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Female reproduction is under multifactorial control of brain-pituitary-peripheral origin.

The present study provides information on seasonal changes in circulating LH and

GH concentrations, as well as transcript levels for a number of genes involved in the

regulation of reproduction and growth in female goldfish. We also provide information

on the effects of treatments with GnRH and/or GnIH, and their interaction with T3,

at three stages of gonadal recrudescence. Maximum basal concentration of LH was

observed at late recrudescence (Spring) while no seasonal changes in basal serum GH

levels was detected. Serum LH and GH levels were stimulated by GnRH as expected,

depending on the season. GnIH stimulated basal GH concentrations in gonadally

regressed fish. GnIH inhibitory action on GnRH-induced LH response was observed in

late, but not in mid recrudescence. T3 actions on basal and GnRH- or GnIH-induced GH

secretion were generally inhibitory, depending on season. Administration of T3 attenuated

GnRH-induced LH responses in mid and late stages of gonadal recrudescence, and the

presence of GnIH abolished inhibitory actions of T3 in fish at mid recrudescence. Our

results also demonstrated seasonal patterns in basal and GnRH- and/or GnIH-induced

transcript levels for ERα, ERβI, FSHR, aromatase, TRαI, TRβ, IGF-I, and Vtg in the liver

and ovary. However, there were no clear correlations between changes in transcript levels

and circulating levels of LH and GH. The results support the hypothesis that GnRH, GnIH,

and T3 are contributing factors in complex reciprocal control of reproduction and growth

in goldfish.

Keywords: Gonadotropin-inhibitory hormone (GnIH), Gonadotropin-releasing hormone (GnRH), growth,

reproduction, thyroid hormone, female, seasonality

INTRODUCTION

In most seasonal reproducing oviparous species including fish, reproduction and growth cycles
are usually not in-phase with one another because of the significant energy allocation needed to
sustain each of these processes. The shift between reproduction and growth phase is associated
with changes in the neuroendocrine control by hormones of brain-pituitary-peripheral axis, as
well as the accompanying alterations in metabolism. Gonadotropin-releasing hormone (GnRH)
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is an important neuroendocrine regulator of reproduction
because of its ability to stimulate the release and gene expression
of pituitary gonadotropins, follicle-stimulating hormone (FSH)
and luteinizing hormone (LH). Gonadotropins in turn promote
gamete production and hormone production in the ovary and
testis. Growth and metabolism are regulated by pituitary growth
hormone (GH). GH production and secretion is stimulated
by several neurohormones including GnRH (1–4). There are a
number of vertebrate GnRHmolecular forms and all vertebrates,
including mammals, express multiple isoforms of GnRH (5).
All vertebrates studied express GnRH2 in different parts of the
brain, including the mid brain, and GnRH2 has been suggested
to act as a neuromodulator of behavior, food intake, and energy
balance rather than as a hypophysiotropic factor (6–8). GnRH3
is only found in teleosts and in species where the predominant
vertebrate preoptic hypothalamic GnRH1 form is absent, GnRH3
acts as the main pituitary regulator (5). In goldfish, chicken
(c)GnRHII (GnRH2) and salmon (s)GnRH (GnRH3) are the
native isoforms (9). There is evidence that both GnRH2 and
GnRH3 have hypophysiotropic functions in goldfish and both
forms stimulate LH and GH production (2, 4, 5, 10).

While the importance of GnRH in the neuroendocrine
regulation of reproduction in vertebrates including fish is well-
accepted, there is clear evidence that GnRH is also a key factor
in the control of somatotrope activity in fish. In goldfish, GnRH
isoforms have been shown to directly stimulate GH release
and synthesis from the pituitary (2, 11–16). GnRH binding
sites have been observed in somatotrope cells in the pituitary
of various fish species including goldfish, cichlids, and pejerry
(Odontesthes bonariensis) (17–19). GnRH stimulatory actions on
GH release has also been demonstrated in other fish species
like tilapia (Oreochromis niloticus) (20), common carp (Cyprinus
carpio) (21), and masu salmon (Oncorhynchus masou) (22).
However, GnRH treatment was found to be without effect on GH
production in turbot (Scophthalmus maximus) (23), eel (Anguilla
anguilla) (24), and catfish (Clarias gariepinus) (25), indicating
that species differences exist even among teleosts.

Multifactorial control of reproduction and growth also
involves gonadotropin inhibitory hormone (GnIH). GnIH was
first discovered in the Japanese quail (Coturnix japonica) as part
of the RF-amide family of proteins andGnIHwas found to inhibit
FSH and LH production and secretion (26). The presence of
multiple forms of GnIH and GnIH-related peptide transcripts
have been demonstrated in each of a number of species (27).
Goldfish have three GnIH genes, although only GnIH-3 (GnIH:
SGTGLSATLPQRF-NH2) is expressed in the hypothalamus (28).
In mammals and birds species studied, GnIH was found to
inhibit gonadotrope functions (29–31). In fish and amphibians,
GnIH effects are more complex and appear to be species specific
(32). In cinnamon clownfish (Amphiprion melanopus), treatment
with GnIH inhibited expression of gonadotropin α subunit
as well as LHβ, and FSHβ subunits (33). In the cichlid fish
(Cichlasoma dimerus), GnIH subtypes exert different actions;
cdGnIH1 inhibited FSHβ and LH β expression, but cdGnIH2
stimulated FSHβ expression (34). In goldfish, GnIH exerts both
stimulatory and inhibitory actions on gonadotropin and GH
production, depending on the season (14, 35, 36). Treatment with

GnIH inhibited both release and synthesis of LH during early
recrudescence but not in late recrudescence goldfish (36). In grass
puffer (Takifugu alboplumbeus), transcript levels for GnIH, FSH,
and LH were found to be higher during spawning period, both in
vitro and in vivo (37). GnIH also increased GH mRNA levels in
grass puffer primary pituitary cell cultures (38) and GH release
in cichlid C. dimerus (34). Similarly, GnIH stimulated GH release
in mammals (39, 40). In static incubation of primary cultures of
goldfish pituitary cells, GnIH stimulated GH release and mRNA
expression in cells from goldfish in late recrudescence; however,
GnIH reduced GHmRNA expression in cells obtained from early
and mid recrudescence stage fish (14). In vivo application of
GnIH to goldfish in early, mid, and late stages of recrudescence
decreased serum GH concentration but increased pituitary GH
mRNA levels (14). Overall, these studies have demonstrated
GnIH has both stimulatory and inhibitory effects on LH and
GH response that are species specific and seasonally related. To
further add to the complexity of GnIH effects, many of these
studies utilized mixed sex groups. The complete picture of GnIH
regulation of somatotropes and gonadotropes in females remains
to be clarified.

