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Automatic lung segmentation 
in chest X‑ray images using 
improved U‑Net
Wufeng Liu1*, Jiaxin Luo1, Yan Yang1, Wenlian Wang2,3, Junkui Deng2,3 & Liang Yu1

The automatic segmentation of the lung region for chest X‑ray (CXR) can help doctors diagnose many 
lung diseases. However, extreme lung shape changes and fuzzy lung regions caused by serious lung 
diseases may incorrectly make the automatic lung segmentation model. We improved the U‑Net 
network by using the pre‑training Efficientnet‑b4 as the encoder and the Residual block and the 
LeakyReLU activation function in the decoder. The network can extract Lung field features efficiently 
and avoid the gradient instability caused by the multiplication effect in gradient backpropagation. 
Compared with the traditional U‑Net model, our method improves about 2.5% dice coefficient and 
6% Jaccard Index for the two benchmark lung segmentation datasets. Our model improves about 5% 
dice coefficient and 9% Jaccard Index for the private lung segmentation datasets compared with the 
traditional U‑Net model. Comparative experiments show that our method can improve the accuracy of 
lung segmentation of CXR images and it has a lower standard deviation and good robustness.

Among the existing medical imaging methods, X-ray is one of the most commonly used diagnostic technology 
as it is widely available, low cost, non-invasive, and easy to  acquire1,2. Chest radiography is the most popular and 
important imaging modality used to diagnose various pulmonary diseases. Applying deep learning in medical 
imaging can help medical experts carry out screening and diagnosis and reduce their  burden3,4. Segmentation 
of the lung becomes challenging due to several reasons: (1) non-pathological changes: the shape and size of the 
lung vary with age, gender, and heart size; (2) pathological changes: the opacity caused by severe lung disease 
reaches a high-intensity  value5; (3) foreign body coverage, such as the lung field, is obscured by the patient’s 
clothes or medical equipment (pacemaker, infusion line, medical catheter)6. Most of the reported work on lung 
segmentation is based on mild lesions or healthy CXR images. Therefore, it is necessary to verify the ability of the 
lung segmentation model on complex CXR images. So we randomly screened 2785 CXRs from the NIH (National 
Institute of Health) Chest X-ray  dataset7 (https:// www. kaggle. com/ nih- chest- xrays/ data) and invited experienced 
radiologists to label the lung field manually. In particular, these 2785 images contain some severe lung diseases. 
In addition, we also designed an excellent lung field semantic segmentation model, which is structured by U-Net8 
and uses the Efficientnet-b4 pre-training model as the backbone (https:// github. com/ 21129 42597/ 2985).

In related literature, many methods have been proposed for automatic lung segmentation. These methods 
have a wide application prospect. It can be divided into two categories: traditional methods based on machine 
learning and methods based on deep learning. Traditional lung segmentation methods do not rely on the dataset 
labeled by professional radiologists, so they are easy to implement. But the lung boundaries obtained may not be 
optimum due to the heterogeneity of lung field shapes. The accuracy of this kind of algorithm is far lower than 
that of neural network  modeling6,9.

In recent years, with the progress of computer image processing ability and the continuous enrichment of 
datasets, deep learning technology has achieved good results in medical image  analysis10–12. In semantic seg-
mentation technology, the chest radiograph is used as the input of a deep neural network, which classifies each 
pixel into lung region or non-lung  region13.

Hwang et al.14 proposed a model based on the atrous convolution architecture for accurate lung segmentation. 
Their algorithm was tested on  JSRT15 and Montgomery County (MC)  datasets16, and the dice coefficients were 
0.9800 and 0.9640, respectively. Rahul et al.17 used full convolution neural networks to segment the lung field of 
JSRT and MC datasets, with an average accuracy of 98.92% and 97.84%, respectively. Mittal et al.18 modified the 
upsampling part of the famous SegNet  architecture19 and trained it on the JSRT dataset. When tested on JSRT 
and MC datasets, their model achieves 98.73% accuracy.
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Ngo et al.20 propose a new methodology for lung segmentation in CXR using a hybrid method based on a 
distance regularized level set and deep structured inference. Their average accuracy on JSTR varies from 94.8 
to 98.5%. Rashid, Ret al.21. proposed the full convolution network for lung segmentation. The average accuracy 
on JSRT, MC, and local data sets are 97.1%, 97.7%, and 94.2%, respectively. Ching Sheng change et al. annotated 
the lung region of the NIH chest X-ray data set, and then performed semantic  segmentation22. They achieved a 
94.9% Jaccard index score. Souza, J. et al.designed an automatic lung segmentation and reconstruction method 
based on a depth neural  network23. Based on the deep neural network, Lamin Saidy et al.introduce the knowledge 
of graphic morphology to solve the problem of fragments in lung  segmentation24.

