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Functional neuroimaging research on depression has tradition-
ally targeted neural networks associated with the psychological
aspects of depression. In this study, instead, we focus on alter-
ations of sensorimotor function in depression. We used resting-
state functional MRI data and dynamic causal modeling (DCM)
to assess the hypothesis that depression is associated with aber-
rant effective connectivity within and between key regions in the
sensorimotor hierarchy. Using hierarchical modeling of between-
subject effects in DCM with parametric empirical Bayes we first
established the architecture of effective connectivity in sensori-
motor cortices. We found that in (interoceptive and exteroceptive)
sensory cortices across participants, the backward connections are
predominantly inhibitory, whereas the forward connections are
mainly excitatory in nature. In motor cortices these parities were
reversed. With increasing depression severity, these patterns are
depreciated in exteroceptive and motor cortices and augmented
in the interoceptive cortex, an observation that speaks to depres-
sive symptomatology. We established the robustness of these
results in a leave-one-out cross-validation analysis and by repro-
ducing the main results in a follow-up dataset. Interestingly, with
(nonpharmacological) treatment, depression-associated changes
in backward and forward effective connectivity partially reverted
to group mean levels. Overall, altered effective connectivity in
sensorimotor cortices emerges as a promising and quantifiable
candidate marker of depression severity and treatment response.
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he search for the neurological bases of depression has pro-

vided many important insights, yet we are far from a compre-
hensive, translatable understanding (1-4). This warrants further
research and, possibly, new approaches.

Neuroimaging research on depression largely focuses on com-
plex affective and psychological components of depression, the
prefrontal cortex and limbic formation being two of the most
investigated brain regions (5). At the network level, apart from
the frontolimbic circuitry, default mode network (DMN), cog-
nitive control network (CCN), and corticostriatal circuits are
some of the major neurocircuits that are known to be involved
in depression (6-19).

However, depression is an embodied phenomenon and is
known to cause alterations in several sensorimotor functions.
Persons suffering from depression, for example, are known to
have reduced visual contrast sensitivity (20), impaired auditory
processing of nonspeech stimuli (21), and increased pain tol-
erance for exteroceptive stimulation (22). In addition to these
exteroceptive alterations, depression has been shown to cause
interoceptive changes like decreased pain tolerance for inte-
roceptive stimulation (22) and reduced heartbeat perception
accuracy (23). The psychomotor retardation [reduced speed,
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slow speaking rate, delayed motor initiation, body immobility,
and loss of facial expression (24)] is a prominent feature of
depression. Indeed, psychomotor retardation has been played
an important role in the descriptive characterization of depres-
sion and melancholia since their nosological inception (24-29).
Darwin (ref. 30, p. 176) described overt psychomotor symp-
toms in sad people who “no longer wish for action but remain
motionless and passive, or may occasionally rock themselves to
and fro.” In the following decades, scholars such as Emil Krae-
pelin developed the concept further and established its clinical
utility (25, 26). Among later researchers, Carl Wernicke (31),
Karl Kleist (32), and Karl Leonhard (33) contributed to our
refined understanding of psychomotor abnormalities. Last, rumi-
nation, an important feature of depression (34), has prominent
sensorimotor components.

Although there are a few neuroimaging studies of senso-
rimotor changes in depression, our understanding of sensory
and motor function of brain is undergoing a paradigm shift.
Spearheaded by predictive coding and related theoretical frame-
works, there is an emerging consensus among neuroscien-
tists that perception is not a simple bottom-up mechanism of
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progressive abstraction of sensory input (35-37). Bottom-up,
top-down, and intrinsic neuronal message passing play distinct
but crucial roles. This general idea is also applicable to motor
function [see active inference (38)]. Motivated by these insights,
we analyzed effective connectivity [spectral dynamic causal mod-
eling (39)] in resting state functional MRI data among hierarchi-
cal sensorimotor regions in unmedicated depression patients and
neurotypical individuals. For exteroceptive perception, effective
connectivity among the lateral frontal pole—one of the ter-
minal regions of sensory relays—and primary visual, auditory,
and somatosensory cortices was considered. Effective connec-
tivity between anterior and posterior insula was characterized
for interoception and between supplementary motor area and
primary motor cortex was analyzed for motor function (see
Fig. 4). Both group mean effective connectivity and connections
showing significant association with Beck depression inventory
(BDI) scores (40) (after controlling for age and sex) were identi-
fied. In a leave-one-out cross-validation (41)—using parametric
empirical Bayesian—the effect size was estimated. A subset of
participants, who either were treated with cognitive behavior
therapy (42) or neurofeedback therapy (43) or were not treated,
were scanned again a few months later, and the same analy-
sis was implemented, with the addition of treatment effect as a
covariate.

