132.41, 130.26, 129.81, 129.77, 129.76,
129.71, 129.50, 128.81, 128.70, 127.27, 126.88, 119.37, 118.64, 113.27, 77.77, 56.29, 52.31, 50.62,
43.75, 22.23, 20.02, 19.97, and HR-ESI-MS for C31H30N6O4 ([M + H]+) calcd: 521.2660;
found: 521.2686.

(R,S)-3-(1-(1-(3-(5-(1-((1-Methyl-1,2,3,6-tetrahydropyridin-4-yl)oxy)ethyl)pyrimidin-2-
yl)phenyl)ethyl)-6-oxo-1,6-dihydropyridazin-3-yl)benzonitrile ((R, S)-12b)

Light yellow solid, yield: 60.2%. 1H NMR (500 MHz, Chloroform-d) δ 8.68 (s, 1H),
8.51 (s, 2H), 8.28 (d, J = 7.7 Hz, 1H), 8.25 (s, 1H), 7.95 (d, J = 7.9 Hz, 1H), 7.70 (d, J = 7.7 Hz,
1H), 7.62–7.54 (m, 3H), 7.03 (d, J = 9.7 Hz, 1H), 6.54 (t, J = 7.0 Hz, 1H), 5.80 (s, 1H), 4.90
(q, J = 6.1 Hz, 1H), 3.58 (d, J = 16.1 Hz, 1H), 3.49 (d, J = 16.3 Hz, 1H), 3.22 (dt, J = 11.9,
5.5 Hz, 1H), 3.04 (q, J = 10.3, 8.0 Hz, 1H), 2.74 (s, 3H), 2.69 (m, 1H), 2.48 (m, 1H), 1.92 (d,
J = 7.0 Hz, 3H), 1.57 (d, J = 6.4 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 159.27, 157.42, 150.56,
145.28, 141.80, 140.67, 137.77, 136.34, 135.77, 132.42, 130.31, 129.84, 129.78, 129.72, 129.49,
128.82, 128.68, 127.27, 126.92, 120.42, 118.64, 113.31, 56.32, 52.80, 50.90, 44.30, 22.77, 19.98,
and HR-ESI-MS for C31H30N6O4 ([M + H]+) calcd: 519.2503; found: 519.2540.

(S,R)-3-(1-(1-(3-(5-(1-((1-Methyl-1,2,3,6-tetrahydropyridin-4-yl)oxy)ethyl)pyrimidin-2-
yl)phenyl)ethyl)-6-oxo-1,6-dihydropyridazin-3-yl)benzonitrile ((S, R)-12b)

Light yellow solid, yield: 56.3%. 1H NMR (500 MHz, Chloroform-d) δ 8.66 (s, 1H),
8.50 (s, 2H), 8.28 (d, J = 7.7 Hz, 1H), 8.23 (s, 1H), 7.98 (d, J = 8.0 Hz, 1H), 7.70 (d, J = 7.7 Hz,
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1H), 7.63–7.54 (m, 3H), 7.44 (t, J = 7.7 Hz, 1H), 7.04 (d, J = 9.7 Hz, 1H), 6.55 (q, J = 7.0 Hz,
1H), 5.79 (s, 1H), 4.88 (q, J = 6.2 Hz, 1H), 3.29 (d, J = 16.6 Hz, 1H), 3.21 (d, J = 16.5 Hz,
1H), 2.92 (m, 1H), 2.74 (m, 1H), 2.54 (s, 3H), 2.48 (s, 1H), 2.32 (d, J = 17.3 Hz, 1H), 1.92 (d,
J = 7.0 Hz, 3H), 1.55 (d, J = 6.4 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 159.24, 157.66, 150.43,
145.32, 141.82, 140.68, 137.69, 136.40, 136.32, 132.42, 130.29, 129.81, 129.78, 129.70, 128.84,
128.69, 127.34, 126.88, 118.69, 117.84, 113.29, 77.32, 56.23, 51.71, 50.31, 43.07, 21.48, 19.97,
and HR-ESI-MS for C31H30N6O4 ([M + H]+) calcd: 519.2503; found: 519.2521.