Methods
In image segmentation tasks, especially medical image segmentation, U-Net8 is undoubtedly one of the most 
successful methods. Compared with  FCN25,  SegNet19, and  Deeplab26, U-Net uses skip connection in the same 
stage instead of direct supervision and loss back transmission on high-level semantic features. It ensures that the 
finally recovered feature map integrates more low-level features and enables the fusion of elements of different 
scales. Thus, multi-scale prediction and deep supervision can be carried out. Upsampling also makes the infor-
mation, such as the restored edge of the segmented image, finer. A challenge of deep learning for medical image 
processing is that it often provides few samples, and U-Net still performs well under this limitation. Based on 
these advantages, we choose U-Net as the framework of the automatic lung segmentation model. The input size 
of the model is 256 * 256 * 3, and the output size is 256 * 256 * 1—our experiment with Imagenet’s pre-trained 
base networks. The network architecture used in this work has five coding layers and five decoding layers. The 
encoder is Efficientnet-b4 pre-trained on the Imagenet.

The innovation of our model mainly lies in the decoding block. The decoder consists of five blocks; Each 
decoding layer includes a dropout layer, a two-dimensional convolution and padding layer, and finally, two 
residual blocks and a LeakyReLU. We also try to concatenate three residual blocks in each decoding block, but 
the model’s performance is not improved. The function of the dropout layer is to improve the generalization 
ability of the model and prevent the model from overfitting. The two-dimensional convolution layer continues 
to extract image information. Two residual  blocks27 can prevent the “vanishing gradient” and make information 
spread better.

Residual block is the most important module in  Resnet28. It adds a quick connection between the input and 
output of network layers. In other words, it directly adds the original information and output without any change. 
The deeper the network is, the more obvious the "vanishing gradient," and the training effect of the network will 
not be very good. But now, the shallow network can not significantly improve the network performance. That’s 
a contradictory problem, but the residual block effectively solves the contradiction of avoiding the "vanishing 
gradient" when deepening the network. Figure 1 and Formulas (1–3) show how this is achieved. Even if the gradi-
ent attenuation occurs in the backward propagation of A-B-C, the gradient at D can still be directly transmitted 
to A; that is, the cross-layer propagation of the gradient is realized. From the perspective of gradient size, no 
matter how deep the network structure is, the residual network can maintain a large value of the weight close to 
the data layer (input) to alleviate the vanishing gradient.

LeakyReLU29 was used as the activation function. The function of LeakyReLU is very similar to that of ReLU. 
The only difference is in the part where the input is less than 0. The value of the part where the input of ReLU 
is less than 0 is 0, while the value of the part where the input of LeakyReLU is less than 0 is negative and has a 
slight gradient. Suppose RelU is used as the activation function of the middle layer when the gradient of the 
backpropagation process is 0. In that case, the corresponding weight and bias parameters cannot be updated this 
time. Then the neuron can no longer learn. This phenomenon is called "neuron death." So we use LeakyReLU as 
the middle layer’s activation function to avoid this problem. Finally, we apply a 1 × 1 convolution layer and then 
use the "Sigmoid" activation function to output the mask.
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Figure 1.  The principle of the residual block.
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Loss function. Utilizing the dice loss as the loss function.

Training details and hyper‑parameters. The initial learning rate of the model is set to 0.0002. The batch 
size is set to 64. Max epochs are set to 70. The model is not improved every ten epochs, and the learning rate is 
automatically reduced by half. Figures 2 and 3 show the architecture of our model and the detail of the decoder 
sub-block. We used the data enhancement tool "Albumentations" (https:// github. com/ album entat ions- team/ 
album entat ions). It is a fast training data enhancement library for OpenCV. It has a very simple and powerful 
interface that can be used for various tasks (segmentation and detection). It is easy to customize and convenient 
to add other frameworks. It can convert the data set pixel by pixel, such as blur, downsampling, Gaussian point 
making, Gaussian blur, dynamic blur, RGB conversion, random atomization, etc.; In this work. We use random 
gamma, blur, horizontal flip, normalization, and other data enhancement methods. The specific model code and 
data enhancement code have been open-source on GitHub. The network was trained using two-thirds of the 
images, in which 20% of the data were reserved for validating the training process and tuning the models, and 
the image size was adjusted to 256 * 256. Our model is trained using the Tensorflow-2.40 platform on NVIDIA 
GeForce RTX 3060 GPU with Intel CPU Core i5-11600 K@ 3.9 GHz, 32 GB RAM.

