
https://doi.org/10.1007/s00259-022-05808-7

ORIGINAL ARTICLE

Classification of 18F‑Flutemetamol scans in cognitively normal older 
adults using machine learning trained with neuropathology as ground 
truth

Mariska Reinartz1,2  · Emma Susanne Luckett1,2  · Jolien Schaeverbeke1,2 · Steffi De Meyer1,2 · 
Katarzyna Adamczuk3 · Dietmar Rudolf Thal4,5 · Koen Van Laere6,7 · Patrick Dupont1,2  · Rik Vandenberghe1,2,8 

Received: 20 December 2021 / Accepted: 19 April 2022 
© The Author(s) 2022

Abstract
Purpose End-of-life studies have validated the binary visual reads of 18F-labeled amyloid PET tracers as an accurate tool 
for the presence or absence of increased neuritic amyloid plaque density. In this study, the performance of a support vector 
machine (SVM)-based classifier will be tested against pathological ground truths and its performance determined in cogni-
tively healthy older adults.
Methods We applied SVM with a linear kernel to an 18F-Flutemetamol end-of-life dataset to determine the regions with the 
highest feature weights in a data-driven manner and to compare between two different pathological ground truths: based on 
neuritic amyloid plaque density or on amyloid phases, respectively. We also trained and tested classifiers based on the 10% 
voxels with the highest amplitudes of feature weights for each of the two neuropathological ground truths. Next, we tested 
the classifiers’ diagnostic performance in the asymptomatic Alzheimer’s disease (AD) phase, a phase of interest for future 
drug development, in an independent dataset of cognitively intact older adults, the Flemish Prevent AD Cohort-KU Leuven 
(F-PACK). A regression analysis was conducted between the Centiloid (CL) value in a composite volume of interest (VOI), 
as index for amyloid load, and the distance to the hyperplane for each of the two classifiers, based on the two pathological 
ground truths. A receiver operating characteristic analysis was also performed to determine the CL threshold that optimally 
discriminates between neuritic amyloid plaque positivity versus negativity, or amyloid phase positivity versus negativity, 
within F-PACK.
Results The classifiers yielded adequate specificity and sensitivity within the end-of-life dataset (neuritic amyloid plaque 
density classifier: specificity of 90.2% and sensitivity of 83.7%; amyloid phase classifier: specificity of 98.4% and sensitivity 
of 84.0%). The regions with the highest feature weights corresponded to precuneus, caudate, anteromedial prefrontal, and also 
posterior inferior temporal and inferior parietal cortex. In the cognitively normal cohort, the correlation coefficient between 
CL and distance to the hyperplane was −0.66 for the classifier trained with neuritic amyloid plaque density, and −0.88 for 
the classifier trained with amyloid phases. This difference was significant. The optimal CL cut-off for discriminating positive 
versus negative scans was CL = 48–51 for the different classifiers (area under the curve (AUC ) = 99.9%), except for the clas-
sifier trained with amyloid phases and based on the 10% voxels with highest feature weights. There the cut-off was CL = 26 
(AUC  = 99.5%), which closely matched the CL threshold for discriminating phases 0–2 from 3–5 based on the end-of-life 
dataset and the neuropathological ground truth.
Discussion Among a set of neuropathologically validated classifiers trained with end-of-life cases, transfer to a cognitively 
normal population works best for a classifier trained with amyloid phases and using only voxels with the highest amplitudes 
of feature weights.
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Introduction

Key evidence for the validity of amyloid PET tracers comes 
from end-of-life studies [1–3]. In these studies, visual reads 
of scans based on PET tracers 18F-Florbetapir, 18F-Flor-
betaben, and 18F-Flutemetamol had a high diagnostic 
accuracy for predicting the presence of neuritic amyloid 
plaques. As an example, in the extended dataset from the 
pivotal 18F-Flutemetamol end-of-life study [2] based on 106 
cases[4], sensitivity of 18F-Flutemetamol PET by majority 
read for increased neuritic plaque density was 91% and spec-
ificity was 90% [4, 5]. Comparable diagnostic accuracy was 
found for 18F-Florbetapir [1] and 18F-Florbetaben [3].

In these pivotal clinicopathological studies, the visual 
read was based on a set of prior ad hoc rules for discrimi-
nating positive vs negative scans. In a previous study, a 
support vector machine (SVM) with a linear kernel was 
trained with the 18F-Flutemetamol phase 2 data and com-
pared to visual reads [6]. The classifier was able to repli-
cate the visual reads with 100% concordance and revealed 
that the highest feature weights were localized to the stria-
tum, precuneus, cingulate, and middle frontal gyrus. Train-
ing and testing a classifier for binary classification against 
a neuropathological ground truth may provide us with a 
more data-driven way of defining the most discriminative 
features, rather than an expert- or consensus-based defini-
tion based on visual read rules. Furthermore, in contrast to 
visual reads, SVM provides the distance to the hyperplane 
as a continuous measure of the level of certainty of the 
classifier. The hyperplane is the plane that separates the 
cases belonging to the two classes according to the SVM 
with a linear kernel. The distance to the hyperplane is a 
measure of the strength of evidence that the classifier has 
for putting a case in one or the other class. This continuous 
measure can then be correlated with a continuous neuro-
pathological measure.

SVM can also be trained with a different ground truth 
to see whether its diagnostic performance against differ-
ent neuropathological dimensions outperforms that of 
the a priori chosen measure of modified neuritic amyloid 
plaque density. Such an alternative neuropathological 
classification scheme is based on amyloid phases deter-
mined from Aβ immunochemistry [7, 8]. According to 
Thal et al. (2002), Aβ spreads hierarchically through the 
brain in 5 phases: from neocortical areas (Aβ phase 1), it 
spreads into allocortical regions including entorhinal cor-
tex and hippocampus (phase 2), next to the basal ganglia, 
hypothalamus, and thalamus (phase 3), followed by the 
midbrain (phase 4), and eventually into the cerebellum 
and pons (phase 5) [7]. In the pivotal 18F-Flutemetamol 
end-of-life dataset (n = 68), all phase 0–2 cases were read 
as negative and 89% of phases 4–5 as positive, whereas 
33% of the phase 3 cases were read as positive [9]. We 

grouped phases 0–2 and contrasted them with phases 3–5 
and trained the classifier for this binary distinction. The 
grouping of cases with amyloid phases 0–2 as negative has 
been used before [10] and also corresponds to newly devel-
oped amyloid PET classification schemes that assume that 
phases 0–2 are not detectable in vivo with PET [11, 12].