Results

The Primary Experiment.

Accuracy of DCM model estimation. The accuracy of DCM esti-
mates of effective connectivity for individual participants was
excellent. Across participants, the minimum percentages of vari-
ance explained by DCM—when fitted to the observed (cross-
spectra) data—were 73.55, 68.84, and 55.00% for left motor,
exteroceptive, and interoceptive networks, respectively. For right
hemisphere regions of interest these values were 63.2, 50.79, and
30.75%. In general, for most participants, variance explained was
80% or more.

Effective connectivity. Results are displayed in Fig. 1 and
detailed further in SI Appendix, Fig. 1.

Group mean effective connectivity. The mean effective con-
nectivity among sensorimotor regions is depicted in Fig. 1 A and
B. Among the extensive network of connections in both hemi-
spheres, the most consistent pattern emerged in the forward and
backward effective connectivity. In sensory regions (exterocep-
tive and interoceptive), backward connections were inhibitory,
whereas forward connections were excitatory (the exception is
the SSC to FP1 connection). In motor regions, the opposite was
true (backward, excitatory; forward, inhibitory).

Changes in effective connectivity with BDI scores. The connec-
tions that showed an association with BDI scores are shown in
Fig. 1 C and D. As with mean connectivity, the severity asso-
ciated changes were most consistent in (extrinsic or between
region) forward and backward connections across both hemi-
spheres. For exteroceptive and motor cortices, with increasing
BDI scores, top-down and bottom-up effective connectivity show
changes in the opposite direction with respect to group level
estimation. For example, in exteroceptive sensory regions (with
one exception, see below), bottom-up connections become more
negative, and top-down connections become more positive (i.e.,
disinhibition). In motor regions, top-down connections become
more negative and bottom-up connections become more posi-
tive. In interoceptive regions, top-down inhibitory influences are
enhanced.

Effective connectivity analysis for left auditory regions. One
notable exception to general pattern of changes in exteroceptive
sensory regions with BDI scores was found in left auditory regions.
Here top-down inhibitory and bottom-up excitatory influences
were enhanced with depression. One possible explanation is that
this effect reflects enhanced rumination and self-speech in depres-
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Fig. 1. Effective connectivity in the primary study (left and right hemi-
spheres). (A and B) Group mean effective connectivity in sensory and
motor networks. Arrow colors code nature of connections: red, excita-
tory; blue, inhibitory. (C and D) Connections showing significant association
with BDI scores in sensory and motor networks. Arrow colors code direc-
tion of connectivity changes relative to the group mean: red, increased;
blue, decreased. (E) Connections showing significant association with BDI
scores in a network composed of left thalamus, left primary auditory cortex,
Broca’s region, and left lateral frontal pole. For all panels, line thickness is
kept constant and does not code for the effect size. For the exact values
of the estimated connectivity parameters, see S/ Appendix, Fig. 1. Colors
of the planes denote position of the node in cortical hierarchy. Green
is higher than blue, and red is higher than both blue and green. SMA,
supplementary motor area; MC, primary motor cortex; FP1, lateral frontal
pole; V1, primary visual cortex; A1, primary auditory cortex; SSC, primary
somatosensory cortex; Al, anterior insula; Pl, posterior insula; Bro, Broca’s
region; Thal, left thalamus. The images were created using the tikz-network
(https://github.com/hackl/tikz-network) package in LaTeX.

sion (please note that the left auditory cortex is specialized for
speech perception). To further probe this hypothesis we imple-
mented spectral DCM analysis among left thalamus, Broca’s area,
left A1, and left FP1 regions. We found that left Al was driven
mainly by Broca’s area rather than the left thalamus (Fig. 1E). We
will return to this observation in discussion.

Cross-Validation. In a leave-one-out cross-validation, among all
six networks, the left exteroceptive network was found to pre-
dict BDI scores at a significant level of o = 0.05 (Table 1). When
individual connections were considered, three connections of
left exteroceptive network, namely, left V1 to FP1 (corr = 0.23,
P value = 0.036), left Al to SSC (corr = 0.22, P value = 0.045),
and left SSC to Al (corr = 0.23, P value = 0.03), were found to
have significant predictive power for BDI scores. Note that these
measures of effect size correspond to out-of-sample measures
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Table 1. Leave-one-out cross-validation: Results from the
primary study

Network Correlation P value
Left motor 0.1 0.198
Left exteroceptive 0.35 0.002
Left interoceptive —0.08 0.720
Right motor 0.08 0.275
Right exteroceptive —0.15 0.874
Right interoceptive 0.1 0.185

(i.e., the effect sizes one would see using effective connectivity
estimates from new participants).