Lung segmentation in benchmark datasets (JSRT&MC). The Japanese Society of Radiological Tech-
nology creates the JSRT  dataset15 in collaboration with the JapaneseRadiological Society. It contains 247 CXRs of 
2048 × 2048 resolution. Of the 247 images, 93 are normal, and 154 are abnormal, with TB manifestations. These 
images are stored in PNG format with 2048 × 2048 pixels having 12 bits grayscale. The abnormality of images is 
graded from extremely subtle to obvious.

The Montgomery County(MC)  dataset16 is created by the Department of Health and Human Services, Mont-
gomery County, Maryland, USA. The dataset contains 138 CXR images, including 80 healthy cases and the 
remaining 58 are cases of tuberculosis. They can also be made available in Dicomformat upon request. The size 
of the X-rays is either 4020 × 4892 pixels.

Figure 4 shows the performance of our lung segmentation model in two benchmark datasets. Our model gen-
erally achieves excellent segmentation scores in dealing with two benchmark datasets (mild disease, no foreign 
body occlusion, high image quality). That shows the reliability of our dataset and model. However, since these 
two public datasets do not contain complex chest radiographs, we also need to verify the model’s ability to process 
difficult chest radiographs on Haut datasets. The Jaccard Index is an extremely important metric to evaluate our 
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Figure 2.  The architecture of U-Net with EfficientNet-b4 Encoder.
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method because it represents the rate of lung pixels correctly segmented, which is directly related to the objec-
tive of our work. Data enhancement techniques are used to generate new images to compensate for the limited 
size of the dataset. Horizontal Flip and Rotation are transformations used to create new images (Tables 1 and 2).

Method 1: U-net architecture + Efficientnet-b4 encoder.
Method 2: U-net architecture + Efficientnet-b4 encoder + LeakyReLU.
Method 3: U-net architecture + Efficientnet-b4 encoder + Residual block.
Method 4: U-net architecture + Efficientnet-b4 encoder + LeakyReLU. +Residual block.
Method 5: U-net architecture + Efficientnet-b4 encoder + two Residual blocks + LeakyReLU.
Method 6: U-net architecture + Efficientnet-b4 encoder + three Residual blocks + LeakyReLU.

Figure 3.  Encoder sub-block as shown.BN refers to Batch Normalization.

Figure 4.  The first row is the lung segmentation result in the JSRT dataset, and the second row is the 
segmentation results in the MC dataset. The ground-truth lung boundary is depicted in green, and the 
automatically segmented lung boundary by our method is presented in red color.
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Datasets used in the experiment. The NIH Chest X-ray Dataset comprises 112,120 X-ray images with 
disease labels from 30,805 unique patients. There are 15 classes (14 diseases and "No findings"). Images can be 
classified as "No findings" or one or more disease classes, showing 14 common thoracic pathologies. NIH Chest 
X-ray dataset itself does not contain lung field labels. We randomly selected 2785 samples and invited doc-
tors (Wenlian Wang and Junkui Deng from Nanyang Central Hospital) to label the image’s lung fields. We call 
this new dataset Haut. The Haut dataset contains some chest radiographs that are seriously blurred, obscured, 
and deformed. Haut dataset contains 1647 normal individuals and 1138 patients with CXR’s lung field masks, 
including 193 with Infiltration, 111 with Atelectasis, 78 with Effusion, 65 with Nodule, 54 with Mass, 43 with 
Pneumothorax, 37 with Cardiomegaly, 37 with pleural thickening, 34 with Fibrosis, 25 with Consolidation, 21 
with Emphysema,11 with Edema, 10 with Pneumonia, 2 with Hernia, and 417 with Multiple diseases (including 
any two or more diseases above). To use Efficientnet-b4, the images were downsized to 256 × 256 pixels as a pre-
processing step. The following Table 3 shows the detail of the datasets used in the experiment.

Computer graphics morphological repair. Considering that fragments (False Positive, FP) and holes 
(False Negative, FN) will appear in the lung segmentation of some CXR images, we used two optimization meth-
ods to eliminate false positives and false negatives in segmentation. For fragment (FP), we use the connected 
domain filtering algorithm. Only the two largest connected regions in the image (corresponding to the left and 

Table 1.  Lung segmentation results on the JSRT dataset (mean ± standard deviation). Significant values are in 
bold.