Once the classifier has been trained and tested using 
post-mortem verification, and has proven to be accurate, it 
can readily be applied to different datasets without the need 
for laborious and time-intensive visual reads. This may be 
particularly useful for the detection of Alzheimer’s disease 
(AD) in the asymptomatic phase, since levels in the early 
disease stage may be equivocal and more difficult to read 
visually. Amyloid imaging has been instrumental in defin-
ing the asymptomatic phase of AD [13]. Whereas visual 
reads of AD dementia cases versus controls have a high 
inter-rater reliability, the binary categorization of amyloid 
scans obtained in cognitively intact cases is more difficult: 
in cognitively intact individuals, intermediary levels of amy-
loid burden exist that may be difficult to categorize. Hence, 
cognitively intact healthy individuals may be one of the 
potential use cases for application of a classifier that has 
been trained on neuropathologically verified cases that cover 
a range of neuritic amyloid plaque densities and amyloid 
phases. We examined how the performance of the two clas-
sifiers that have been trained based on the neuropathological 
ground truth of neuritic plaque density or amyloid phase, 
related to a commonly used measure for semi-quantitative 
assessment of amyloid burden, the Centiloid (CL) scale [14], 
in the Flemish Prevent AD Cohort-KU Leuven (F-PACK), 
a longitudinal observation cohort of older adults who are 
cognitively intact at study inclusion [15].

Methods

Description of the study cohorts

End‑of‑life study

A total of 101 cases (mean age 81.3 years, SD 8.9, range 
60–96 years) from the phase 3 study [4] were included in the 
present study (Fig. 1A). The subjects had a cognitive status 
ranging from normal to advanced AD and, per protocol, had 
a life expectancy of 12 months or less. The mean scan-to-
death interval was 222 days (SD 205.6, range 0–846 days).

From the initial 106 cases in this study [4], five cases had 
to be excluded a priori: two scans were not available in the 
dataset we had access to, one scan was excluded for a techni-
cal reason (the reconstructed image had voxel sizes which 
were > 4 mm), one scan was missing a part of the frontal 
lobe, and one scan had high extracerebral uptake in the nose 
region causing excessive frontal spill-in.
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Flemish prevent AD cohort KU Leuven

F-PACK is a prospective longitudinal community-recruited 
cohort of 180 cognitively intact older adults (mean age 
68.3 years, SD 6.4, range 52.4–80.9 years) (Fig. 1B), who 
all received an 18F-Flutemetamol PET scan at inclusion. This 
cohort was recruited between 2009 and 2015. A detailed 
description of the baseline characteristics of this cohort is 
available from Schaeverbeke et al. (2021) [15] and is also 
described in the supplementary materials.

Image acquisition and analysis

End‑of‑life study

In the GE067-026 trial, static 18F-Flutemetamol PET scans 
were acquired on PET/CT scanners from 90 to 100 min post 
injection in 94 cases and from 90 to 110 min in 7 cases, with 
an injected dose of 185–370 MBq (for details see Curtis 
et al. (2015) [2]). We used SPM12 running on MATLAB 
2014b to process the images. To normalize the attenuation 
corrected PET scans to Montreal Neurological Imaging 
(MNI) space, a mean PET template was created from 62 
SUVR 18F-Flutemetamol PET images from an independent 
in-house dataset [16]. These 62 PET images were normal-
ized using their corresponding structural MRI scan. This 

template was then used to warp the individual PET scans 
from the end-of-life study to MNI space using a 12-param-
eter affine coregistration to the template followed by nonlin-
ear deformations, whereby the deformations are defined by 
a linear combination of three dimensional discrete cosine 
transform basis functions [17]. An 18F-Flutemetamol Stand-
ardized Uptake Value Ratio (SUVR) image was created for 
each subject using the cerebellar grey matter (GM) as refer-
ence region obtained by intersecting the Automated Ana-
tomical Labelling (AAL) atlas areas 91–108 [18] and the 
GM a priori map in MNI space (first volume of TMP.nii pro-
vided in SPM12) thresholded at 0.3. The SUVR images were 
smoothed with a 5 mm isotropic full-width half-maximum 
(FWHM) Gaussian 3D kernel.

F‑PACK study

For preprocessing of the PET scans from the F-PACK 
cohort, we made use of the individual’s structural MRIs. 
This differs from the PET-only procedure of the end-of-life 
data.

All F-PACK participants underwent 18F-Flutemetamol 
PET imaging on a 16-slice Biograph PET/CT scanner (Sie-
mens, Erlangen, Germany). The tracer was injected as a 
bolus in an antecubital vein (mean activity 150 MBq, SD 
5 MBq, range 134–162 MBq). Further details of the stand-
ard image acquisition procedure can be found in the Sup-
plementary materials. Processing of 18F-Flutemetamol PET 
was done using SPM12 running on MATLAB R2014b as 
described in detail elsewhere [19, 20]. In short, a sumPET 
was created and the individual’s structural MRI scan was 
used for coregistration and normalization of the sumPET. 
A SUVR image was calculated using the subject-specific 
cerebellar grey matter as reference region obtained by inter-
secting the AAL areas 91–108 with the participants’ own 
GM map (thresholded at 0.3).

For reasons of comparability, the PET scans of the 
F-PACK cohort were also processed using the PET-only 
procedure as described above for the end-of-life data. For 
this a sumPET was created of the 90–110 min frames.

Centiloid conversion regression formulas

We also expressed the overall amyloid PET load along 
the CL scale for both the MRI-assisted and the PET-only 
procedure. CL values were calculated as follows: Mean 
18F-Flutemetamol SUVR values were calculated for a 
composite region, which consisted of five bilateral corti-
cal regions (SUVRcomp): frontal, parietal, anterior cingulate, 
posterior cingulate, and lateral temporal (the corresponding 
AAL areas are given in the Supplementary materials).

In the MRI assisted procedure, these regions were 
intersected with the participant-specific grey matter map, 

Fig. 1  Age distribution. A Age distribution of the 101 cases of 
the end-of-life study. B Age distribution of the 180 subjects of the 
F-PACK cohort
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thresholded at 0.3. SUVRcomp values were then converted 
to CLs [14] using the following conversion formula: 
CL = 127.6 × SUVRcomp − 149 [21]. In order to obtain this 
conversion formula, the in-house processing procedure to 
obtain 18F-Flutemetamol SUVRcomp values was first cali-
brated against the standard Centiloid method [14], using an 
independent dataset as described before [21].