The Follow-Up Experiment.

Accuracy of DCM model estimation. As in primary analyses, the
accuracy of DCM predictions for individual participants was
excellent for the follow-up study. The minimum percentages of
variance explained by DCM model estimation across participants
were 57.14, 76.90, and 73.33% for left motor, exteroceptive, and
interoceptive networks and 76.02, 68.70, and 44.06% for right
motor, exteroceptive, and interoceptive networks. For most of
the participants, variance explained was 80% or more.

Change in BDI scores. The BDI scores of participants during the
first and the second sessions are plotted in Fig. 2. As evident from
Fig. 2, for most of the participants in the treatment as well as
no treatment group, BDI scores improved with time; however,
improvement was more prominent in the treatment group. This
was also corroborated by statistical testing. The paired samples
Wilcoxon test indicated that BDI scores during the first session
were statistically significantly higher than the second session for
both groups at significance level a =0.05. However, at signifi-
cance level a =0.01, this held true only for the treatment group
(P value = 0.009491) but not for the no treatment group (P value
= 0.01176).

Effective connectivity. Results are displayed in Fig. 3 and are
further detailed in SI Appendix, Fig. 2.

Group mean effective connectivity. Overall, the main pattern
of mean effective connectivity was reproduced by the follow-up
analysis. The backward connections in exteroceptive and inte-
roceptive cortices are inhibitory, and forward connections are
excitatory. The opposite pattern was observed in bilateral motor
cortices.

Changes in effective connectivity with BDI scores. Like mean
effective connectivity, the changes in effective connectivity
between hierarchical cortical regions with increasing depression
severity follow the same pattern found in the primary analysis:
with increasing BDI scores the top-down and bottom-up mean
effective connectivity is enhanced in the interoceptive network
and is diminished in exteroceptive and motor networks.
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Changes in effective connectivity with treatment. With treat-
ment, top-down and bottom-up effective connectivity revert
toward group mean levels, i.e., in the exteroceptive network,
top-down effective connections become more inhibitory, and
bottom-up connections becomes more excitatory; whereas in the
motor network, top-down connections became more excitatory.
In the interoceptive network, no change in top-down or bottom-
up effective connectivity survived at the 95% threshold set for
the posterior probability of the estimated parameters.

Cross-validation. In a leave-one-out cross-validation, none of
the effective connections were found to predict BDI scores at a
significant level of & =0.05 (Table 2).

Discussion

Overall, the most exciting findings from our study are the aver-
age backward (top-down) and forward (bottom-up) effective
connectivity in sensory and motor cortices that showed consis-
tent patterns across hemispheres and sessions and consistent
changes with depression severity and treatment. The backward
effective connections in exteroceptive and interoceptive sensory
networks were predominantly inhibitory in nature, while for-
ward connections were predominantly excitatory (except SSC to
FP1 connections in the primary experiment). The opposite pat-
tern was observed in bilateral motor networks. With increased
depression scores, this pattern is weakened in exteroceptive and
motor networks and is strengthened in the interoceptive net-
work. Interestingly, with treatment, a partial recovery toward the
group average was observed. In leave-one-out cross-validation
analysis, connections in left exteroceptive networks were found
to have sufficiently large effect size to predict whether somebody
has a high or a low BDI score.

There is a growing recognition that the depression is associ-
ated with dysfunction of distributed brain networks rather than
of individual brain regions (44, 45). Four networks have been
the focus of most of the published research in this area: the
affective network (AN), reward network (RN), DMN, and CCN.
Hyperconnectivity among the regions of AN (12, 14) and DMN
(6, 10, 13, 16, 46) has been consistently reported in depression.
Enhanced resting state functional connectivity in AN and DMN
has been postulated to be associated with negative affectivity and
maladaptive rumination in depression patients. Hypoconnectiv-
ity in RN (7, 17, 18) and CCN (9, 11, 47) has been another
consistent finding in depression (but also see refs. 8, 48 for diver-
gent findings). Anhedonia and ineffective cognitive control over
emotional processing seen in depression have been attributed
to diminished interactions among the regions of RN and CCN,
respectively.