Accuracy (%) Specificity (%) Sensitivity (%) Dice coefficient (%) Jaccard Index (%)

Method 1 97.92 ± 0.92 97.22 ± 1.77 91.60 ± 3.60 95.22 ± 0.85 89.34 ± 1.54

Method 2 98.67 ± 0.44 98.51 ± 1.38 94.83 ± 2.80 95.97 ± 0.65 91.05 ± 1.20

Method 3 98.45 ± 0.52 98.43 ± 1.43 94.35 ± 2.54 96.50 ± 0.55 92.20 ± 1.02

Method 4 98.89 ± 0.36 98.52 ± 0.81 97.28 ± 1.06 97.23 ± 0.16 94.68 ± 0.30

Method 5 98.55 ± 0.29 98.56 ± 0.44 98.40 ± 0.87 97.92 ± 0.14 95.73 ± 0.27

Method 6 98.55 ± 0.28 98.55 ± 0.44 98.38 ± 0.88 97.90 ± 0.13 95.70 ± 0.26

Table 2.  Lung segmentation results on the MC dataset (mean ± standard deviation). Significant values are in 
bold.

Accuracy (%) Specificity (%) Sensitivity (%) Dice Coefficient (%) Jaccard Index (%)

Method 1 97.71 ± 0.95 96.98 ± 1.56 91.53 ± 3.71 95.29 ± 0.72 89.69 ± 1.31

Method 2 97.67 ± 0.44 97.51 ± 1.38 94.53 ± 3.29 95.82 ± 0.60 90.84 ± 1.10

Method 3 98.25 ± 0.41 98.45 ± 1.26 94.35 ± 2.48 96.16 ± 0.43 91.82 ± 0.79

Method 4 98.76 ± 0.47 98.22 ± 0.93 97.28 ± 1.22 97.38 ± 0.19 94.56 ± 0.32

Method 5 98.94 ± 0.33 99.33 ± 0.25 97.52 ± 0.95 97.82 ± 0.19 95.55 ± 0.28

Method 6 98.96 ± 0.37 99.30 ± 0.27 97.50 ± 0.87 97.83 ± 0.18 95.53 ± 0.27

Table 3.  Three lung segmentation datasets were used in this experiment.

JSRT MC Haut (private dataset)

Healthy cases 93 80 1647

Unhealthy cases Lung nodules:154 Tuberculosis:58

Multiplediseases:417
Infiltration:193
Atelectasis:111
Effusion:78
Nodule:65
Mass:54
Pneumothorax:43
Cardiomegaly:37
PleuralThickening:37
Fibrosis:34
Consolidation :25
Emphysema:21
Edema:11
Pneumonia:10
Hernia:2

Total 247 138 2785
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right lungs of the human body) are retained, and small fragments are filtered out. For holes (FN), we use the 
flood filling algorithm to repair them. The following Fig. 5 shows the specific functions of these two algorithms.

Lung segmentation in complex case (Haut). Our Haut dataset contains more complex and diverse 
CXR images than the two benchmark datasets. Our dataset segmentation model has achieved excellent results 
on two benchmark datasets through the above comparison. Figures 6 and 7 show the performance of our lung 

Figure 5.  The connected domain filtering algorithm and flood filling algorithm.

Figure 6.  As shown in the figure above, we comprehensively evaluated the Haut dataset. Green represents the 
real lung field and red represents the lung field predicted by the model. The first line belongs to healthy or mild 
symptoms, and the effect of lung segmentation is very good. The second line is that foreign bodies (various 
medical devices) block the lung field, and the segmentation effect is relatively poor.

Figure 7.  The above is the result of lung segmentation in severe disease (blurred lung area caused by disease) 
and distorted lung. In those cases, the lung segmentation score is the lowest. The ground-truth lung boundary is 
depicted in green, and the automatically segmented lung boundary by our method is presented in red color.
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segmentation model in CXR images under different conditions, including clear lung field, fuzzy lung field, lung 
field blocked by foreign bodies, and lung field with segmentation failure.

Metrics. Following are the five segmentation performance metrics we use: accuracy, sensitivity, specificity, 
dicecoefficient, and Jaccard Index. Semantic segmentation can be regarded as pixel-level classification. True 
Positive (TP): the model prediction is a positive example, which is a positive example. False Positive (FP): the 
model prediction is a positive example, but it is a negative example. False Negative (FN): the model prediction 
is a counterexample, but it is a positive example. True Negative (TN): the model prediction is a counterexample, 
it is a counterexample.