Since the end-of-life dataset did not contain MRI scans in 
the majority of the cases, we also calculated the CL conver-
sion regression based on the PET-only procedure. CL values 
for the PET-only procedure were calculated as follows: Mean 
18F-Flutemetamol SUVR values were calculated in SUVR-
comp. SUVRcomp values were then converted to CLs [14] using 
the following conversion formula: CL = 210.49 × SUVR-
comp − 250.13. In order to obtain this conversion formula, the 
PET-only processing procedure to obtain 18F-Flutemetamol 
SUVRcomp values was first calibrated against the standard 
Centiloid method [14], using an independent dataset [22]. 
Further details are described in the Supplementary materi-
als. For the PET images of the end-of-life study, CL values 
were calculated in the same way as for the PET scans of the 
F-PACK cohort processed using the PET-only procedure.

Neuropathological ground truth

Neuropathological assessment data of the end-of-life study 
included Bielschowsky silver stain (BSS) Standard of 
Truth, Aβ phase [7], Consortium for the Establishment of 
a Registry for Alzheimer’s Disease (CERAD) score [23], 
Braak staging for tau pathology [24], the National Institute 
on Aging (NIA) and Ronald and Nancy Reagan Institute 
(NIA-RI) score [25], and the NIA-Alzheimer’s Association 
(NIA-AA) ABC score [8] for AD likelihood.

Neuritic plaque density

In the phase 3 trial of 18F-Flutemetamol [2], the ground truth 
consisted of a binarized measure of the modified CERAD 
neuritic plaque density based on Bielschowsky silver stain-
ing. A binary categorization was based on neuritic plaque 
density as described in detail by Curtis et al. (2015) [2] and 
Ikonomovic et al. (2016) [4] and summarized in the sup-
plementary materials. Normal cases had a neuritic plaque 
frequency of none or sparse (all regions had a mean neuritic 
plaque density ≤ 1.5) and the abnormal cases had a neu-
ritic plaque frequency of moderate or frequent (at least one 
regional mean neuritic plaque density score > 1.5).

According to the CERAD neuritic plaque density Standard 
of Truth, the end-of-life dataset was composed of 29 negative 
and 72 positive cases (Table 1). These were then used to train 
the SVM.

Amyloid phase

Assessment of amyloid phases is described in previously 
published protocols [7, 8] and summarized in the supple-
mentary materials. The distribution of the amyloid phases 
is listed in Table 1. All neuritic plaque density positive cases 
fell in amyloid phase 3–5, whereas 7 amyloid phase 3–5 
cases were neuritic plaque density negative according to 
Bielschowsky silver staining.

Centiloid threshold for positivity based 
on the end‑of‑life dataset

A receiver operating characteristic (ROC) analysis, using 
the R package pROC [26] (http:// expasy. org/ tools/ pROC/), 
was applied to the CL values of the end-of-life dataset to 
determine the best CL threshold for neuritic plaque den-
sity (normal vs abnormal) and, separately, for Aβ phase 
(phase 0–2 vs 3–5). Area under the curve (AUC ), and speci-
ficity and sensitivity at maximized Youden’s index were 
used as performance measures. The best CL threshold for 
both neuropathology scores was 28.9, with a specificity of 
86.2% and a sensitivity of 73.6% for neuritic plaque density 
(AUC  = 82.2%) and a specificity of 90.9% and a sensitivity 
of 69.6% for amyloid phases (AUC  = 83.6%).

Statistical analyses

Training of the SVM was performed in MATLAB (version 
2014b) using the function fitcsvm with a linear kernel and 
default settings. An SVM with a linear kernel is defined by 
a hyperplane which subdivides the two classes. The distance 
to the hyperplane can be considered a quantitative measure 

Table 1  Demographics and neuropathology composition of the 101 
cases of the end-of-life study

Abbreviations: SUVR, standardized uptake value ratio; SD, standard 
deviation; BSS, Bielschowsky silver stain

Mean SD Range
Age (years) 81.3 8.9 60–96
Time-to-death (days) 222 0–846
18F-Flutemetamol SUVR 1.97 0.53 1.01–3.14
Neuropathology

BSS negative BSS positive
Total 29 72
Aβ phase 0 7 0
Aβ phase 1 10 0
Aβ phase 2 5 0
Aβ phase 3 5 14
Aβ phase 4 1 21
Aβ phase 5 1 44
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of the strength of evidence that a case belongs to one or the 
other class. All standard statistical analyses were conducted 
with R statistical software version 4.0.3 (The R Foundation 
for Statistical Computing; cran.r-project.org). P-values were 
considered significant when meeting a two-tailed α threshold 
of 0.05.

Primary analyses

A leave-one-out SVM was performed to discriminate the 
SUVR images of the end-of-life dataset in a binary manner 
based on normal versus abnormal neuritic plaque density as 
Standard of Truth (CERAD cut-off > 1.5), with accuracy, 
specificity, and sensitivity as outcome measures. To avoid 
bias, the number of cases in the positive class was equated 
to the number of normal cases (the negative class), which 
were the least abundant, resulting in 29 cases per class 
(Table 1). Selection of cases for the positive class was per-
formed randomly 50 times, resulting in 50 classifiers. All 
scans except for one were used in the leave-one-out approach 
to train SVM. Every scan was left out once. The remaining 
scan was used as test set including the remaining cases of 
the biggest group. Specificity and sensitivity were deter-
mined. We also plotted the distance from the hyperplane 

against the neuritic plaque density. A negative distance cor-
responded to a positive case, and a positive distance corre-
sponded to a negative case. This will be referred to as clas-
sifier BSS

original
 . A mean classifier was determined out of the 50 

obtained classifiers.
The 10% voxels with the highest amplitudes of feature 

weights were extracted from this mean classifier for illus-
tration in Fig. 2A. We also determined whether a classifier 
trained using only this selection of voxels was still sufficient 
for classification of the SUVR images. Therefore, we re-ran 
the analysis where only these voxels were used for classifica-
tion of the SUVR images. This will be called the classifier 
BSS

select
 . For descriptive purposes, the specificity and sensitivity 

were determined and the distance from the hyperplane was 
plotted against the neuritic plaque density.

SVM was also trained to discriminate between Aβ phases 
0–2 versus phases 3–5 applying the same leave-one-out 
approach, using 22 cases in each class since 22 cases had Aβ 
phases 0–2 and 79 cases had Aβ phases 3–5. This will be 
referred to as classifier A�

original
 . Again, a mean classifier was 

determined out of the 50 obtained classifiers.
The 10% voxels with the highest amplitudes of feature 

weights were extracted from this mean classifier for illustra-
tion in Fig. 2B. We also determined whether a classifier based 

Fig. 2  Distribution of the 10% voxels with the highest amplitudes 
of feature weights. A, B Distribution for the neuritic plaque density-
based classifier visualized on A sagittal and B axial slices. C, D Dis-
tribution for the amyloid phase-based classifier visualized on C sagit-

tal and D axial slices. In the sagittal slices (A, C), “negative” values 
correspond to the left hemisphere and “positive” values to the right 
hemisphere. The values in all panels refer to the slice location in MNI 
space in mm
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on this subset of voxels allowed for accurate classification 
between Aβ phases 0–2 versus phases 3–5. Below, this will 
be referred to as classifier A�

select
 . Welch’s one-way ANOVA 

with no assumption of equal variances, with amyloid phase as 
between-subjects factor, was used to test if the distance to the 
hyperplane differed between amyloid phases. Then, pairwise 
t test with no assumption of equal variances was used to deter-
mine which amyloid phases differed significantly in distance to 
the hyperplane. P-values were adjusted using the Bonferroni 
multiple testing correction method.