In addition to GnRH and GnIH, thyroid hormones (T3
and T4) also play important roles in the control of growth
and reproduction. Thyroid hormones are also important factors
involved in metamorphosis in amphibians and certain fish
species (41–43). Thyroid hormones are known to work in
concert with GH to increase growth and metabolism (44–47).
Concomitant treatments of T4 and GH in Ames dwarf mice
can increase body mass and growth to levels similar to regular
non-dwarf mice (48). In contrast, thyroid hormones have both
inhibitory and stimulatory effects on somatotrope functions in
teleost species. For example, thyroid hormones directly inhibited
GH release and synthesis in eel pituitary (49) but in vivo T3
treatments increased GH mRNA expression in rainbow trout
(Oncorhynchus mykiss) (50) and had no effects in goldfish (51).
A number of studies have demonstrated actions of thyroid
hormone on reproduction in both female and male (52–56).
In murrel, Channa gachua, and a carp, Catla catla, as well as
Ranid frogs, GnRH variants increased plasma T4 levels (57, 58),
although no changes in T3 levels were observed in the goldfish
following GnRH treatment (59). Thyroid hormone levels in
goldfish were found to undergo seasonal changes, increasing
to maximum levels during the growth phase, and reaching a
nadir during spawning (60). While injection with T3 reduced
circulating estradiol (E2) level in male, it had no effect in
female goldfish (51). T3 treatment increased vitellogenin (Vtg)
mRNA levels in the liver of goldfish by increasing expression of
estrogen receptor (ER)α mRNA levels at mid stages of gonadal
recrudescence (61). In isolated rainbow trout ovarian follicles, T3
treatments enhanced gonadotropin-induced E2 secretion (53). In
male fish, thyroid hormones significantly alter spermatogenesis
(56). In zebrafish, T3 treatment was shown to stimulate Sertoli
cell and spermatogonia type-A proliferation in testis (62).

The aim of the present study is to investigate the hypothesis
that GnRH, GnIH, and T3 are players in the multifactorial
regulation of growth and reproduction in female goldfish. To
this end, the influence of GnRH and/or GnIH injections on
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serum LH and GH levels, as well as transcript levels of several
liver and ovarian genes important for growth and reproduction
were monitored at three distinct ovarian recrudescence phases.
Transcripts monitored include liver expression of ERs, Vtg,
insulin-like growth factor (IGF-I), and thyroid hormone
receptors (TRs); and ovarian expression of ERs, FSH receptor
(FSHR), and aromatase. The effects of T3 injection on GnRH-
elicited and GnIH-induced serum LH and GH responses were
also examined to gain insight into the possible influences of
thyroid hormones.

MATERIALS AND METHODS

Animals
Common goldfish (Carassius auratus) were purchased from
Aquatic Imports (Calgary, AB, Canada; goldfish were imported
from fish farm exposed to natural daylight and temperature
cycles in Pennsylvania, USA). A total of 360 fish (20 fish per
treatment group) was used per season representing different
gonadal stages: regressed stage (July-August), mid recrudescence
(December–January), late recrudescence (March–April). Average
body weight of fish in regressed and mid recrudescence stage
were 60 g, average weight for late recrudescence fish was 22 g,
all fish were at least 1 year old and post pubertal. The difference
in fish size was due to the supplier (Aquatic Imports, Calgary,
AB, Canada) not able to provide the large number of fish needed
for experiments at the time. Fish were housed in a flow-through
system with daylight cycles and temperatures adjusted to match
conditions in their previous environment to preserve seasonality
and allowed to acclimate for 4–7 days prior to use (Table 1).
Goldfish were fed once a day to satiation 2 h after lights on,
with commercial flake diet (Nutrafin, Baie d’Urfé, QC, Canada).
Buffered tricane methanesulfonate solution (MS-222, 160 mg/l,
Sigma Aldrich St Louis, Missouri, USA) was used to anesthetize
the animals prior to injection treatments, as well as to euthanize
the animals after 24 h of treatment. Gonadal recrudescence stages
were determined from visual inspection of goldfish ovaries after
euthanization. Gonadal regressed stage is characterized by small
ovaries and lack of developed follicles (July–August). Ovaries in
mid recrudescence contained follicles that continue to increase in
size for maximum levels of vitellogenesis (December-January). In
late recrudescence, the ovaries are fully mature and have visible
oocytes that are ready for ovulation (March–April). Sample of
ovaries, liver, and blood from female fish were used for this
study and separated based on the above criteria for gonadal
recrudescence stage. All animal protocols were approved by the
university’s animal care committee and in accordance with the
Canadian Council on Animal Care’s guidelines.

Injection Treatments
Hormone treatments were given at 0 and 12 h (9 a.m. and 9 p.m.)
as intraperitoneal (ip) injections of 100 µL; fish were sacrificed
and samples collected at 24 h after the first injection (9 a.m.
the following day). The time course of treatments were chosen
based on previous studies demonstrating significant effects of
GnRH and gonadal steroids at 12 and 24 h following treatments
(2, 13, 14, 35, 36, 63–65). GnRH and GnIH treatments were

TABLE 1 | Temperature and daylight cycles for goldfish housing in the three

seasonal ovarian reproductive stages.

Month Gonadal phase Water temperature (◦C) Daylight (h)

December–January Mid recrudescence 14 12

March–April Late recrudescence 16 14

June–August Regressed 19 14

Lights were turned on at 9 a.m. every day and turned off at 9 or 11 p.m. These conditions

are appropriate for preservation of gonadal stage of fish and similar to those in their natural

environment in Pennsylvania (USA).

TABLE 2 | Factorial design of hormone combination treatments using sGnRH

(GnRH) and goldfish GnIH (GnIH).

Group 0 h 12 h

1 PBS GnRH

2 GnIH GnIH

3 GnIH GnRH

4 GnIH GnIH & GnRH

5 PBS PBS

6 PBS GnIH

7 GnRH GnRH

8 GnIH & GnRH GnRH

9 GnIH & GnRH GnIH & GnRH

Intraperitoneal injections of GnRH (100 ng/g fish, per gram of fish wet weight) and/or GnIH

(50 ng/g fish) occurred at 0 h (9 a.m.) and 12 h (9 p.m.), followed by samples collection

at 24 h. Phosphate buffered saline (PBS) was used as sham injections, double sham

injections (PBS + PBS; first injection + second injection) were used as controls. T3

experimental groups had the addition of T3 at a dose of 1 ng/g of fish in both 0 and

12 h injections.

administered using a factorial design (Table 2) and injected with
or without the addition of T3 to the hormone mixture. Mixtures
of hormones were administered as a single injection (100 µL)
for combined hormone treatments. Double injection method
was utilized as a previous study has shown GnRH induced
a potentiated response when compared to single injection
GnRH in stimulating LH release (66). GnRH (sGnRH: Pyr-
HWSYGWLPG-NH2) was purchased from Bachem (Torrance,
California, USA). Goldfish GnIH (GnIH: SGTGLSATLPQRF-
NH2) was made by the University of Calgary Peptide Services

(Calgary, AB, Canada). 3,5,3
′

tri-iodothyronine (T3) was bought
from Sigma Aldrich (Sigma Aldrich St Louis, Missouri, USA)
and dissolved in 0.2M NaOH then serially diluted using
Ultrapure water (Sigma Aldrich St Louis, Missouri, USA) to a
concentration of 10 ng/ µL to create a stock T3 solution. All
hormones were further diluted with phosphate buffered saline
(PBS) prior to injection. Sham injections of PBS were used as
controls (PBS+PBS; first injection + second injection). Doses
of hormones per fish were adjusted based on the dosages per
gram of average weight of fish in each season. Doses of hormone
injected were chosen based on previous studies in our lab: 100
ng GnRH/g of fish (wet body weight), 50 ng GnIH/g of fish,
and 1 ng T3/g of fish (14, 54, 55). At 24 h, samples of blood,
liver and gonads were collected and separated by sex. Only
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TABLE 3 | Primers and annealing temperatures used for mRNA transcript

quantification in real time QPCR analysis of liver and ovarian tissues.