(S,S)-3-(1-(1-(3-(5-(1-((1-Methyl-1,2,3,6-tetrahydropyridin-4-yl)oxy)ethyl)pyrimidin-2-
yl)phenyl)ethyl)-6-oxo-1,6-dihydropyridazin-3-yl)benzonitrile ((S, S)-12b)

Light yellow solid, yield: 59.7%. 1H NMR (400 MHz, Chloroform-d) δ 8.70 (s, 1H), 8.50
(s, 2H), 8.28 (d, J = 7.8 Hz, 1H), 8.25 (s, 1H), 7.95 (d, J = 7.9 Hz, 1H), 7.69 (d, J = 7.7 Hz, 1H),
7.61–7.53 (m, 3H), 7.43 (t, J = 7.7 Hz, 1H), 7.02 (d, J = 9.7 Hz, 1H), 6.54 (d, J = 7.0 Hz, 1H),
5.79 (s, 1H), 4.88 (p, J = 7.7, 7.0 Hz, 1H), 3.34 (d, J = 17.1 Hz, 1H), 3.26 (d, J = 16.3 Hz, 1H),
2.99–2.93 (m, 1H), 2.78 (dt, J = 11.3, 6.4 Hz, 1H), 2.57 (s, 3H), 2.51 (d, J = 10.3 Hz, 1H), 2.33
(d, J = 17.7 Hz, 1H), 1.92 (d, J = 7.0 Hz, 3H), 1.54 (d, J = 6.4 Hz, 3H); 13C NMR (101 MHz,
CDCl3) δ 158.22, 156.42, 149.47, 144.25, 140.78, 139.65, 136.70, 135.26, 134.92, 131.38, 129.24,
128.78, 128.74, 128.69, 128.47, 127.78, 127.67, 126.25, 125.86, 118.45, 117.61, 112.25, 55.28,
51.35, 49.63, 42.79, 21.26, 19.00, 18.95, and HR-ESI-MS for C31H30N6O4 ([M + H]+) calcd:
519.2503; found: 519.2544.

4.2. Biological Effects
4.2.1. Cell Culture and Cytotoxicity Assay

MHCC97H were purchased from Kangyuan Bochuang Biotechnology co. LTD (Beijing,
China) and cultured with DMEM medium containing 10% FBS. The in vitro antiproliferative
activity of each compound was assayed using MTT method. In brief, cells were seeded in
96-well plates, at the density of 5 × 103/well. After medium removal, 100 µL of culture
media with 0.1% DMSO containing each compound at different concentrations was added
to each well, and incubation continued for another 48 h at 37 ◦C. DMSO (0.1%) and tepotinib
were used as the negative and positive controls, respectively. MTT solution (5 mg/mL
in PBS) was added, and incubation continued for another 4 h. The optical density was
detected with a microplate reader at 570 nm (BioTek, Winooski, VT, USA). The IC50 value
of each compound was calculated using GraphPad Prism 8. All the experiments were
repeated independently at least three times.

4.2.2. Kinase Inhibition Assay

The kinase inhibition assay was carried out according to the principle of MSA (Mo-
bility Shifting Assay) detection. Briefly, MET (08-151, Carna Bioscience, Kobe, Japan) was
prepared for 1-fold kinase buffer, and each compound was dissolved in DMSO as a stock
solution of 10 mM. Using triple dilution method, 10 gradient concentration groups were
received. Varying concentrations of compounds were transported in 384-well plates, and
100% DMSO was set as negative control. After adding kinase buffer, the 384-well plates
were centrifuged and vortexed, followed by 10 min of incubation. Then, ATP and kinase
substrate 2 (190861, GL Science, Tokyo, Japan), diluted in kinase buffer, were shifted in
the plate and incubated for 60 min after thorough mixing. Finally, adding stop solution
ended kinase reaction, and the conversion% was detected by a microplate reader (Caliper
EZ Reader II, Perkin Elmer, Waltham, Massachusetts, Germany). The statistics were an-
alyzed by GraphPad Prism 8, using log (inhibitor) vs. response–variable slope to fit the
dose–effect curve.

4.2.3. Cell Cycle Analysis

MHCC97H cells were incubated with varying concentrations of compound (R, S)-12a
or 1‰ DMSO for 48 h. The cells were collected by centrifugation, washed with PBS, and
fixed in 70% ice-cold ethanol at 4 ◦C for 12 h. After the removal of ethanol, each sample
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was re-suspended in 500 µL of staining buffer containing 50 µL of RNase A and 450 µL of
propidium iodide (KGA511, KeyGEN, BioTECH, Nanjing, Jiangsu, China) and incubated
at room temperature, avoiding light exposure for 30 min. The DNA content of the cells was
measured using a CytoFLXE flow cytometer (BECKMAN COLTER, Brea, CA, USA).