Next, we evaluated how performance of the classifier 
related to the CL scale in asymptomatic older adults who par-
ticipated in the F-PACK study. This was then compared to the 
CL threshold derived directly from the end-of-life dataset and 
to that determined in other studies [10]. This allowed us to 
evaluate which classifier transfers best from training with 
advanced cases (as in the end-of-life dataset), to application in 
asymptomatic cases (as in F-PACK). First, classifier BSS

original
 and 

classifier A�
original

 were applied for classification of the independ-
ent SUVR images in F-PACK (for both the SUVR images 
processed using the MRI-assisted procedure and the PET-only 
procedure). Second, we also used classifier BSS

select
 and classifier 

A�

select
 for classification in F-PACK. A simple linear regression 

was performed between the distance to the hyperplane and the 
CL value for both classifiers. To determine if these correlations 
differed significantly, the R package cocor [27] (http:// compa 
ringc orrel ations. org) for comparison of two overlapping cor-
relations based on dependent groups was used. The perfor-
mance of all classifiers was also evaluated relative to the visual 
reads of the F-PACK cohort. We also evaluated which CL 
threshold optimally separates the cases considered pathologi-
cal by the classifier from those considered normal. ROC analy-
sis, using the R package pROC [26] (http:// expasy. org/ tools/ 
pROC/), was applied to the CL values to determine which CL 
threshold best discriminates between classifier positive versus 
negative cases, for each of the classifiers. AUC , and specificity 
and sensitivity at maximized Youden’s index will be used as 
performance measures.

Secondary analyses

As a secondary analysis, we evaluated the performance of 
two recently proposed PET amyloid staging schemes against 
the performance of the classifier. The PET amyloid staging 
scheme from Hanseeuw et al. (2018) is based on visual reads 
and consists of three stages: PET amyloid stage 0 (low corti-
cal and low striatal PET signal), PET amyloid stage 1 (high 
cortical and low striatal PET signal), and PET amyloid stage 
2 (high cortical and high striatal PET signal) [11]. The PET 
amyloid staging scheme from Thal et al. (2018) is based on 
visual reads plus semi-quantitative assessment of the cor-
tex  (SUVRcortex) and caudate nucleus  (SUVRcaudatus) with 

the pons as reference region. The Thal et al. (2018) staging 
scheme consists of four PET Aβ phase estimates: PET Aβ 
phase estimate 0 (without visible 18F-Flutemetamol reten-
tion), PET Aβ phase estimate 1 (cortical amyloid deposition; 
 SUVRcortex ≥ 0.5 and/or  SUVRcaudatus ≥ 0.6), PET Aβ phase 
estimate 2 (majority reads also indicated amyloid positiv-
ity in striatum;  SUVRcortex ≥ 0.6 and/or  SUVRcaudatus ≥ 0.7), 
and PET Aβ phase estimate 3  (SUVRcortex ≥ 0.6 and/or 
 SUVRcaudatus ≥ 1.0) [12]. The PET amyloid staging based 
on the two classification schemes was performed a priori by 
independent raters.

Using the end-of-life dataset, we examined how the dis-
tance to the hyperplane relates to these two PET amyloid 
staging schemes [11, 12]. Kruskal–Wallis rank sum test 
with amyloid phase as between-subjects factor was used to 
test if the distance to the hyperplane differed between PET 
amyloid phases (according to the Hanseeuw and Thal stag-
ing schemes, respectively). As the data were not normally 
distributed, the Mann–Whitney U test was used as post hoc 
analysis to determine which PET amyloid phases differed 
significantly in distance to the hyperplane. P-values were 
adjusted using the Bonferroni multiple testing correction 
method.

In addition, we examined how accurately the classifi-
ers trained based on neuritic plaque density could classify 
according to amyloid phase and vice versa for the classifiers 
trained with amyloid phase.

Results

Primary analyses

End‑of‑life study

Neuritic plaque density as Standard of Truth An SVM was 
trained using the binary neuritic plaque density measure 
as Standard of Truth, as in the pivotal phase 3 study [2]. 
Compared to the Standard of Truth, the classifier had an 
accuracy of 87% (SD 3.6). The mean specificity was 90.2% 
(SD 4.3; 95% CI 89.0, 91.4; Fig. 3A): out of 29 Standard of 
Truth normal cases, three were classified as abnormal. Two 
were 87 years of age, one 92. The amyloid phase of these 
three cases was phase 3, 4, and 5 respectively. The CERAD 
plaque score was sparse in all three cases; the Braak stage 
was I, II, and IV, respectively. According to NIA-RI criteria 
[25], the AD likelihood was low in all three cases. When 
using the NIA-AA ABC score [8], two had a low AD likeli-
hood and one had an intermediate AD likelihood. Thus, the 
false-positive cases had a relatively high amyloid load with 
relatively low neurofibrillary tangle deposition. The mean 
sensitivity was 83.7% (SD 4.9; 95% CI 82.4, 85.1; Fig. 3A) 
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compared to the neuritic amyloid plaque density Standard 
of Truth: out of 72 abnormal cases, ten were classified as 
normal. Five of these cases were in amyloid phase 3, four 
were in amyloid phase 4, and one in amyloid phase 5. The 
CERAD plaque score was sparse in three of the cases, and 
moderate to frequent in the remainder. Three of the cases 
had Braak stage VI, two Braak stage IV, and the remainder 
had Braak stage III or lower. Hence, no clear pattern emerges 
why these cases were classified as normal.

To gain further insight in the relationship between the 
classification evidence strength for the classifier BSS

original
 and 

the continuous neuropathological measures of neuritic 
plaque density, we performed a regression analysis between 

the distance to the hyperplane and neuritic plaque density. 
Distance to the hyperplane had a strong relationship with 
neuritic plaque density (Spearman R =  −0.66, slope =  −0.69, 
P < 5.7 ×  10–14; Fig. 3A).