As evident from above, the affective and psychological compo-
nents of depression have been the prime focus of neurobiological
research on depression. Yet, several sensorimotor interventions

B Treatment Group

40

w
o

BDI Score
S

First Second
Session

First Second
Session

Fig. 2. Violin plots of the BDI scores in (A) no treatment and (B) treatment groups across sessions. A violin plot is a box plot with the width of the box

proportional to the estimated density of the observed data.
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Fig. 3. Effective connectivity in the follow-up study (left and right hemi-
spheres). (A and B) Group mean effective connectivity. Arrow colors code
nature of connections: red, excitatory; blue, inhibitory. (C and D) Connec-
tions showing significant association with BDI scores. Arrow colors code
direction of connectivity changes relative to the group mean: red, increased;
blue, decreased. (E and F) Connections showing significant association with
treatment (treatment vs. no treatment). Arrow colors code direction of
connectivity changes relative to the group mean: red, increased; blue,
decreased. For all panels, line thickness is kept constant and does not code
for the effect size. For the exact values of the estimated connectivity param-
eters, see S/ Appendix, Fig. 2. Colors of the planes denote position of the
node in cortical hierarchy. Green is higher than blue, and red is higher
than both blue and green. The images were created using the tikz-network
(https://github.com/hackl/tikz-network) package in LaTeX.

including light, music, tone, and physical exercise are well known
to modulate mood and depressive symptoms (49). Association
of depression with visual (50, 51) or hearing impairment (52-54)
is also well established. Depression, in turn, gives rise to several
sensorimotor alterations. Some of them, for instance, psychomo-
tor retardation or agitation and feelings of fatigue, are part of the
diagnostic criteria for depression (55). Besides, there is a reper-
toire of subjective feelings that depressed patients experience.
These include pain in several parts of the body, chest discom-
fort, feeling cold or nauseous, heaviness of limbs, and feeling
of emptiness, to mention a few (56). These feelings change the
subjective experience of one’s own body and one’s sense of
relatedness with the world outside.

There are only a few neuroimaging studies that independently
examined functional connectivity in sensory and motor networks
as biomarkers for depression. Among them, one recent study
(57) found reduced within- and between-network functional con-
nectivity in auditory and visual networks associated with depres-
sion. In another study, Kang et al. (58) demonstrated that the
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primary somatosensory area—thalamic functional connectivity is
abnormal in major depressive disorder. Moreno-Ortega et al.
(59) showed that including resting state functional connectivity
within the visual network in the analysis greatly increases the
predictive power for the treatment response to electroconvulsive
therapy in depression compared to the model consisting of only
AN and DMN.

However, our understanding of neuronal mechanisms under-
lying sensory perception is going through a major shift. There is
an emerging consensus that perception is not a passive bottom-
up mechanism of progressive abstraction from sensory input, and
both bottom-up and top-down connectivity between hierarchi-
cally organized brain regions play crucial roles in perception.
This recognition has led to several theoretical frameworks high-
lighting the importance of top-down information flow in the
context of sensory perception. The most prominent of them—
predictive coding (35-37)—has also been extended to motor
function [see active inference (38)]. These insights motivated
us to analyze effective connectivity among hierarchical brain
regions in sensory and motor cortices. In contrast to data-driven
approaches (e.g., functional connectivity analyses) mentioned
above, ours is a model-based approach informed by theoretical
frameworks and empirical knowledge of functional architectures.
In motor regions we chose primary motor area and supplemen-
tary motor area. The latter is responsible for planning complex
movements of the contralateral extremities and is posited to
occupy a higher level of hierarchy in the motor system. Sim-
ilarly, in interoceptive cortex we chose posterior and anterior
insula based on the known role of the insula in interoception
and a posterior to anterior hierarchical organization in the insula
(60, 61). For exteroception, we selected three primary sensory
cortices, visual, auditory, and somatosensory, and the lateral
frontal pole—the terminal relay station for exteroceptive sensory
information (62, 63).

A consistent and intriguing finding from our study is top-down
inhibitory and bottom-up excitatory average effective connectiv-
ity in sensory cortices, a pattern that reverses in motor cortices.
The pattern in sensory cortices is consistent with the role of
top-down predictions explaining away prediction errors at lower
levels, via interactions with inhibitory interneurons in canonical
microcircuits (as proposed by the predictive coding framework).
In other words, although long-range connections in the brain are
excitatory (i.e., glutamatergic), backward connections may pref-
erentially target inhibitory interneurons in superficial and deep
layers to evince an overall decrease in neuronal message pass-
ing. In predictive coding, this is often read as explaining away
prediction errors at lower levels in sensory cortical hierarchies
(64). However, the completely opposite pattern was observed
in the motor network. Descending excitatory connections in the
motor system may reflect one of two things. First, it could be
a reflection of the fact that ascending prediction errors in the
executive motor system may play a small role because these pre-
diction errors are thought to be resolved through cortical spinal
reflexes, i.e., through action (38). Put simply, in sensory hierar-
chies, exteroceptive prediction errors are caused by bottom-up