Gene Accession

numbers

Primer Sequence (5′-3′) Annealing

temperature

(◦C)

β-actin AB039726 Forward CCTCCATTGTTGGCAGACC 57

Reverse CCTCTCTTGCTTTGAGCCTC

GAPDH KT985226.1 Forward TGATGCTGGTGCCCTGTATG

TAGT

57

Reverse TGTCCTGGTTGACTCCCATC

ACAA

Vtg DQ641252 Forward GAAGTGCGCATGGTGGCTT

GTATT

55

Reverse AGCTGCCATATCAGGAGCA

GTGAT

IGF-I GU583648.1 Forward CAGGGGCATTGGTGTGA 57.1

Reverse GCAGCGTGTCTACAAGC

ERα AY055725.1 Forward GAGGAAGAGTAGCAGCACT

G

55

Reverse GGCTGTGTTTCTGTCGTGAG

ERβI AF061269.1 Forward GGCAGGATGAGAACAAGTG

G

55

Reverse GTAAATCTCGGGTGGCTCTG

TRαI AY973629.1 Forward AGCCTGCCATGCCAGCC 55

Reverse CCTCCTGATCCTCGAAGACC

TRβ AY973630.1 Forward GAGGAGCAGCAGAAGACGG 55

Reverse GTTGCCTTGGGCGTTTGTGG

FSHR HM347775.1Forward CGTCCACAATCCTACCTTCG 56

Reverse TGAGAAACGGTGATTAGCGG

Cyp19a1

(aromatase)

AB009336.1 Forward TTGTGCGGGTTTGGATCAAT

GGTG

58

Reverse TTCCGATACACTGCAGACCC

AGTT

All primers were designed and validated using Primer3 online software (Whitehead Institute

of Biomedical Research, Cambridge, MA, USA).

samples from female fish were used for the current study. Serum
samples were isolated from blood for radioimmunoassays for GH
and LH using well-established protocols (12, 67). All samples
were stored at −80◦C until various assays were performed.
Serum FSH was not measured because of the lack of a goldfish
FSH radioimmunoassay.

RNA Extraction and QPCR
Total RNA in samples of ovarian and liver tissue were extracted
using Trizol Reagent (Invitrogen, Burlington, ON, Canada) in
accordance withmanufacturer’s instructions. Total RNA quantity
and purity was determined by Nanodrop spectrophotometer
(Thermo Scientific, Waltham, MA, USA). This was followed by
DNase digestion (DNase I, Thermo Scientific, Waltham, MA,
USA) and cDNA synthesis (High Capacity Multiscribe cDNA kit,
Invitrogen, Burlington, ON, Canada).

Liver and ovarian samples were analyzed with real time
quantitative (Q)PCR using previously validated primer sets
(Table 3; Table S1) (14, 36, 51, 54, 68). GAPDH and β-actin
were used as internal controls for ovary and gonads, respectively,
based on their stability of expression between treatment groups.
All PCR reactions were run in triplicates using SsoFast Eva

Green Supermix (BioRad, Mississauga, ON, Canada). The QPCR
thermal cycling steps commenced with an initial denaturing step
at 95◦C for 2min which was followed by 36 cycle repeats of 95◦C
for 15 s, 55–60◦C appropriate annealing temperature (Table 3)
for 15 s, and a final 72◦C extension for 1min. After QPCR
amplification, melt curves for each plate were run to ensure only
one product was amplified.

Statistical Analysis
A maximum of n = 12 randomly selected serum samples
were processed for RIAs and a maximum of n = 9 samples
were used for QPCR. Basal circulating levels of GH and LH
in the reproductive seasons were measured in the appropriate
control groups, reported as actual concentrations (means± SEM,
ng/ml), and analyzed by one-way ANOVA followed by with
Tukey’s post-hoc honestly significant (HSD) multiple comparison
tests. In particular to examine the influence of ip injected T3,
hormone levels of experimental treatment groups were further
normalized to the averaged values of the control group having
the highest hormone concentration among the three seasonal
reproductive stages, reported as a percentage value, and analyzed
with two-way ANOVA followed by Bonferroni’s multiple
comparisons tests.

Basal QPCR results were normalized to the appropriate
housekeeping gene (β-actin or GAPDH) using the using
the 11Cq method. Housekeeping genes were chosen based
on stability of expression between treatment and control
groups, and lowest variation (SD) in Ct values. Based on
this criteria GAPDH was chosen for the ovaries and β-
actin for the liver. QPCR data of experimental groups were
further normalized with respect to the averaged value of the
control group with highest basal transcript levels among the
three reproductive stages examined. All QPCR results were
analyzed by the Kruskal-Wallis test followed by Dunn’s multiple
comparison test. Kruskal-Wallis test was chosen because some
of the data sets did not follow normal distribution. Prism 7
was used for these statistical tests (GraphPad Software Inc.,
La Jolla, CA, USA). Differences are considered significant
when P < 0.05.

RESULTS

Basal Levels of Serum LH and GH
Fish ovaries were visually inspected for gonadal recrudescence
status of the goldfish (Figure 1A). The gonadal regressed
season starts following ovulation when post-ovulatory ovaries
are characterized by their small size and the absence of
developed follicles (July–August). Early recrudescence
begins when follicular cells multiply and increase in size
for higher steroidogenic activity needed for vitellogenin
production (September-October). Mid recrudescence ovaries
are characterized by follicles that continue to increase in
size and this season corresponds to a period of maximum
levels of vitellogenesis for yolk production (December–
January). Fully matured ovaries with visible oocytes ready
for ovulation are present during late recrudescence (March–
April). We investigated female goldfish during three stages
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FIGURE 1 | Photographs of ovaries representing different gonadal stages (A). Circulating basal serum levels of LH (B) and GH (C) in female goldfish at three seasonal

reproductive stages (mean ± SEM, n = 4–12). Basal hormone levels were taken from control groups (PBS + PBS). Groups with significant differences between one

another do not share the same letter of the alphabet (ANOVA followed by Tukey’s multiple comparisons test, p < 0.05). Where ANOVA did not reveal the presence of

significant differences between any of the groups within the whole data set, no identifier is included.

of recrudescence: regressed, mid, and late recrudescence.
Significantly higher levels of LH were observed in serum
of fish during late recrudescence compared to regressed
and mid recrudescent stages (Figure 1B). Basal circulating
GH levels did not significantly change between seasons
(Figure 1C).

Control of Serum LH and GH Levels by
GnRH
The effects of the pre-optic hypothalamic goldfish GnRH form
(sGnRH) (69), applied either as a single or double ip injection,
were examined in the present study. Previous studies have
shown that two ip injections of GnRH applied 12-h apart
were generally more effective than a single GnRH injection in
elevating circulating LH levels in goldfish (66), and thus both
single and double injection protocols were used in the present
study. Two-way ANOVA revealed the presence of GnRH effects
on serum LH and GH levels among some of the reproductive
stages examined (Figure 2A). Specifically, double injection with
GnRH (GnRH + GnRH) did not affect serum LH levels in
regressed fish but significantly elevated serum LH concentrations
in fish at mid and late recrudescence by ∼70% relative to
controls (PBS + PBS; Figure 2A). Increases in serum GH levels
following single GnRH injection treatment (PBS + GnRH) were
observed in regressed phase and late recrudescence as expected,
and no significant changes were observed in mid recrudescence
(Figure 2C).