The 10% voxels with the highest amplitudes of feature 
weights are visualized in Fig. 2A. The pattern was rela-
tively scattered. We trained and tested the classifier BSS

select
 

based on the values of this subset of voxels, and this classi-
fier was applied to the F-PACK cohort (described below). 
For descriptive purposes, when classifier BSS

select
 was applied to 

the SUVR images of the end-of-life dataset, specificity was 
98.8% and sensitivity was 95% with an overall accuracy of 
96.9% (Fig. 3B).

Fig. 3  Classification of the 101 cases of the end-of-life study. A 
Regression plot between the maximum neuritic plaque density 
(CERAD) score and the distance to the hyperplane obtained from 
the classification of the 101 cases based on neuritic plaque density 
as Standard of Truth. Classification was based on classifier BSS

original
 . 

The maximum neuritic plaque density score is the score of the region 
with the highest score. A negative distance corresponds to a positive 
case; a positive distance corresponds to a negative case. B Regression 
plot between the maximum neuritic plaque density (CERAD) score 
and the distance to the hyperplane obtained from the classification of 
the 101 cases based on neuritic plaque density as Standard of Truth 
(Spearman R =  −0.73, slope =  −1.02, P < 2.2 ×  10–16). Classification 
was based on classifier BSS

select
 . A negative distance corresponds to a 

positive case; a positive distance corresponds to a negative case. C 
Regression plot between the amyloid phase and the distance to the 
hyperplane obtained from the classification of the 101 cases based 
on amyloid phases 0–2 vs 3–5. Classification was based on classifier 
A�

original
 . A negative distance corresponds to a positive case; a positive 

distance corresponds to a negative case. D Regression plot between 
the amyloid phase and the distance to the hyperplane obtained from 
the classification of the 101 cases based on amyloid phases 0–2 vs 
3–5 (Spearman R =  −0.81, slope =  −0.93, P < 2.2 ×  10–16). Classifi-
cation was based on classifier A�

select
 . A negative distance corresponds 

to a positive case. The boxplots visualize the minimum, first quartile, 
median, third quartile, and maximum distance per phase
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Amyloid phase as Standard of Truth When SVM was trained 
using amyloid phases 0–2 versus phases 3–5 as classes, the 
classifier had a mean accuracy of 91.2% (SD 3.4). The mean 
specificity was 98.4% (SD 2.4; 95% CI 97.7, 99.0). The 
mean sensitivity was 84.0% (SD 5.8; 95% CI 82.4, 85.6). 
Among the 77 abnormal cases (phases 3–5), seven out of 14 
phase 3 cases, three out of 24 phase 4 cases and one phase 5 
case were classified as normal (Fig. 3C). The false-negative 
rate mainly in phase 3 cases is in line with what has been 
previously reported for visual reads [9].

Using linear regression, we examined the relation 
between the distance to the hyperplane and amyloid phase. 
Distance to the hyperplane had a strong relationship with 
amyloid phase (Spearman R =  −0.79, slope =  −0.97, 
P < 2.2 ×  10–16; Fig. 3C).

Welch’s one-way ANOVA with amyloid phase as between-
subjects factor was used to test if the distance to the hyperplane 
differed between amyloid phases. Post hoc comparison revealed 
that there was no difference in the distance to the hyperplane 
between phases 0, 1, and 2. The distance to the hyperplane 
differed significantly from phases 0, 1, and 2 versus each of 
the other phases (Pcorrected ≤ 0.00061). Among the phases 3, 4, 
and 5, the distance also differed significantly (Pcorrected ≤ 0.024; 
Fig. 3C). Phases 4 and 5 did not differ significantly after correc-
tion for multiple comparisons (Pcorrected = 0.599).

The 10% voxels with the highest amplitudes of fea-
ture weights are visualized in Fig. 2B. We created a mask 
with the 10% voxels with the highest amplitudes of feature 
weights and trained and tested the classifier A�

select
 with this 

subset. For descriptive purposes, classifier A�
select

 was re-run 
based on the neuropathological dataset and Aβ phases 0–2 
versus phases 3–5 as ground truth. Accuracy increased to 
96.3%, specificity increased to 100%, and sensitivity to 
92.6%. The distribution of the distance to the hyperplane 
per amyloid phase is visualized in Fig. 3D.

F‑PACK cohort

The analyses of the end-of-life study provided us with four 
classifiers; these will be used to analyse the scans from the 
F-PACK cohort.

A regression analysis was performed with the distance from 
the hyperplane as predictor and CL value as outcome variable 
in all 180 18F-Flutemetamol F-PACK SUVR images. For clas-
sifier BSS

original
 , the correlation between the distance from the hyper-

plane and the CL value was −0.66, with a slope of −33.68 
(P < 2.2 ×  10–16; Fig. 4A) and for classifier A�

original
 , the correlation 

was −0.875, with a slope of −33.66 (P < 2.2 ×  10–16; Fig. 4B). 
For classifier BSS

select
 , the correlation between the distance from the 

hyperplane and the CL value was −0.373, with a slope of −36.98 
(P = 2.6 ×  10–7; Fig. 4C). For classifier A�

select
 , the correlation 

was −0.814, with a slope of −26.5 (P < 2.2 ×  10–16; Fig. 4D).

When comparing the performance of the classifiers to the 
visual reads, both classifier BSS

original
 and classifier BSS

select
 had a 

specificity of 98.8% and a sensitivity of only 63.6%. Classi-
fier A�

original
 had a specificity of 97.6% and a sensitivity of 

72.7%, while the specificity and sensitivity of classifier A�
select

 
were 95.3% and 81.8%, respectively.

A regression analysis was also performed with the distance 
from the hyperplane as predictor and CL value as outcome vari-
able in all 180 18F-Flutemetamol F-PACK SUVR images, pro-
cessed using the PET-only procedure. For classifier BSS

original
 , the 

correlation between the distance from the hyperplane and the 
CL value was −0.557 (P < 4.6 ×  10–16) and for classifier A�

original
 , 

the correlation was −0.748 (P < 2.2 ×  10–16). For classifier BSS
select

 , 
the correlation between the distance from the hyperplane and 
the CL value was −0.168 (P = 0.024). For classifier A�

select
 , the 

correlation was −0.616 (P < 2.2 ×  10–16). These results are com-
parable to the results of the regression where the SUVR images 
were processed using the MRI-assisted procedure.