Table 2. Leave-one-out cross-validation: Results from the
follow-up study

Network Correlation P value
Left motor —0.19 0.812
Left exteroceptive 0.09 0.665
Left interoceptive 0.17 0.211
Right motor 0.15 0.237
Right exteroceptive —0.02 0.540
Right interoceptive —0.17 0.795
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sensory input, which are resolved by (inhibitory) top-down pre-
dictions. Conversely, in motor hierarchies, prediction errors are
generated by (excitatory) top-down proprioceptive predictions,
which are resolved by motor reflexes at the level of the spinal
cord. An alternative explanation is that descending predictions
include predictions of precision that may mediate things like
attention and sensory attenuation (65-67). In this instance, there
can be an explaining away of certain prediction errors, while
the precision may be increased, resulting in an overall excita-
tory drive. In other words, some descending predictions may be
of proprioceptive gain that mediates the selection of intended
movements. In this context it is noteworthy that descending pre-
dictions of precision play an important role in active inference
accounts of psychiatric conditions, in which the synaptic patho-
physiology and psychopathology can be accounted for by a failure
of sensory attenuation, namely, the attenuation or suspension
of the precision of sensory prediction errors. This failure of
attention and attenuation has been used to explain several con-
ditions, including autism, schizophrenia, Parkinson’s disease, and
depression (68-72). The current results are particularly prescient
in relation to formulations of depression and mood disorder in
terms of active inference, namely, how actions are selected by
inferring what to do next. Clark et al. (71) review the evidence
for depression as a computational pathology in the propriocep-
tive and interoceptive (behavioral and autonomic) domain. They
conclude “emotional states reflect the precision associated with
neurobiological predictions over interoceptive states” (p. 2282).
The current results are consistent with this formulation but draw
special attention to proprioceptive predictions in the sensorimo-
tor system. In this setting, the attenuation of descending effec-
tive connectivity—to the executive motor cortex with increasing
depression severity—is consistent with a failure to deploy senso-
rimotor precision appropriately during action selection. In turn,
this is consistent with a failure to form precise (subpersonal)
beliefs about what to do next, at higher levels in the sensorimo-
tor hierarchy. An extreme example of the ensuing psychomotor
poverty may be the bradykinesia of Parkinson’s disease, which
has a clear neuromodulatory (dopaminergic) etiology. Please see
ref. 73 for further discussion.

In line with the marked consistency of the patterns of aver-
age effective connectivity—across hemispheres and sessions—
the changes in effective connectivity with depression severity
were also conserved across sessions and corroborate well with
depressive symptomatology. Instead of categorically dividing
participants into patients and neurotypical subjects, we exam-
ined (across participants) variation of effective connectivity with
depression severity as assessed by the BDI. This leverages the
heterogeneity within each group that might contain useful clin-
ical information (74). With increasing depression severity, the
patterns found in top-down and bottom-up connections at the
group level are weakened in exteroceptive (except the left audi-
tory cortex; see below) and motor cortices and strengthened
in the interoceptive cortex. Depreciation in exteroceptive net-
works is in line with the reduced visual contrast sensitivity (20)
and impaired auditory processing of nonspeech stimuli (21).
Psychomotor poverty or retardation is a prominent feature of
depression (24) that might well be reflected in the weakening
of motor network effective connectivity. The enhancement in
the interoceptive network is consistent with increased interocep-
tive (e.g., pain) sensitivity (22) in depression. On the contrary,
a few studies reported a subtle but nonsignificant association of
depression with decreased interoceptive awareness like reduced
heartbeat perception accuracy (75, 76). However, small sam-
ple sizes and/or inclusion of individuals with mild or comorbid
presentations of depression may undermine this claim (77, 78).
Moreover, Pollatos et al. (23) found that a negative relationship
between depression and heartbeat perception accuracy is only
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present in those with relatively higher trait anxiety. Thus, it might
reflect an interaction of anxiety with depression. Furthermore,
Dunn et al. (79) found that heartbeat perception accuracy was
affected in mild depression but, paradoxically, was not affected
in more severely depressed group, thus further complicating the
association.