GnIH Effects on Basal and GnRH-Induced
Serum LH and GH Levels
Treatment of GnIH was administered following a similar
protocol as GnRH alone and combined with GnRH. Although
two-way ANOVA suggested the presence of an overall GnIH
alone treatment effects in mid recrudescence, treatment with
GnIH alone did not significantly alter basal serum LH levels
relative to controls during regressed, mid, or late gonadal
recrudescence stages (Figure 2B). The combination of GnIH
+ GnRH treatment resulted in significant elevations in serum
LH levels in sexually regressed fish when single injection of
GnRH alone had no effects (Figures 2A,E). On the other
hand treatment of GnIH tended to blunt GnRH-stimulated
LH responses in late stages of recrudescence but did not
block GnRH-induced responses in mid stage of recrudescence
(Figure 2E). These observations are consistent with the presence
of overall combination GnIH and GnRH treatment effects on
serum LH at all three ovarian recrudescence stage as revealed by
the two-way ANOVA.

Double injection of GnIH exerted significant stimulatory
actions on circulating GH levels in fish at regressed stage but
not at mid recrudescence (Figure 2D); these observations were
consistent with the presence of an overall GnIH influence on
serum GH levels at regressed but not late recrudescence. GnIH
alone treatments at late stages of recrudescence were also without
effect on serum GH levels relative to controls, although an
overall influence of GnIH was revealed by two-way ANOVA
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FIGURE 2 | Serum LH level changes in response to GnRH (A), GnIH (B), GnRH and GnIH (E) treatments. Serum GH changes in response to GnRH (C), GnIH (D),

GnRH and GnIH (F) treatments. GnRH- and/or GnIH-induced changes in serum levels in female goldfish in the absence (open bar) and in the presence of T3 (gray bar)

at three seasonal reproductive stages (mean ± SEM; regressed n = 4–12, mid recrudescence n = 4–12, and late recrudescence n = 4–9). Treatments are denoted as

(Continued)
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FIGURE 2 | 0 + 12 h injection. Hormone values are presented as a percentage of the averaged concentrations of to control group (PBS + PBS injected) in late

recrudescence. Controls of each respective season were placed at the start of each set of hormone treatments for visual comparison. Within each season, groups

identified by different letters are significantly different from one another (two-way ANOVA followed by Bonferroni’s multiple comparison test, p < 0.05). Vertical dashed

line indicates groups within a seasonal gonadal stage that were statistically compared for significance. Groups were not tested for significance between seasons. In

seasons where significant differences between groups are absent, identifiers are not included. P-values from two-way ANOVA are presented in tables above bars, and

asterisks in tables indicate where factors (two factors analyzed in two-way ANOVA: GnRH and/or GnIH treatment, and the addition of T3) had significant effects, p <

0.05.

at this reproductive stage (Figure 2D). Significant effects on
combination GnRH and GnIH treatments on serum GH levels
were indicated by two-way ANOVA for all three reproductive
seasons examined (Figure 2F). GnRH co-injection did not alter
GnIH-induced GH responses in the regressed fish (Figure 2F).
In mid stages of recrudescence, GnIH + GnRH and GnIH &
GnRH+GnIH & GnRH treatments exerted inhibitory effects on
serumGH levels but other combination treatments had no effects
(Figure 2F). In late stages of recrudescence, GnIH + GnRH
treatment increased serum GH to levels similar to those induced
by a single GnRH injection while other combination treatments
of GnIH and GnRH generally did not alter serum GH levels
(Figure 2F).

Effects of T3 on Basal, and GnRH- and/or
GnIH-Induced Changes in LH and GH
Levels
Two-way ANOVA identified significant interactions of T3 with
GnRH at mid and late recrudescence, as well as interactions
with GnIH at regressed state, but no significant overall effects
of T3 alone on serum LH nor significant T3 interactions with
combination GnRH and GnIH treatments (Figures 2A,B,E).
Accordingly, treatment of T3 had no effects on basal LH release
during any season but lowered the LH responses to double
GnRH injections during mid and late stages of recrudescence
(Figure 2A). Combination treatments with T3 and GnIH did not
influence circulating LH levels (Figure 2B). T3 treatments with
GnRH in the presence of GnIH did not alter GnRH-induced
serum LH increases in mid recrudescent fish (Figure 2E). No
significant effects were observed in these triple combination
hormone treatment groups during regressed and late stage
of gonadal recrudescence relative to controls (Figure 2E).
Interestingly, the GnIH + GnRH-induced LH response was
reduced by T3 injection to a level not different from controls in
sexually regressed fish (Figure 2E).

The presence of significant overall T3 effects on serum GH
were revealed at all reproductive seasons by two-way ANOVA,
and in particular, interactions of T3 were identified with GnRH
at late recrudescence, and with combination GnRH and GnIH
treatments at all three ovarian stages (Figures 2C,D,F). T3
treatment significantly lowered basal serum GH levels during
mid stages of recrudescence (Figure 2D) and reduced GnIH-
induced GH response in regressed gonadal stage to levels not
different to controls (Figure 2F). T3 also inhibited GnRH-
induced GH release in late stages of recrudescence but not in
regressed gonadal stage (Figure 2C). In addition, T3 reduced
the GH responses to combination GnIH and GnRH treatments
in regressed and late recrudescence stages (regressed: GnIH &

GnRH + GnRH and GnIH & GnRH + GnIH & GnRH; late
recrudescence: GnIH+GnRH; Figure 2F).

Transcripts in Liver and Ovaries
Transcript levels for several genes important in reproduction
and growth were measured with QPCR in liver and ovaries. The
results for all transcript levels in liver and ovaries demonstrate
clear seasonal pattern (Figure 3).

ERα

ERα mRNA levels in the liver were significantly higher in
mid recrudescent fish compared to fish in late recrudescence
(Figure 3D). Similar to the changes in liver, ERα mRNA
levels in the ovaries were significantly higher in mid stages of
recrudescence but were lowest in regressed state fish (Figure 3G).
Except for double GnRH injection treatment, changes in ERα

mRNA levels in the liver did not correlate well with treatment-
induced serum LH levels. GnRH + GnRH. Double GnRH
injection treatment elevated ERα transcript levels in liver during
late stages of gonadal recrudescence whereas single GnRH
injection reduced the level of this transcript at regressed state
(Figure 4A). In contrast, elevations in liver ERα mRNA levels
were observed following double GnIH injections in regressed
gonadal stage, GnIH & GnRH + GnIH & GnRH treatments in
regressed and late recrudescence stages, as well as GnIH+GnRH
treatments in late recrudescence (Figure 4A). Double GnRH
injection treatment increased ERα transcript levels in ovaries
during late stages of recrudescence and regressed gonadal
stage (Figure 5A); these changes corresponded to the GnRH-
induced increases in serum LH concentrations. However, GnIH
treatments reduced ovary ERα mRNA levels during mid stages
of recrudescence (Figure 5A). Treatment with GnIH+GnRH
or GnIH+GnIH & GnRH increased levels of ERα mRNA
level in ovaries during regressed gonadal stage (Figure 5A).
GnIH+GnRH treatment reduced the levels of ERα mRNA
in ovaries at mid recrudescence, but increased their ovarian
expression during late recrudescence (Figure 5A).