We also determined for each classifier the optimal CL 
threshold for separating cases classified as positive versus 
negative in F-PACK. When classifier BSS

original
 was used as out-

come for the ROC analysis, the CL threshold was 48.1 which 
resulted in a specificity of 98.25% and a sensitivity of 100%, 
both at the maximized Youden’s index, and an AUC  of 
99.8%. When classifier A�

original
 was used as outcome, the CL 

threshold was 48.1, which resulted in a specificity of 100% 
and a sensitivity of 100%, both at the maximized Youden’s 
index, and an AUC  of 100%. When classifier BSS

select
 was used 

as outcome for the ROC analysis, the CL threshold was 51.3 
which resulted in a specificity of 99.4% and a sensitivity of 
100%, both at the maximized Youden’s index, and an AUC  
of 99.9%. On the other hand, when classifier A�

select
 was used 

as outcome, the CL threshold was 26.0, which resulted in a 
specificity of 95.7% and a sensitivity of 100%, both at the 
maximized Youden’s index, and an AUC  of 99.5%. In other 
words, for classifier A�

select
 , the CL threshold obtained was 

close to that obtained based on the ROC of the end-of-life 
dataset while for all other classifiers, the CL threshold was 
substantially higher. This confirms that the transfer of the 
classifier from an end-of-life dataset to an asymptomatic 
population was performing best for classifier A�

select
.

Secondary analyses: relation to PET amyloid staging 
schemes

As a secondary analysis, we evaluated the performance of two 
recently proposed PET amyloid staging schemes against the 
performance of the classifier. One of these schemes is based on 
visual reads [11], the other on visual reads plus semi-quantitative 
assessment [12]. Using the end-of-life dataset, we examined how 
the distance to the hyperplane relates to these two PET amyloid 
staging schemes [11, 12]. Results are shown in Fig. 5.
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As described before [12], the Thal et al. (2018) amy-
loid PET classification, which is based on SUVR in cor-
tical and striatal regions [12], misclassified two neuro-
pathological amyloid phase 3–5 cases as negative (i.e. 
placed them in the PET Aβ phase 0 category) and three 
neuropathological amyloid phase 0–2 cases as positive 
(i.e. placed them in the PET Aβ phase 1 category) 
(Fig. 5A). Of the 5 cases that were misclassified by the 
amyloid PET scheme [12], three were placed in the cor-
rect category by the classifier A�

original
.

The Hanseeuw et  al. (2018) amyloid PET classifi-
cation, which is also based on amyloid deposition in 
cortical and striatal regions [11], misclassified twelve 
neuropathological amyloid phase 3–5 cases as negative. 
No neuropathological amyloid phase 0–2 cases were 
misclassified (Fig. 5B). A substantial number of cases 
(n = 12) that were placed in Hanseeuw phase 0 were 
false-negative. The classifier put 5 of these phase 3–5 
cases in the pathological class, hence demonstrating 
superior performance.

Fig. 4  Classification of the F-PACK 18F-Flutemetamol SUVR 
images. A Regression plot between the Centiloid values and the dis-
tance to the hyperplane using the classifier based on neuritic plaque 
density (classifier BSS

original
 ). The horizontal solid red line indicates the 

literature-based CL threshold of 23.5; the horizontal dashed red line 
indicates the CL threshold of 48.1 based on the ROC analysis. A 
negative distance corresponds to a positive case; a positive distance 
corresponds to a negative case. Abnormal visual reads are indicated 
in red and normal visual reads are indicated in blue. B Regression 
plot between the Centiloid values and the distance to the hyperplane 
using the classifier based on neuritic plaque density (classifier BSS

select
 ). 

The horizontal solid red line indicates the literature-based CL thresh-
old of 23.5; the horizontal dashed red line indicates the CL threshold 
of 51.3 based on the ROC analysis. A negative distance corresponds 
to a positive case; a positive distance corresponds to a negative case. 
Abnormal visual reads are indicated in red and normal visual reads 

are indicated in blue. C Regression plot between the Centiloid val-
ues and the distance to the hyperplane using the classifier based on 
amyloid phases 0–2 vs 3–5 (classifier A�

original
 ). The horizontal solid 

red line indicates the literature-based CL threshold of 23.5; the hori-
zontal dashed red line indicates the CL threshold of 48.1 based on 
the ROC analysis. A negative distance corresponds to a positive case. 
Abnormal visual reads are indicated in red and normal visual reads 
are indicated in blue. D Regression plot between the Centiloid val-
ues and the distance to the hyperplane using the classifier based on 
amyloid phases 0–2 vs 3–5 (classifier A�

select
 ). The horizontal solid red 

line indicates the literature-based CL threshold of 23.5; the horizontal 
dashed red line indicates the CL threshold of 26.0 based on the ROC 
analysis. A negative distance corresponds to a positive case. Abnor-
mal visual reads are indicated in red and normal visual reads are indi-
cated in blue
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Kruskal–Wallis rank sum test with amyloid PET stage 
as between-subjects factor was used to test if the distance 
to the hyperplane differed between amyloid PET phases. 
Post hoc comparison revealed a significant difference in 
the distance to the hyperplane per amyloid PET phase 
for the two amyloid PET classification schemes (Thal: 
Pcorrected ≤ 0.017; Hanseeuw: Pcorrected ≤ 0.0035).

We also tested whether training for a given neuropathological 
ground truth gave rise to a classifier that could also reliably clas-
sify for the alternative ground truth. When applying classifier 
BSS

original
 to determine its ability to predict amyloid phase, the clas-

sifier’s accuracy was 92.0% with a specificity of 98.5% and a 
sensitivity of 85.4%. When classifier BSS

select
 was used, the classi-

fier’s accuracy was 94.0% with a specificity of 99.6% and a sen-
sitivity of 88.4%. When applying classifier A�

original
 to determine 

its ability to predict neuritic plaque score, the classifier’s accu-
racy was 87.3% with a specificity of 90.4% and a sensitivity of 
84.3%. When classifier A�

select
 was used, the classifier’s accuracy 

was 86.5% with a specificity of 87.6% and a sensitivity of 85.4%.

Discussion

We trained a supervised machine learning classifier on the 
18F-Flutemetamol end-of-life study and applied the classi-
fier to an 18F-Flutemetamol dataset in a cohort of healthy 

cognitively intact older adults, the F-PACK cohort. In the 
F-PACK cohort, the Centiloid scale correlated more strongly 
with the performance of the amyloid phase-based classifier 
than with that of the neuritic plaque density-based classi-
fier. Furthermore, the cut-off for discriminating positivity for 
neuritic plaque density was substantially higher than that for 
discriminating amyloid phases 3–5 from phases 0–2 based 
on classifier A�

select
.

We used a leave-one-out approach for training and testing 
the classifier with the neuropathology as ground truth. The 
neuropathology ground truth is the major strength of this 
study. Ideally, the training and the test set are entirely inde-
pendent. Given the limited number of autopsy cases avail-
able, a leave-one-out approach is the best approximation of 
this ideal. The case that is left out is independent of the cases 
on which the classifier is trained.