One notable exception—to the general pattern of changes
in effective connectivity within the exteroceptive network with
BDI scores—was found in left auditory regions. Here top-down
inhibitory and bottom-up excitatory influences were enhanced
with depression. One possible explanation is that this reflects
enhanced rumination and self-speech in depression, noting that
left auditory cortex is specialized for speech perception (80).
Rumination is implicated in the development, severity, and main-
tenance of depression and other psychiatric disorders (81-83).
Given the central role of rumination in depression, it has been
considered a key target in modern cognitive and behavioral ther-
apies (84). One of the most salient features of rumination is that it
is mostly expressed in a verbal modality (85-87). In other words,
while ruminating, we are mostly talking to ourselves silently. Thus,
enhancement of effective connectivity within auditory network,
with increasing BDI scores, might reflect depressive rumination
during the acquisition of resting-state scans. To further probe this
hypothesis we implemented spectral DCM effective connectivity
analysis among the left thalamus, Broca’s area, left Al, and left
FP1 regions. Broca’s area, also known as the left inferior frontal
gyrus, is involved in production of both outer and inner speech
(e.g., ref. 88). We hypothesized that if the change in the pattern of
effective connectivity with increasing depression severity is associ-
ated with rumination, the left auditory area (A1) would be driven
mainly by Broca’s area. Conversely, if it reflects some form of
aberrant sensory processing, the left thalamus will be the main
driver of the left A1 (89). DCM analysis demonstrated that with
increasing BDI score, effective connectivity from the left Broca’s
area to the left Al becomes more excitatory, but there is no sig-
nificant change in effective connectivity from the left thalamus
to the left A1, thus providing an indirect support for the rumina-
tion hypothesis. It is noteworthy here that a previously published
report of the same data found that the independent component—
representing the left auditory network—also included the insular
cortex in the depression group but not in the healthy participants.
Based on several lesion (90-94) and neuroimaging (95, 96) stud-
ies, the left insula has been proposed as a brain region involved
in motor control of speech production including prearticulatory
motor responses (97-99). This lends further support to depressive
rumination conjecture.

The model comparison discussed above furnishes clear evi-
dence for changes in a number of extrinsic (between-region)
and intrinsic (within-region) connections that underwrite depres-
sion, as scored with the BDI. One might ask whether these
changes can be used diagnostically in individual patients. In other
words, are the underlying effect sizes sufficiently large to predict
whether somebody has a high or a low BDI score? This ques-
tion goes beyond whether there is evidence for an association and
addresses the utility of connectivity phenotyping for personalized
medicine. One can address this using out-of-sample estimates of
the effect size using cross-validation under a parametric empiri-
cal Bayesian scheme (41). In other words, one can establish the
predictive validity by withholding a particular subject and ask
whether one could have predicted the BDI score given the effec-
tive connectivity estimates from that subject. This question can
be posed at the level of a single connection or sets of connec-
tions. For example, when looking at single connections, three
connections in the left hemisphere all showed a significant out-
of-sample correlation with BDI score. This suggests that a non-
trivial amount of variance in the BDI score could be explained
by effective connectivity. This variance explained increased
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when considering the left exteroceptive network, attaining a
correlation coefficient of 0.35 or an R-squared of about 10%
(which was extremely significant P < 0.001). Although relatively
small from a psychological perspective, this is almost an order
of magnitude greater than the variance can be explained by
genomic phenotypes (100, 101).

Clinicopathological significance of effective connectivity in
sensory and motor cortices is further supported by the DCM
analysis of treatment-associated changes in connectivity in the
follow up study. Several top-down and bottom-up connections
in bilateral exteroceptive and motor cortices were found to be
associated with treatment. More importantly, the parity of these
connections is opposite to the connections showing an associa-
tion with depression severity, suggesting a prognostic relevance
of these connectivity measures. Remarkably, none of the feedfor-
ward or feedback connections in the interoceptive cortex were
found to be associated with treatment, but the clinical signifi-
cance of this finding is unknown. Taken together, the patterned
alterations in bidirectional connectivity with BDI scores and
treatment offer a strong case for effective connectivity in sensory
and motor cortices as a biomarker for depression.

Regarding the computational method used in the current
work, DCM was introduced originally to model neuronal
responses to external perturbation (e.g., sensory stimulation
or task demands). DCM for resting state functional MRI
(fMRI) was subsequently introduced in a stochastic DCM (102).
Stochastic DCMs differ from deterministic DCMs by allowing
for physiological noise due to endogenous stochastic fluctua-
tions in neuronal and vascular responses, known technically
as system or state noise. The opportunity to model endoge-
nous (autonomous) fluctuations opened the door to identify
the functional architectures (effective connectivity) subtending
endogenous fluctuations observed in resting-state studies. A
more efficient approach for resting-state data was subsequently
introduced which is based on fitting observed complex fMRI
cross-spectra (39) (for more details, see Materials and Methods).
This latter approach, known as spectral DCM, was employed in
the present study.