ERβI
There was a clear seasonal pattern in expression of ERβI
mRNA in liver and ovaries of female goldfish with maximum
levels seen in mid recrudescence, and lowest levels seen
in liver of late recrudescence fish and ovaries of regressed
stage fish (Figures 3E,H). ERβI mRNA levels in the liver
of females showed no correlation with responses in LH
concentrations elicited by hormone treatments. Single GnRH
injection treatments reduced liver ERβI mRNA levels in
sexually regressed fish, but increased these transcript levels
in late recrudescence (Figure 4B). All GnRH alone treatments
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FIGURE 3 | Basal transcript levels of TRαI (A), TRβ (B), IGF-I (C), ERα (D), ERβ1 (E), and vitellogenin (F) in the liver, and ERα (G), ERβ1 (H), FSHR (I), and aromatase

Cyp19a (J) in the ovaries of female goldfish in three stages of the reproductive season (regressed, mid, and late recrudescent). Expression was measured using QPCR

and normalized against β-actin (liver) or GAPDH (gonads). Values are mean ± SEM (n = 4–9). Groups identified by different letters are significantly different from one

another (Kruskal-Wallis test followed by Dunn’s multiple comparisons test, p < 0.05).

in mid recrudescence lowered ERβI mRNA levels in liver
(Figure 4B). Double GnIH injection treatment lowered liver
ERβI mRNA levels during regressed and mid recrudescence
stages and single GnIH injection similarly exerted inhibitory
influences in mid recrudescence (Figure 4B). On the other
hand, GnIH treatments increased ERβI mRNA levels in liver
during late recrudescence (Figure 4B). Combined treatments
with GnIH + GnRH and GnIH + GnIH & GnRH reduced
ERβI mRNA levels in liver during regressed stage (Figure 4B).
GnIH+GnRH combination treatment elevated ERβI mRNA
levels in liver during late recrudescence stage (Figure 4B). In

ovaries, ERβI mRNA levels partially correlated with changes in
serum LH concentrations in late stages of gonadal recrudescence
(Figure 5B). Single and double GnRH injection treatments
increased ERβI mRNA levels in ovaries in regressed stage;
double GnRH injection treatments also increased these levels
in late recrudescence stage, but reduced these levels in mid
recrudescence (Figure 5B). Double GnIH injection treatments
increased ovarian ERβI mRNA levels in regressed phase fish,
but both double and single GnIH injection treatments decreased
ERβI mRNA levels in ovaries of fish at mid recrudescence
(Figure 5B). GnIH+GnRH treatment reduced ERβI mRNA
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FIGURE 4 | Effects of GnRH and/or GnRH treatments on estrogen receptors ERα (A) and ERβ1 (B) mRNA levels in the liver of female goldfish at three seasonal

reproductive stages (regressed, n = 4–9; mid recrudescence, n = 4–9; and late recrudescence n = 4–9). Treatments are denoted as 0 + 12 h injection. Levels of

mRNA expression were detected using QPCR and normalized relative to β-actin. Results presented (mean ± SEM) are expressed as a percentage of the averaged

relative expression levels in controls (PBS + PBS) at mid recrudescence. Each seasonal control group was placed in front of each set of hormone treatments for visual

comparison. Asterisks indicate significance differences from controls (Kruskal-Wallis test followed by Dunn’s multiple comparisons test, *p < 0.05, **p < 0.01,

***p < 0.001, ****p < 0.0001).

levels in ovary during mid recrudescence, but no effects were
seen in combination GnIH and GnRH treatment groups in other
seasons (Figure 5B).

Vtg
Liver Vtg mRNA levels were significantly higher in mid and late
recrudescence compared to regressed stage (Figure 3F). There
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FIGURE 5 | Effects of GnRH and/or GnIH on estrogen receptors ERα (A) and ERβ1 (B) mRNA levels in the ovary of female goldfish at three seasonal reproductive

stages (regressed, n = 4–9; mid recrudescence, n = 4–9; and late recrudescence n = 4–9). Treatments are denoted as 0 + 12 h injection. Levels of mRNA expression

were detected using QPCR and normalized relative to GAPDH. Results presented (mean ± SEM) are expressed as a percentage of the averaged relative expression

levels in control (PBS + PBS) group at mid recrudescence. Each seasonal control group was placed in front of each set of hormone treatments for visual comparison.

Asterisks indicate significance differences from controls (Kruskal-Wallis test followed by Dunn multiple comparisons test, *p < 0.05, **p < 0.01, ***p < 0.001).

was a correlation between basal Vtg mRNA levels and changes
in basal circulating LH levels in late recrudescence. Both single
and double GnRH injection treatments increased Vtg mRNA
levels in regressed stage females but single GnRH injection and

GnIH + GnIH & GnRH treatments lowered these levels in mid
recrudescence stage (Figure 6). Treatments with GnRH did not
elicit any significant changes in Vtg mRNA levels in the liver
of females during late recrudescence (Figure 6). In regressed
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gonadal stage, double GnIH injection elevated Vtg mRNA levels
in liver while GnIH+GnRH treatment was similarly stimulatory
at late recrudescence (Figure 6). Other concomitant treatments
with GnRH andGnIHwere without effect on the liver VtgmRNA
level in the three seasons (Figure 6).

IGF-I
In female liver, IGF-I mRNA levels were significantly higher
in mid recrudescence (Figure 3C). A partial correlation was
observed between changes in IGF-I mRNA level and serum
GH concentration in response to hormone treatments during
late stages of gonadal recrudescence. Single GnRH injection
treatment reduced IGF-I mRNA levels in liver during regressed
and mid recrudescence gonadal stage, but elevated IGF-I mRNA
levels during late recrudescence (Figure 7). Single and double
injection of GnIH increased IGF-I mRNA levels in liver at
regressed stage, and single injection similarly increased mRNA
levels in late recrudescent; on the other hand, treatment with
double GnIH injection decreased IGF-I mRNA levels in liver
during mid recrudescence (Figure 7). No significant effects were
observed in combination treatment during mid recrudescence
stage (Figure 7), but GnIH + GnRH treatment increased IGF-
I mRNA levels in liver during regressed and late recrudescence
stages (Figure 7).

TRs
Thyroid hormones are important factors in reproduction and
growth [for review see: (55)]. In female liver, TRαI transcript
levels were observed to be significantly higher during mid
recrudescent than in livers of regressed and mid recrudescent
fish (Figure 3A). No clear correlation was observed between
changes in TRαI mRNA levels and LH or GH secretion following
hormone treatments. Double injections of GnRH decreased
TRαI mRNA levels during mid and late stages of gonadal
recrudescence in liver (Figure 8A). Treatments of GnIH alone,
applied either as a single or double injection, reduced TRαI
mRNA levels during mid recrudescence (Figure 8A). In late
stages of recrudescence, GnIH + GnRH treatment increased
TRαI mRNA levels (Figure 8A). In regressed stage fish, single
GnRH injection treatment lowered TRαI mRNA levels and
combination treatment with GnIH did not affect GnRH-induced
responses in GnIH + GnRH and GnIH + GnIH & GnRH
treatment groups (Figure 8A).

The seasonal expression pattern for liver TRβ mRNA was
observed to be different from that of TRαI, with significantly
higher levels in the regressed and mid recrudescence stages
than at late recrudescence (Figure 3B). Similarly to TRαI,
TRβ mRNA levels did not clearly correspond to changes
in serum LH or GH levels elicited by hormone treatments.
Treatments with GnRH alone reduced TRβ mRNA levels in
liver of females during regressed stage, but a single GnRH
injection increased TRβ mRNA levels during late recrudescence
(Figure 8B). Double injections of GnIH reduced TRβ mRNA
level in the liver in regressed gonadal stage females, but increased
these transcript levels in late recrudescence (Figure 8B). In late
recrudescence, treatments with GnIH + GnRH or GnIH &
GnRH + GnRH increased TRβ mRNA levels (Figure 8B). All

FIGURE 6 | Effects of GnRH and/or GnIH on Vtg mRNA levels in the liver of

female goldfish at three seasonal reproductive stages (regressed, n = 4–9; mid

recrudescence, n = 4–9; and late recrudescence n = 4–9). Treatments are

denoted as 0 + 12 h injection. Levels of mRNA expression were detected

using QPCR and normalized relative to β-actin. Results presented (mean ±

SEM) are expressed as a percentage of the averaged relative expression levels

in control (PBS + PBS) group at mid recrudescence. Each seasonal control

group was placed in front of each set of hormone treatments for visual

comparison. Asterisks indicate significance differences from controls

(Kruskal-Wallis test followed by Dunn’s multiple comparisons test, *p < 0.05,

**p < 0.01).
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FIGURE 7 | Effects of GnRH and/or GnIH on IGF-I mRNA levels in the liver of

female goldfish at three seasonal reproductive stages (regressed, n = 4–9; mid

recrudescence, n = 4–9; and late recrudescence n = 4–9). Treatments are

denoted as 0 + 12 h injection. Levels of mRNA expression were detected

using QPCR and normalized relative to β-actin. Results presented

(Continued)

FIGURE 7 | (mean ± SEM) are expressed as a percentage of the averaged

relative expression levels in control (PBS + PBS) group at mid recrudescence.