In the end-of-life dataset, when using neuritic plaque den-
sity as ground truth, mean specificity was practically the 
same (90%) as the median specificity reported by Ikono-
movic et al. (2016) [4] for the visual reads. A pathologically 
negative case was only rarely classified as positive. This is 
in agreement with the approved indication of amyloid PET 
for ruling out AD. In the past, the false-positive cases have 
been attributed to amyloid in diffuse plaques and cerebral 
amyloid angiopathy and mismatched (sparse) neuritic plaque 
burden [4]. This is also a likely explanation for the classifier-
based false-positives. The mean sensitivity of the classifier 

Fig. 5  Relationship between the distance to the hyperplane and amy-
loid PET staging approaches. A The PET Aβ phase is based on Thal 
et al. (2018) [12]. The distance to the hyperplane is based on the clas-
sifier trained with amyloid phases 0–2 versus 3–5 (classifier A�

original
 ). 

A negative distance corresponds to a positive case; a positive dis-
tance corresponds to a negative case. The PET Aβ phase estimates 
correspond to the underlying neuropathological amyloid phases [12] 
as follows: PET Aβ phase estimate 0 corresponds to neuropathologi-
cal amyloid phases 0–2, PET Aβ phase estimate 1 to neuropathologi-
cal phase 3, PET Aβ phase estimate 2 to neuropathological phase 4, 

and PET Aβ phase estimate 3 to neuropathological phase 5. The up-
pointing triangles indicate that the neuropathological amyloid phase 
was abnormal. The down-pointing triangles indicate that the neuro-
pathological amyloid phase was normal. B The PET amyloid stage is 
based on Hanseeuw et al. (2018) [11]. The distance to the hyperplane 
is based on the classifier trained with amyloid phases 0–2 versus 3–5 
(classifier A�

original
 ). A negative distance corresponds to a positive case; 

a positive distance corresponds to a negative case. The up-pointing 
triangles indicate that the neuropathological amyloid phase was 
abnormal
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was numerically lower (83%) than the median sensitivity 
reported by Ikonomovic et al. (2016) [4] for visual reads 
(91%). In the past, the false-negatives have been attributed 
to advanced cortical atrophy and the absence of MRI avail-
ability, which may also account for the false-negatives in 
the classifier-based discrimination of the end-of-life dataset.

A classifier trained with amyloid phases 0–2 versus 
phases 3–5 in the end-of-life dataset performed in line with 
what one would expect based on the visual read studies [9]. 
Interestingly, the regions with the highest feature weights for 
discriminating phases 0–2 from phases 3–5 are not so much 
those that define amyloid phase 2 versus 3 neuropathologi-
cally (such as diencephalon and basal ganglia) but cortical 
regions. This indicates that the differentiation relies mainly 
on an overall increase in signal in key cortical areas and in 
the caudate nucleus due to increased concentration of Aβ 
aggregates/increased Aβ plaque load in the brain rather than 
the stepwise topographical expansion of Aβ plaque pathol-
ogy as described by the amyloid phases [7]. In this context, 
it is essential to note that all aspects of Aβ pathology (its 
topographical expansion as described by the Aβ phases, the 
quantitative amounts of Aβ plaques/aggregates as measured 
by the Aβ plaque load or biochemically, and the maturation 
of Aβ aggregates) correlate closely with one another allow-
ing a good estimation of all these parameters by amyloid 
PET [28]. The observation that a classifier trained on one 
neuropathological ground truth (neuritic plaque density or 
amyloid phase) could classify cases relatively accurately for 
the other ground truth (amyloid phase or neuritic plaque 
density, respectively) also testifies to this, at least when the 
dataset contains relatively advanced stages. As we will dis-
cuss further below, the interchangeability is less convincing 
for asymptomatic cases.

The sensitivity of the Centiloid (CL) method based on 
an ROC analysis of the end-of-life dataset was 73.6% for 
the neuritic amyloid plaque density and 69.6% for Thal 
amyloid phase. The classifier had a sensitivity of 83.7% and 
84%, respectively. The sensitivity of the majority read based 
on the visual reads in the pivotal phase 3 study was 86%, 
with a confidence interval ranging from 73 to 95%, and the 
median of the sensitivity of the 5 readers was 88% (confi-
dence interval 74%-96%) [2]. The sensitivity of the classifier 
(83.7%) falls within this range and the study demonstrates 
that the classifier performs similarly to the visual reads in 
that respect. Both the classifier and the visual reads take into 
account the distribution of the values across the entire scan 
rather than a single composite value and this may explain 
their similarity in performance and constitute an advantage 
compared to the CL method.

Recently, amyloid PET classification schemes have been 
proposed based on a combination of cortical and striatal 
amyloid levels or reads [11, 12]. The classifier correctly clas-
sified 3 out of 5 cases that the Thal et al. PET Aβ scheme 

misclassified. Five out of 12 cases misclassified by the Han-
seeuw et al. PET amyloid scheme were correctly classified 
by the original classifier. A third 4-stage model of disease 
progression [29] exists. This scheme [29] has been devel-
oped principally through mathematical modelling of disease 
progression based on cross-sectional 18F-florbetapir amyloid 
PET scans in cognitively normal controls, mainly from the 
Alzheimer’s Disease Neuroimaging Initiative [29]. It has not 
been applied to the current end-of-life dataset as of yet and 
was not included in the current study for that reason.

Visual reads are based on a set of explicit ad hoc rules, 
hence the interest of a data-driven definition of the anatomi-
cal distribution of the most discriminative regions. The pat-
tern obtained for the amyloid phase-based classifier con-
firmed the regions that are also considered critical for visual 
read classification: precuneus and posterior cingulate, head 
of the caudate, rostral anterior cingulate, and ventromedial 
prefrontal cortex. These are in line with a previous SVM 
paper with visual reads as comparison [6] and confirm the 
high feature weights of the head of the caudate nucleus as 
reported in that study and confirmed subsequently [11, 12, 
30]. It also revealed some less commonly used regions, 
namely, the posterior inferotemporal cortex and the supra-
marginal gyrus. It is also worth noting that two of the three 
regions that define stage I in the Grothe et al. [29] staging 
scheme (basal temporal cortex, anterior cingulate, parietal 
operculum) are not among those with the highest feature 
weights.

More or less the same regions as for the amyloid phase-
based classifier also had high feature weights for the neu-
ritic plaque density-based classifier but the clusters for the 
latter classifier were more scattered and less confined. For 
the amyloid phase-based classifier, the visual appearance of 
the distribution of the highest feature weights corresponded 
better to regions commonly attended to for visual reads, than 
those of the neuritic plaque density-based classifier.