Findings from the current study should be appreciated within
the context of certain limitations. Although our study sample was
modestly large for neuroimaging measures—and we undertook
steps like cross-validation and replication of the main results
to ensure the generalizability of our findings—replication in an
independent sample would be an important next step. Second,
in the context of connectivity analysis, there are several potential
confounding factors other than age and sex of the participants
that we have not controlled for. For example, level of anxiety in
individuals could affect top-down information flow in the brain
(103). Anxiety is also a common comorbidity found in depres-
sion patients (104). None of our participants reported that they
were diagnosed with anxiety disorders. However, the presence of
subclinical anxiety was not ruled out or controlled for. We will
consider testing for the association of anxiety with effective con-
nectivity in sensory and motor networks in a companion paper.
A third limitation of our study is that the analysis relied solely
on BDI scores of depression. There are a large number of rat-
ing scales for assessing depression severity: some are observer
rating scales, for example, the Hamilton depression rating scale
and the Montgomery-Asberg depression rating scale, whereas
others are self-rating scales (for example, BDI). Each scale has
its own advantages and limitations (105). Thus, the present neu-
roimaging findings could be further validated with a combination
of observer rating scales and objective behavioral measures of
depression (e.g., ref. 106).

In summary, our results advance our mechanistic under-
standing of depression pathophysiology. Traditional accounts of
depression (e.g., Beck’s (107) cognitive model) have neglected
bodily symptoms (79). The present work reestablishes depres-
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sion as an embodied phenomenon by demonstrating that effective
connectivity in sensory and motor cortices affords a promising
neural signature of depression. It also establishes the generaliz-
ability and predictive validity of this marker and may portend an
avenue of research into the neural underpinnings and therapeutic
interventions of depression and other mental health conditions.

Materials and Methods

Participant Characteristics. Fifty-one adult patients (mean age 32.78 y, SD
8.89, 38 females, 13 males) with a diagnosis of mild depressive episode or
moderate depressive episode according to International Classification of Dis-
eases, Tenth Revision (108) and 21 adult individuals (mean age 33.8 y, SD
8.5, 15 females, 8 males) with no history of neurological or psychiatric ill-
ness participated. Depressed participants were either referred by a qualified
psychiatrist or invited through advertisement in a popular local newspaper
and then assessed by the same psychiatrist. Inclusion criterion were first
diagnosed mild or moderate depressive episode and age between 18 and
55 y. Exclusion criteria were previous depressive episodes, bipolar depres-
sion, seasonal depression, depression secondary to other psychiatric or
somatic condition, serious risk of suicide, serious neurological and psy-
chiatric comorbidities, alcohol or other substance abuse or dependence,
lifetime history of psychotic disorders, contraindications to MRI, extremely
impaired vision, 1Q score below 70, any psychotropic medication (including
antidepressants), and any medication altering blood pressure (that could
influence fMRI signal). Healthy participants were volunteers recruited by
word of mouth or via advertisement in social networks. Inclusion and exclu-
sion criteria for healthy volunteers were the same, except for the presence
of depressive episodes. The depressed and neurotypical participants did not
differ in level of intelligence (mean [SD] Raven'’s progressive matrices test
score: for neurotypicals, 105.9 [16.5]; for depression patients, 103.7 [14.6]).
All participants gave informed consent in accordance with the Declaration
of Helsinki. The ethical review board of Research Institute of Molecular
Biology and Biophysics approved the study. BDI evaluation could not be
done on four patients and three neurotypical participants. Consequently,
65 participants were included in the final analysis.

Twenty-nine depression patients from the primary study were included
in the follow-up study (gap between two sessions, minimum 56 d, maxi-
mum 234 d). Among them, 15 individuals received no treatment, 8 received
cognitive behavioral therapy, and 6 received neurofeedback therapy. BDI
scores could not be retrieved for 1 participant during the first scan and for
4 participants during the second scan, and subsequently, 24 participants
were included in the final analysis. We checked for systemic differences
between participants who attended both the sessions and who dropped
out. A Mann-Whitney test failed to show between-group differences in age,
1Q, and emotional variables at a significance level of 0.05. At the same signif-
icance level, the x? analyses failed to show significant differences between
two groups in terms of sex ratio and mild/moderate depression ratio.

Interoception

Fig. 4. Regions of interest for (A) motor, (B) exteroceptive, and (C) inte-
roceptive networks. The images were created using the MRIcroGL (https:/
www.nitrc.org/projects/mricrogl/) program.
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It is noteworthy that here data from a subset of participants from the
present study have been published (46, 109, 110). However, those works
mainly employed a data-driven approach based on independent compo-
nent analysis decomposition of the whole-brain data and correlation-based
(undirected) functional connectivity analysis unlike the current study that
tests a specific hypothesis by investigating (directed) effective connectivity
in functionally characterized brain regions.