Each seasonal control group was placed in front of each set of hormone

treatments for visual comparison. Asterisks indicate significance differences

from controls (Kruskal-Wallis test followed by Dunn multiple comparisons test,

*p < 0.05, **p < 0.01).

combination treatment groups in regressed gonadal stage fish
reduced TRβ mRNA levels in liver, except treatment with GnIH
& GnRH + GnIH & GnRH which had no effect on TRβ mRNA
levels (Figure 8B). No significant changes were observed on
TRβ transcript levels in mid stages of recrudescence with any
treatment (Figure 8B).

Aromatase
Gonadal aromatase (Cyp19a) is crucial for the aromatization of
testosterones into estrogens (70). In the ovaries, relatively higher
aromatase mRNA levels were observed in mid recrudescence
compared to regressed and late recrudescence stages (Figure 3J).
Partial correlation was observed between aromatase transcript
expression and circulating LH concentrations following hormone
treatments at late recrudescence stage (Figure 9). Treatments
with either GnRH or GnIH alone reduced aromatase mRNA
levels in ovaries during mid recrudescence and were without
effect in regressed stage (Figure 9). Treatments with GnIH
+ GnRH or GnIH + GnIH & GnRH also lowered levels
of aromatase mRNA in mid recrudescent ovaries, but not
in regressed stage (Figure 9). At late stages of gonadal
recrudescence, double GnRH injection treatment increase
aromatase mRNA levels but no other treatments had any effects
(Figure 9).

FSHR
FSHR is a crucial facilitator of FSH actions on oocyte maturation
and steroidogenesis (70). FSHR mRNA levels in ovary were
highest during mid stages of recrudescence compared to
regressed and late gonadal stages (Figure 3I). We observed
partial correlation between FSHR mRNA levels and serum LH
levels following GnRH treatments during late recrudescence
phase. Treatments with either double or single injection of
GnRH alone increased FSHR mRNA levels in ovaries of fish in
late stages of recrudescence (Figure 10). In mid recrudescence,
double injections of GnRH decreased ovarian FSHR mRNA
levels, whereas treatment with a single injection of GnRH
increased FSHR mRNA levels in regressed ovaries (Figure 10).
Treatments with GnIH reduced FSHR mRNA levels in the
ovary of mid recrudescent fish, while single GnIH injection
treatments exerted a stimulatory influence at late recrudescence
(Figure 10). Increased FSHRmRNA level was observed following
combination GnIH + GnRH and GnIH & GnRH + GnIH &
GnRH treatments in late recrudescence, but decreased transcript
level was observed following GnIH + GnRH and GnIH + GnIH
& GnRH treatments in mid recrudescence (Figure 10). Ovarian
expression of the other gonadotropin receptor, LH receptor, was
not quantified because of primer problems.
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FIGURE 8 | Effects of GnRH and GnIH on thyroid hormone receptors TRαI (A) andTRβ (B) mRNA levels in the liver of female goldfish at three seasonal reproductive

stages (regressed, n = 4–9; mid recrudescence, n = 4–9; and late recrudescence n = 4–9). Treatments are denoted as 0 + 12 h injection. Levels of mRNA expression

were detected using QPCR and normalized relative to β-actin. Results presented (mean ± SEM) are expressed as a percentage of the averaged relative expression

levels in control (PBS+PBS) group at mid recrudescence. Each seasonal control group was placed in front of each set of hormone treatments for visual comparison.

Asterisks indicate significance differences from controls (Kruskal-Wallis test followed by Dunn’s multiple comparisons test, *p < 0.05, **p < 0.01, ***p = 0.001).
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FIGURE 9 | Effects of GnRH and/or GnIH on gonadal aromatase (Cyp19a)

mRNA levels in the ovary of female goldfish at three seasonal reproductive

stages (regressed, n = 4–9; mid recrudescence, n = 4–9; and late

recrudescence n = 4–9). Treatments are denoted as 0 + 12 h injection. Levels

of mRNA expression were detected using QPCR and normalized relative to

(Continued)

FIGURE 9 | GAPDH. Results presented (mean ± SEM) are expressed as a

percentage of the averaged relative expression levels in control (PBS + PBS)

group at mid recrudescence. Each seasonal control group was placed in front

of each set of hormone treatments for visual comparison. Asterisks indicate

significance differences from controls (Kruskal-Wallis test followed by Dunn’s

multiple comparisons test, *p < 0.05, **p < 0.01).

DISCUSSION

The present study provided insight into the neuroendocrine
control of seasonal reproduction and growth in female goldfish.
A seasonal pattern of change in basal serum LH concentrations
in female goldfish was observed. The observed maximum
circulating LH concentrations at late stages of recrudescence
occurred in fish containing fully matured oocytes, and period
of lower growth rates. This is consistent with a previous study
in goldfish demonstrating maximum gonadosomatic index (GSI)
in females during spring, lowest GSI during regressed phase,
and increasing levels during mid recrudescence (71). In the
present study, smaller ovary and follicle size was observed at
regressed stage, increasing at mid recrudescence, and reaching
a maximum size at late recrudescence, which also had higher
circulating levels of LH. Marchant and Peter found higher rates
of somatic and linear growth corresponding to the lowest GSI
in female goldfish (71). In the present study, differences in basal
circulating GH concentration in different reproductive seasons
were not statistically significantly. In male fish, however, highest
circulating levels of GH was observed at the regressed stage,
compared to those at mid and late recrudescence (72). It should
be noted that GH, as well as LH, contribute to stimulation of Vtg
production, and thus ovarian maturation, in goldfish (73).

Treatment with GnRH had a stimulatory effect on serum
LH levels at mid and late recrudescence stage, while GnRH-
induced GH response was observed at regressed and late stages
of recrudescence (summarized in Table S2). Previous studies
demonstrated seasonally dependent changes and increased
GnRH-induced LH release during late stages of gonadal
recrudescence (36). GnRH has also been shown to increase
LHβ subunit mRNA levels (2, 13). In the present study, serum
GH concentrations were increased by both GnRH and GnIH
injections at the regressed phase. In late recrudescence, however,
only GnRH was stimulatory on circulating GH levels in female
goldfish. Our results are consistent with a previous study
demonstrating increases in serum GH levels and stimulation
of GH mRNA expression during early and late gonadal
recrudescence by both sGnRH and cGnRHII (14). A number
of other studies also demonstrated GnRH stimulation of GH
production in goldfish (11, 12, 15, 16, 21, 74), and other teleost
species (20–22, 75). Thus, GnRH is an important factor in
regulating GH and LH production and release in fish. The
time course for both GnRH and GnIH were chosen based on
previous studies (2, 13, 14, 35, 36, 63, 76). At 12 and 24 h
following injection, GnRH significantly effects both GH and LH
production as shown previously (2). GnRH-induced change in
gonadotropins, in turn, effects production of gonadal steroids
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FIGURE 10 | Effects of GnRH and GnIH on follicle stimulating hormone

receptor (FSHR) mRNA levels in the ovary of female goldfish at three seasonal

reproductive stages (regressed, n = 4–9; mid recrudescence, n = 4–9; and

late recrudescence n = 4–9). Treatments are denoted as 0 + 12 h injection.