4.2.4. Cellular Apoptosis Analysis [31]

MHCC97H cells were incubated with varying concentrations of compound (R, S)-12a
or diluent (1‰ DMSO, as a negative control) for 48 h. The cells were harvested and
washed with PBS twice. Then, 500 µL of binding buffer suspended cells were added.
The cells were stained with 5 µL of Annexin V-FITC and 10 µL of PI (KGA105, KeyGEN,
BioTECH, Nanjing, Jiangsu, China). Then, the cells were incubated at room temperature for
15 min without light exposure. Apoptosis was analyzed using a CytoFLXE flow cytometer
(BECKMAN COLTER, Brea, CA, USA).

4.2.5. Wound Healing Assay [34]

MHCC97H cells were seeded in a 6-well plate and cultured for 24 h; subsequently, the
confluent monolayer cells were scratched with a 10 µL pipette tip. After that, the wound
was washed with PBS thrice to remove the non-adherent cell debris. In addition, each petri
dish had media containing (R, S)-12a in gradient concentrations (1, 2, and 3 nM) added.
At 0, 6, 12, and 24 h, changes of cell scratch in area were photographed by phase contrast
microscope and finally measured and analyzed by Image J.

4.2.6. Immunofluorescence Staining

MHCC97H cells were seeded into confocal dishes and then treated with vehicle control
(1‰ DMSO) and compound (R, S)-12a (2.5 nM). Cells were washed thrice with PBS, fixed
with 4% paraformaldehyde for 15 min, and punched with 0.2% triton X100 and then
blocked with 500 µL of blocking buffer at room temperature for 1 h. Cells were incubated
with a primary monoclonal antibody (c-Met, p-c-Met, AKT, and p-AKT) at 4 ◦C for 12 h
and then washed with PBS thrice, followed by incubation with the fluorescence secondary
antibody (Alexa Fluor 488-labeled Goat Anti-Mouse IgG (H + L)-A0428) and labeling of
nuclei by Hoechst33342 (MA0126, Meilunbio, Dalian, Liaoning, China). The cells were
finally visualized by a confocal microscope (Carl Zessi Microscopy LSM 880, Oberkochen,
Germany). The average fluorescence intensity of FITC channel was analyzed by Image J,
and the illustration was drafted by GraphPad Prism8.

4.2.7. Western Blotting Analysis [35–37]

MHCC97H cells were then homogenized with lysis buffer. The protein concentrations
were detected using a BCA Protein Assay Kit (Pierce BCA Protein Assay Kit 23227, Thermo,
Waltham, MA, USA), and their extracts were reconstituted within loading buffer (Beyotime,
Shanghai, China) and inactivated for 5 min at 100 ◦C. Subsequently, proteins (20 µg)
were fractionated by 10% SDS-PAGE and transferred to PVDF membranes. Then, PVDF
membranes were blocked in 10% skimmed milk and incubated with the appropriate
dilution of primary antibodies, including c-Met (Abcam, Cambridge, UK), p-c-Met (Abcam),
AKT (Cell Signaling Technology), p-AKT (Cell Signaling Technology), and GAPDH (Cell
Signaling Technology, Denver, MA, USA). The above primary antibodies were then reacted
with HRP-conjugated secondary antibody, and immunoreactive bands were visualized
by an ECL Detection Reagent (36208ES60, Yeasen, Shanghai, China) and were estimated
through densitometry with a chemiluminescence imaging system (Tanon, Shanghai, China).
Intensities of the blots were quantified with Image J and analyzed by GraphPad Prism 8.

4.2.8. Molecular Docking

All docking studies were performed by Schrödinger suites (Maestro v.9.0, Schrödinger
Inc., New York, NY, USA). For ligand preparation, 3D structures of all ligands were
constructed using ChemBio3D ultra14.0, and then the initial lowest energy conformations
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were calculated with igPrep. For protein preparation, the X-ray crystal structures of c-Met
(4R1V) [22] were downloaded from the RCSB PDB Bank (http://www.rcsb.org/ (accessed
on 22 May 2022)), and then Protein Preparation Wizard was used with default settings
to pre-process and refine. For dockings, the grid center was placed at the centroid of the
ligand-binding site, and then Glide with SP protocol was used to perform the docking
study. The docking poses were affirmed by PyMOL [45].

4.2.9. Molecular Dynamics Simulations

The stability of docked ligand–c-Met complexes and conformation changes was
analyzed by molecular dynamics simulation using Schrödinger suites (Desmond v3.8,
Schrödinger Inc., NY, USA). The systems applied the OPLS_2005 force field and simple
point charge (SPC) water model [46]. Each complex was built with the use of the highest-
scoring docking pose. All the 10 ns simulations were run on our servers.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27175359/s1: NMR, HPLC, and HPLC of chiral purity
and HRMS spectra data of compounds 12a-b; X-ray diffraction data of R-5b.
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