Ethics statement. The study was approved by the Ethics Committee of the Henan University of Technol-
ogy, all methods were carried out by relevant guidelines and regulations. Informed consent was obtained from all 
subjects and/or their legal guardian(s) and informed consent to publish was obtained from the doctors involved.

Results
Ablations of the encoder and decoder sub-block approach on the JSRT, MC, and Haut are reported in Tables 1, 
2,  and 4. Tables 1, 2,  and 4 list the accuracy, specificity, sensitivity, Dice coefficient, and Jaccard index for dif-
ferent methods on JSRT, MC, and Haut. From these results, it can be seen that our method 5(U-net architec-
ture + Efficientnet-b4 encoder + two Residual blocks + LeakyReLU) has a higher mean value and lower standard 
deviation. Table 5 lists the mean Jaccard index of our method for lung segmentation in CXR images with different 
cases. Table 6 shows the research on lung segmentation by scholars in recent years and the results of this experi-
ment. In general, the performance of our lung segmentation network is comparable to that of the excellent lung 
segmentation network proposed in the literature in recent years. That also encourages us to use the network to 
evaluate the lung segmentation performance of the Haut dataset.

Comparison with other scholars. For the JSRT dataset, our model with a pre-trained Efficientnet-b4 
base network achieved the accuracy of 98.5%, 98.5% of specificity, 98.4% of sensitivity, 97.9% of Dice coefficient, 
and 95.8% of the Jaccard Index using improved U-Net. Our model got an accuracy of 98.9%, 99.3% of specificity, 
97.5% sensitivity, 97.7% dice coefficient, and 95.5% Jaccard index for the MC dataset. U-Net with a pre-trained 
Efficientnet-b4 base network provides advanced performance on the public datasets. Our model with a pre-
trained Efficientnet-b4 network obtained an accuracy of 99.4% on the Haut dataset with 99.5% of specificity, 
99.1% of sensitivity, 98.8% of dice coefficient, and 97.7% of Jaccard index with pre-trained Efficientnet-b4 base 
network, which is very encouraging and establishes the efficiency of our method. It also proves the effectiveness 
of our lung segmentation framework.

(6)Accuracy =
TP + TN

TP + TN + FP + FN

(7)Specificity =
TN

TN + FP

(8)Sensitivity =
TP

TP + FN

(9)Dice =
2TP

2TP + FP + FN

(10)Jaccard Index =
TP

TP + FP + FN

Table 4.  Lung segmentation results on the Haut dataset (mean ± standard deviation). Significant values are in 
bold.

Accuracy (%) Specificity (%) Sensitivity (%) Dice coefficient (%) Jaccard Index (%)

Method 1 96.72 ± 1.47 98.23 ± 0.80 93.00 ± 5.50 94.92 ± 1.63 87.42 ± 2.95

Method 2 97.23 ± 0.90 97.84 ± 0.56 94.82 ± 4.65 95.30 ± 1.38 88.25 ± 2.51

Method 3 97.45 ± 1.07 98.67 ± 0.30 96.44 ± 2.35 96.41 ± 0.94 91.33 ± 1.75

Method 4 99.24 ± 0.25 99.36 ± 0.29 99.22 ± 0.40 98.32 ± 0.27 96.17 ± 0.52

Method 5 99.41 ± 0.20 99.52 ± 0.25 99.17 ± 0.37 98.84 ± 0.14 97.43 ± 0.27

Method 6 99.40 ± 0.17 99.54 ± 0.24 99.14 ± 0.35 98.80 ± 0.13 97.40 ± 0.26
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Discussion
We summarized the previous studies of scholars and found that their work needs to be supplemented by later 
scholars. Most scholars are based on the JSRT and MC datasets, which do not contain lung segmentation in 
complex cases (severe pneumonia, foreign body shielding, lung deformation, etc.) Of course, some scholars try 
to label the NIH Chest X-ray dataset for lung segmentation22. But they do not verify the segmentation perfor-
mance of the model on the benchmark dataset and do not summarize the segmentation scores of different CXR 
images. Our work complements these defects. To connect with the mainstream research on lung segmentation, 
we also did a series of experiments on JSRT and MC. In this study, we evaluated the efficacy of our model for lung 
segmentation on the JSRT, MC, and Haut datasets. Five segmentation performance indexes: Accuracy, Sensitiv-
ity, Specificity, Dice coefficient, and Jaccard index, are used to evaluate the model. We achieved excellent lung 
segmentation results. The segmentation score shows the reliability of our segmentation model. It is found that 
the transparency of the lung region, whether there is occlusion, and the shape of the lung will affect the results 
of lung segmentation to varying degrees. As shown in Fig. 7, it is difficult for the model to distinguish the lung 
region and lung boundary under the turbidity of the lung region caused by serious lung diseases. In addition, 
abnormal lung morphology is also difficult to segment. This is consistent with the results of other scholars.