Levels of mRNA expression were detected using QPCR and normalized

(Continued)

FIGURE 10 | relative to GAPDH. Results presented (mean ± SEM) are

expressed as a percentage of the averaged relative expression levels in control

group at mid recrudescence. Each seasonal control group was placed in front

of each set of hormone treatments for visual comparison. Asterisks indicate

significance differences from controls (Kruskal-Wallis test followed by Dunn’s

multiple comparisons test, *p < 0.05, **p < 0.01).

which can have feedback effect on the brain and pituitary within
the time frames used in the present study (64, 65). Therefore, 12
and 24 h timepoints were chosen based on previous studies. It is
possible that more information may be obtained by investigating
effects of hormones at earlier time points and it may be a
limitation of this study. However, addingmore time points would
limit our ability to investigate multifactorial control of pituitary
function, using a factorial design.

To investigate the seasonal differences and interactions
between GnRH and GnIH, we combined the two hormones
following a factorial design. In goldfish, GnIH has been shown
to both stimulate and inhibit LH release and synthesis in
the pituitary, depending on the stages of gonadal maturation
(35, 36). Various combinations of GnRH and GnIH in cell
perifusion experiments resulted in different effects on GH and
LH release (14, 36). The present results demonstrate stimulation
of basal GH release by GnIH during the somatic growth phase
of female goldfish, and GnIH inhibition of GnRH-stimulated
GH secretion during late gonadal recrudescence but not in
sexually regressed stage (summarized in Tables S3, S4). These
findings are consistent with a previous study demonstrating
direct action of GnIH on GH release in vitro (14). GnIH
stimulation of GH release and production has been demonstrated
in a variety of other vertebrate species including the grass puffer
(Takifugu alboplumbeus) (38), cichlid fish (Cichlasoma dimerus)
(34), bull frogs (Rana catesbeiana) (77), and rats (40). In the
present study, treatment with GnIH resulted in inhibition of
GnRH-induced LH secretion at late but not at mid gonadal
recrudescence (summarized in Tables S3, S4). This is consistent
with previous findings in goldfish both in vivo and in vitro
(36). GnIH inhibition of gonadotropin gene expression has also
been shown in cinnamon clownfish (Amphiprion melanopus)
(33). In common carp (Cyprinus carpio L.), GnIH treatment
reduced FSH and LH subunits expression, and minimum GnIH
transcript levels were observed in the hypothalamus during
spawning season (78). In the cichlid fish (Cichlasoma dimerus),
treatment with cd-LPQRF-1 inhibited FSH and LH release, while
cd-LPQRF-2 stimulated FSH release in cultured pituitary cells
(34). In the flatfish, treatment with ssGnIH-2 did not affect LHβ

expression but ssGnIH-3 lowered LHβ transcript levels (79).
These studies provide evidence of species-specific changes in
GnIH response depending on reproductive season. The general
response elicited by GnIH in the female goldfish is largely
inhibitory on gonadotropes and stimulatory on somatotropes
in a seasonally related manner. Thus, both GnRH and GnIH
are contributing factors in multifactorial regulation of seasonal
growth and reproduction in female goldfish. Further studies
investigating pituitary receptors of GnRH and GnIH could
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explain the seasonal changes in GH and LH observed in this
study. Basal GnIH receptor mRNA levels in goldfish pituitary
did not show significant changes during any seasonal gonadal
stage (35). However, treatments of exogenous GnIH and GnRH
affected GnIH receptor transcripts in mid and late recrudescence
goldfish (36). It is possible that fluctuations in GnIH and
GnRH receptor ratio may have important influence on seasonal
regulation of somatotropes and gonadotropes in goldfish.

Thyroid hormones are also important in the control of
reproduction in fish and other vertebrates (52, 53, 55, 56, 80).
In goldfish, serum concentrations of T3 are high during summer
when fish have maximum growth rates; circulating T3 then
follows a decreasing trend from fall through spring, reaching
minimum levels in the spawning period (60). In the present
study, treatment with T3 was inhibitory on basal GH levels
during mid recrudescence as well as reducing both GnRH-
and/or GnIH-elicited GH responses during sexually regressed
and late recrudescence stages. At mid and late recrudescence, T3
injection reduced GnRH-induced serum LH increases. However,
co-injection with GnIH reduced inhibitory T3 effects on GnRH-
induced LH response in mid recrudescence (summarized in
Tables S2–S4). Previous results have demonstrated that T3
treatment, in vitro, reduced LH subunit mRNA levels during
early recrudescence in mixed sex fish without affecting GH
or gonadotropin subunits transcript levels at other stages of
gonadal recrudescence in goldfish (51). Furthermore, injections
with T3 at mid recrudescence stage were shown to have
no effects on gonadotropin mRNA levels in female goldfish,
but reduced LH subunit mRNA levels in male goldfish after
36 h (54). In addition, injections with T3 were shown to
reduce ERα and Cyp19a transcript levels in the ovary of mid
recrudescent fish (54). Taken together, T3 exerts inhibitory
effects on HPG axis, and the control of pituitary somatotrope
activities with seasonal variations. Thus, these results support
the hypothesis that T3 is an important contributor to seasonal
control of GH and LH in female goldfish. Furthermore,
in view of the previously described progressive decrease in
circulating T3 levels as gonadal recrudescence advances, the
reduction of the negative T3 influence on the HPG axis,
as well as on pituitary GH release, is likely an important
neuroendocrine event for the seasonal switch from somatic
growth to gonadal maturation.

It is important to note that goldfish cannot be sexed accurately
based on secondary sex characteristics, especially during the
regressed gonadal stage. During the experiment, fish were housed
in tanks that contained mature males and females that were
randomly distributed. At the time of dissection, it was possible to
accurately sex the fish. Due to this potential limitation, there were
variations among the replicate numbers for different treatment
groups. However, themajority of groups contained large replicate
numbers as stated for each figure. Another possible limitation of
this study was variation in size of fish in different seasons. All
fish were post-pubertal and sexually mature and expected to have
similar hormonal profiles and responsiveness to same treatments
regardless of variations in size. However, we cannot ignore the
influence that size may have and consider variations in size of the
fish as a limitation of this study.

The present study investigated tissue- and season-specific
transcript levels of several genes related to growth and
reproduction in the liver and ovary. The results show similar
seasonal pattern for ERα and ERβI mRNA levels in the female
liver and ovaries with the highest level of these transcripts at mid
recrudescence in both tissues. A similar seasonal pattern of ERα

and ERβI transcript levels were also observed in male goldfish
liver, although peak levels of ERα and ERβI mRNA in testes where
different during late recrudescence (72).