We applied the classifier to an independent 18F-Flutemet-
amol dataset obtained in 180 cognitively intact older adults. 
A classifier may be particularly useful in the asymptomatic 
stage of the disease, when a substantial portion of partici-
pants is situated at an intermediary level. From the SVM 
classifier, we derived the distance to the hyperplane for each 
SUVR image. This is a quantitative measure of the strength 
of evidence that a case belongs to one or the other class. It 
may be compared to the “level of confidence” of a visual 
read but is strictly objective. We used this measure of evi-
dence strength to gain further insight in the link between 
the image classification and the continuous neuropatho-
logical measures underlying the binarized classification. 
When we extracted the distance from the hyperplane as a 
measure of classification likelihood, the distance from the 
amyloid phase-based classifier correlated more closely with 
the CL scale than when the same approach was taken for 
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the neuritic plaque density-based classifier (P < 3.1 ×  10–15). 
A closer match with amyloid phases compared to neuritic 
plaque density may be due to several reasons: amyloid phase 
takes into account both diffuse and neuritic plaques, and 
18F-Flutemetamol has affinity for both types [31].

Two other findings indicated that the transfer to a cog-
nitively normal population worked best for classifier A�

select
 . 

The CL threshold for distinguishing amyloid 0–2 from 3–5 
in the F-PACK cohort (CL = 26) closely corresponded to 
that obtained when determining a CL threshold directly 
from the end-of-life data (CL = 28.9). Second, classifi-
cation based on classifier A�

select
 corresponded best to the 

visual reads of the F-PACK cohort (spec 95.3%, sens 
81.8%) compared to the other classifiers. The classifiers 
trained on the end-of-life data to classify based on neuritic 
plaque density, had a lower sensitivity, and were less able 
to detect asymptomatic cases with increased amyloid load. 
Classification using machine learning works best when 
the training data reflect the same distribution as the data 
on which the classifier is applied. When we train using 
the end-of-life data and apply the classifier on an asymp-
tomatic cohort, this poses a challenge to the classifiers as 
the data on which the classifier was trained are distributed 
differently from that on which the classifier is applied. In 
particular, the end-of-life study will contain many more 
neuropathologically advanced cases than an asympto-
matic cohort, so ready transferability cannot be assumed. 
Among the four classifiers, transferability was satisfactory 
mostly for classifier A�

select
 . The superiority of the amyloid 

phase-based classifier may relate to the affinity of the PET 
tracer not only for neuritic but also for diffuse amyloid 
plaques. The superior performance of the amyloid phase-
based classifier in comparison to the neuritic plaque-
based classifier may also have a neurobiological reason: 
in the course of Alzheimer’s disease, the timepoint when 
a case crosses from amyloid phase 2 to amyloid phase 
3 occurs earlier than the timepoint when a case crosses 
from sparse neuritic plaque density to moderate neuritic 
plaque density [32]. Hence, in an asymptomatic group, a 
classifier trained to distinguish phases 0–2 from phases 
3–5 may have a higher sensitivity for detecting positive 
cases than a classifier trained on distinguishing zero/sparse 
neuritic plaque density from moderate/severe density. The 
discrimination between phases 0–2 and phases 3–5 may 
be more suitable in an asymptomatic population than the 
discrimination between zero/sparse and moderate/severe 
plaque density since the latter distinction occurs later in 
the disease course than the distinction between the amy-
loid phases [32]. The selection of the 10% voxels with the 
highest amplitudes of feature weights clearly has a benefi-
cial effect for classifier A�

select
 . This can be attributed to the 

fact that the voxels with the highest amplitudes of feature 
weights may also be those that are affected earliest in the 

disease course. By the selection procedure, we reduce the 
dimensionality of the image, removing voxels that in the 
asymptomatic phase of AD, may contribute noise. When 
classifier A�

select
 was used, the CL threshold for distinguish-

ing amyloid phases 0–2 versus 3–5 (CL = 26) was also very 
close to that reported by La Joie et al. (2019) (CL = 23.5) 
[10].

Some of the classifiers performed poorly on the 
F-PACK. One cannot simply assume good transfer of a 
classifier trained on end-of-life data for application in a 
cohort of a very different nature, who are cognitively nor-
mal. Among the four classifiers, classifier A�

select
 performed 

best in the asymptomatic cohort, with a close correlation 
between the CL and the distance to the hyperplane, a close 
concordance with visual reads and a CL threshold for posi-
tivity that matched that based on the neuropathological 
dataset and that reported by La Joie et al. (2019). What 
would be the added value of using classifier A�

select
 com-

pared to visual reads or semiquantitative assessment and 
CL? Given the close correspondence with visual reads and 
CL, the added value does not lie so much in the classifica-
tion of a single image as outcome would be highly con-
cordant. Instead, given the increasing availability of large 
datasets, containing 100s or 1000s of amyloid PET scans, 
a validated classifier is an efficient method for processing 
and classifying images on a large scale. In addition to this 
scalability, a second advantage is the generalisability of 
its use across centres. The use of a classifier is an objec-
tive, reader-independent method that can be easily repro-
duced across centres provided the input to the classifier 
has been processed in a state-of-the-art manner. It is worth 
noting that here the performance of the classifier did not 
critically depend on the differences in acquisition method 
between the end-of-life study and the F-PACK study (dif-
ferent scanners and acquisition windows) and neither on 
the differences in image analysis procedure (PET-only or 
MRI-assisted). Hence, the advantage of the classifier is 
its efficient, automated use on large datasets, and its rater-
independent objectivity in classifying cases.

Limitations

Five amyloid phases exist, which we dichotomized into 
amyloid phases 0–2 and 3–5. This was motivated by the 
relatively low number of cases in each of the phases 0, 1, 
and 2, and by the observation that amyloid PET is unable to 
detect increases in retention in phases 0–2 [9, 12]. However, 
the dichotomized scale based on amyloid phases has not 
undergone extensive validation. Likewise, while the amy-
loid phase is a stepwise classification, the distance to the 
hyperplane that we derive from the classifier is a continu-
ous estimate of how strong the evidence is in favour of one 
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or the other binary class. Training a classifier to perform a 
more fine-grained distinction between stages requires more 
cases per class, in particular for the lower classes, than the 
current dataset offers.

Conclusion

Automated classification using a neuropathologically vali-
dated SVM classifier with a linear kernel has value in the 
detection of an increased amyloid phase or neuritic plaque 
density in cognitively intact older adults. This study estab-
lishes the distance to the hyperplane as an informative and 
integrative measure with a strong relationship to measures of 
neuritic amyloid plaque density and, in particular, to amyloid 
phases.
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