The automatic lung segmentation model performs poorly in processing images of some diseases, such as 
pulmonary consolidation, lung effect, lung edema, and atelectasis. These diseases will make many exudates 

Table 5.  CXR images with different cases have different segmentation scores. Multiple diseases mean a CXR 
image with two or more diseases.

Mean Jaccard Index (%)

Healthy cases 97.86

Multiple diseases 96.52

Infiltration 97.14

Atelectasis 96.93

Effusion 96.42

Nodule 97.85

Mass 97.43

Pneumothorax 97.66

Cardiomegaly 97.70

Pleural thickening 97.85

Fibrosis 97.62

Consolidation 96.35

Emphysema 97.04

Edema 96.94

Pneumonia 97.52

Hernia 98.53

Table 6.  Comparison of results of the proposed method and recently related works. Significant values are in 
bold.

Method Dataset Accuracy (%) Specificity (%) Sensitivity (%) Dice coefficient (%) Jaccard Index (%)

CNN + Morphological 
 Optimization20 JSRT 98.5 – – 99.2 98.5

Atrous  Convolutions14 JSRT
MC – – – 98.0 on JSRT

96.4 on MC
96.1 on JSRT
94.1 on MC

Structured Edge  Detector30 JSRT
MC – – – 97.6 on JSRT

95.6 on MC
95.8 on JSRT
93.5 on MC

Encoder-Decoder  Structure24 JSRT – 99.2 95.2 96.0 –

Improved  FCN17 JSRT
MC

98.9 on JSRT
97.4 on MC – – – 95.8 on JSRT

91.7 on MC

Improved  SegNet18 JSRT 98.7 – – – 95.1

U-Net21 JSRT
MC

97.1 on JSRT
97.7 on MC

98.0 on JSRT
98.5 on MC

95.1 on JSRT
95.4 on MC

95.1 on JSRT
95.1 on MC –

AlexNetand  ResNet23 MC 96.9 96.7 97.5 94.0 88.0

Y. M. et al.31 JSRT
MC – 98.8 onJSRT

99.2 on MC
97.9 on JSRT
98.1 onMC

97.6 on JSRT
97.9 on MC

95.3 on JSRT
95.9 on MC

Our method
JSRT 98.5 98.5 98.4 97.9 95.8

MC 98.9 99.3 97.5 97.7 95.5
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(tissue fluid, fibrin, etc.) fill the alveolar cavity and pleural cavity, resulting in lung densification and turbidity. It 
seriously affects the texture of the lung region in CXR images, so the automatic lung segmentation model may 
misinterpret these textures.

In addition, the automatic lung segmentation model is poor in dealing with severe lung deformation caused 
by congenital or acquired factors. Singh et al.32 recently published their lung segmentation study. Their scores 
far exceed those of previous scholars. But their data is absurd. Generally speaking, the Jaccard index is smaller 
than the Dice coefficient. But their result is just the opposite, which is very suspicious. So we didn’t compare 
their experimental data.

Conclusion
This paper proposes an accurate and robust automatic lung segmentation method based on U-Net architecture. 
This method uses the pre-trained Efficientnet-b4 as the encoder and uses the residual block and LeakyReLU to 
optimize the decoder. Our method achieves 95.8% and 95.5% Jaccard Index on JSRT and MC datasets, respec-
tively. The accuracy is comparable to that obtained in the advanced literature in recent years. Based on the NIH 
Chest X-ray dataset, we randomly chose 2785 CXR images from it and invited experienced radiologists to mark 
their lung fields manually. These 2785 CXR images can be divided into 16 kinds of different situations. We use 
the above model to evaluate the segmentation performance in the Haut dataset. Achieved 97.4% of the overall 
Jaccard Index. However, the lung segmentation scores of different diseases are different. We found that chest 
radiograph segmentation scores were higher in healthy or mild conditions. The accuracy of lung segmentation 
is relatively low when the lung field is blurred, blocked by medical equipment, and severely deformed due to 
serious diseases. We also evaluated lung segmentation of specific illnesses.
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