Both ERα and ERβI are involved in stimulating vitellogenesis
in female fish (80–82). Vtg production starts during early
recrudescence and continues through mid-recrudescence until
oocytes are fully mature in late recrudescence. This cycle is clearly
seen in female liver ERα and ERβI transcript levels and correlates
with higher Vtg mRNA levels in mid and late recrudescence.
Interestingly, intermediate levels of ERα and ERβI transcript
levels were seen in the regressed and late recrudescence states
in the liver and ovary, respectively. The intermediate levels
of ER expression in the liver during earlier stage of gonadal
recrudescence could be the result of T3 priming effect for
vitellogenesis (61). The Vtg gene is also found in males but is
not usually expressed at significant levels due to lack of sufficient
circulating levels of estrogens. Never the less, Vtg level was found
to follow a similar seasonal pattern as female liver, although,
the levels of ERα and Vtg mRNA in male liver are much lower
compared females (72).

The present results also revealed higher levels of ERα and
ERβI transcript levels in ovaries at the mid recrudescence
stage which corresponds with higher expression in ovarian
aromatase and FSHR transcript levels. In goldfish and other
teleosts, FSH also has steroidogenic activity (83, 84) and thus
the changes in FSHR expression at mid recrudescence is not
solely related to gametogenesis, but is also relevant for the
increase in total steroidogenic capacity at this reproductive stage.
ERs and estrogen synthesis are crucial components of oocyte
maturation and female reproduction (85, 86). FSH effects on
increasing follicular cell activities and cell proliferation are largely
mediated through estrogens and ERs, and E2 positive feedback
on follicular cell proliferation further increases steroidogenic
capacity of the maturing follicles (85). The increasing FSH and
E2 levels during early recrudescence triggers liver vitellogenesis,
and as the oocyte reaches final maturation, FSH and E2 levels
decrease (85). E2 and GPR30 (a membrane estrogen receptor)
has been demonstrated to inhibit spontaneous oocyte maturation
in fish (86). In goldfish gonads, estradiol stimulates ERs in
a time and dose dependant manner (81). Estrogens and ERs
have been shown to be involved in testicular development
(87, 88) and undergo seasonal variations together with ERβI,
FSHR, and aromatase mRNA which are produced at higher
levels during late recrudescence stage compared to other seasons
(72). It should be noted that testicular aromatase transcript
levels are generally lower than ovarian aromatase transcript
levels (72). The observed higher mRNA levels of ERα, ERβI,
and aromatase in the ovary compared to testis is likely the
result of the roles these factors play in the regulation of
ovarian function and development. Transcript level for GH,
LH subunits, LHR and a number of other hormones and
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receptors were not investigated in the present study. There is
already information on GHR mRNA levels in goldfish at mid-
late and regressed gonadal stages (73). Circulating levels of E2
have also been extensively measured throughout the seasonal
cycles of goldfish (51, 60, 89, 90). We did not study these
factors in the present study, but recognize that quantifying
these receptors, and serum E2 levels in response to treatments
would have helped to better understand and link the hormonal
control of reproduction and growth between pituitary, ovary,
and liver.

Results in the present study demonstrated seasonal
fluctuations in TRαI, TRβ, and IGF-I transcript levels, which
were similar to those found in male goldfish liver (72). This is
consistent with previous observations in goldfish (91). TRαI
transcript levels in female liver were found to be higher in mid
recrudescence, which correlated with higher IGF-I transcript
levels. TRβ transcript level was observed to be higher in regressed
and mid recrudescence stages compared to late recrudescence.
It was shown previously that thyroid hormones play a role in
stimulating the vitellogenic capacity of liver by elevating ERα

expression and through actions on both TRα and TRβ (61).
Higher TRβ expression during earlier gonadal recrudescence
stages possibly contributes to T3 priming effect in the liver of
female goldfish discussed earlier (61).

We further examined transcript levels of the same genes
in response to treatments with GnRH and GnIH in the liver
and ovaries of goldfish. However, the majority of the results do
not demonstrate clear correlation with changes in LH and GH
serum levels. Notably, although changes in ovarian ERs, FSHR
and aromatase transcript levels in GnRH- and/or GnIH-treated
fish were correlated with one another at mid recrudescence
and reflected the close relationships between these elements
in the neuroendocrine regulation of ovarian steroidogenesis
and development at this reproductive stage (84), these changes
mirrored neither serum LH and GH concentrations in the
treatment groups. In addition at mid recrudescence, a time
when ovarian steroidogenesis and yolk incorporation should be
increasing (89), GnRH paradoxically exerted inhibitory effects
on the levels of these ovarian gene transcripts, and liver Vtg
mRNA levels were reduced by single injection of GnRH both
in the absence and in the presence of GnIH. It is possible
that direct actions of GnRH and GnIH on peripheral tissues,
including liver and gonads, as well as changes in pituitary LH
and GH release may have contributed to these complex results.
Teleost fish lack a hypothalamo-hypophyseal portal system,
and GnIH and GnRH directly act on the pituitary cells by
innervations (92). Circulating levels of GnRH or GnIH are
undetectable or lower than 1 pg/ml and therefore unlikely to
elicit peripheral effects via endocrine actions (93, 94). However,
with injections, we introduced higher levels of GnIH and GnRH
in the circulation and it would be possible for these peptides
to exert direct actions on the liver and ovaries. In fish and
other vertebrates, the expression of GnRH and GnIH and their
receptors, as well as their direct action have been demonstrated
in peripheral tissues including liver and gonads (95–104). For
example, although in vitro GnRH treatments of goldfish ovarian
follicles in culture stimulated germinal vesicle breakdown, GnRH

also attenuated gonadotropin- and progesterone-induced oocyte
meiosis and steroidogenesis (105–107). GnIH direct inhibition
of steroidogenesis in follicles could also contribute to changes in
transcript level of various genes (108, 109). On the other hand,
partial correlations were observed between ovarian ERα, ERβI,
and FSHR transcript levels and GnRH-stimulated LH responses
during late recrudescence in the present study. Consistent with
the known ability of GH to directly stimulate IGF-I production in
hepatocytes (110), increased GH serum concentrations induced
by GnRH in late recrudescence was correlated with increased
IGF-I mRNA levels in the liver. Thus, the observed responses
in the different transcripts in liver and ovary to hormone
treatments could be the consequence of changes in circulating
GH and LH levels in addition to direct actions on the liver
and ovary.

Dopamine is another important factor that contributes to
the seasonal shift between growth and reproduction because
it is known to reciprocally stimulate somatotropes and
inhibit gonadotropes in goldfish (66, 111–117). Maximum
somatotrope responsiveness to dopamine was demonstrated
during growth seasons and lowest response was seen in
sexually mature fish (114). Dopamine is possibly a key
factor in reciprocal regulation of basal and GnRH and GnIH
regulation of gonadotropes and somatotropes. Whether and
how dopamine and other neuroendocrine factors known
to exert direct reciprocal influences on gonadotropes and
somatotropes, such as norepinephrine (118–120) and serotonin
(121–123), co-ordinate and interact with GnRH, GnIH, and
thyroid hormones in the integrated neuroendocrine control
of growth and reproduction would be important areas for
future studies.

CONCLUSION

In summary, the present study demonstrates that GnRH and
GnIH are factors in the regulation of LH and GH levels. GnIH
inhibits GnRH-induced LH and GH release in fish at late stage
of recrudescence. T3 exerts mainly inhibitory action on basal
and GnRH- and/or GnIH-induced GH release. T3 inhibitory
action on GnRH-induced LH release is reduced in the presence
of GnIH in a gonadal state-dependentmanner. Overall regulation
of growth and reproduction is multifactorial and involve GnRH,
GnIH, and T3. These results help to better understand the
reciprocal regulation of seasonal reproduction and growth in
female goldfish and other seasonally reproducing animals.
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