Brain MRI Acquisition. The fMRI acquisition was carried out in the Interna-
tional Tomography Center, Novosibirsk. Imaging data were acquired with
an Ingenia (Philips) 3T scanner using a 32-channel dStream HeadSpine coil
(digital). The structural and functional images had the following parame-
ters: structural MRI, T1 3D TFE, field of view 250 x 250 x 280 mm?3, TR/TE =
7.5/3.7 ms, flip angle = 8°, and voxel size 1 x 1x 1 mm?3; fMRI, T2* single-
shot SPIR EPI, field of view 220 x 220 mm?, TR/TE = 2,500/35 ms, flip
angle = 90°, and voxel size 2 x 2 x 5 mm?3, 25 slices.

During the resting state sequence (duration is 4 min each), participants
were instructed to lie still and motionless in the scanner with their eyes
closed while letting their mind wander.

Preprocessing. The preprocessing and statistical analysis of fMRI data were
executed with the SPM12 v7771 toolbox (Statistical Parametric Mapping,
https://www.fil.ion.ucl.ac.uk/spm). The initial five scans were discarded to
allow the magnetization to stabilize to a steady state. Prior to statistical analy-
sis, images were slice-time corrected, realigned with the mean image, motion
corrected, coregistered with the corresponding T1-weighted images, normal-
ized to a Montreal Neurological Institute (https:/www.mcgill.ca) reference
template, and resampledto 4 x 4 x 5mm?3. During motion correction, second-
degree B-Spline interpolation was used for estimation, and fourth-degree
B-Spline was used for reslicing. Coregistration used mutual information objec-
tive function, while normalization used fourth-degree B-Spline interpolation.
Images were smoothed with a full-width at half-maximum Gaussian kernel
4 x 4 x 10 mm? and further denoised by regressing out several nuisance
signals, including the Friston-24 head motion parameters and signals from
cerebrospinal fluid and white matter. Temporal high-pass filtering above
1/128 Hz was employed to remove low-frequency drifts caused by physiolog-
ical and physical (scanner-related) noises.Spectral Dynamic Causal Modeling
and Parametric Empirical Bayes.

The spectral DCM approach using DCM12.5 as implemented in SPM12
v7771 (https://www.fil.ion.ucl.ac.uk/spm) was used to estimate the effective
connectivity within each network. DCM is Bayesian framework that infers
the causal architecture of distributed neuronal systems from the observ-
able blood-oxygen-level-dependent (BOLD) activity recorded in fMRI. It is
primarily based on two equations. First, the neuronal state equation models
the change of a neuronal state vector in time, depending on modulation
of connectivity within a distributed system and experimental perturbations.
Second, an empirically validated hemodynamic model describes the trans-
formation of neuronal state into a BOLD response. For task fMRI, external
stimuli usually form the external perturbation component. For resting-state
fMRI, in the absence of external stimuli, a stochastic component capturing
neural fluctuations is included in the model, and the neural state equation
can be represented as

x(t) =1 (x(t), 0)+ v(t), 1

where x is the rate of change of the neuronal states x, 6 represents unknown
parameters (i.e., intrinsic effective connectivity), and v(t) is the stochastic
process modeling the random neuronal fluctuations that drive the resting-
state activity. The observation equation could be written as

y() =h (x(2), ¢)+ e(t). [2]

Here y(t) is the observed BOLD activity, ¢ are the unknown parameters of
the (hemodynamic) observation function, and e(t) is the stochastic process
representing the measurement or observation noise.

Spectral DCM offers a computationally efficient inversion of the stochas-
tic model for resting state fMRI. Spectral DCM simplifies the generative
model by replacing the original BOLD time series with their second-order
statistics (i.e., cross-spectra). This allows circumventing estimation of time
varying fluctuations in neuronal states by estimating their covariance, which
is time invariant. In other words, the problem of estimating hidden neu-
ronal states disappears and is replaced by the problem of estimating their
correlation functions of time or spectral densities over frequencies (and
observation noise) where a scale-free (power law) form is used [motivated
from previous works on noise in fMRI (111) and underlying neuronal activity
(112, 113)] as follows:
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Here {o, B} C 0 are the parameters controlling the amplitudes and expo-
nents of the spectral density of the neural fluctuations. Finally, stan-
dard Bayesian model inversion (i.e., variational Laplace) is used to infer
the parameters of the models from the observed signal. A detailed
mathematical treatment of spectral DCM can be found in refs. 39 and 114.

Time series for DCM analysis were extracted for each region of interest
by taking the first principal components of the time series from all vox-
els included in the masks for that region. Masks were defined according to
the SPM Anatomy toolbox (115). The regions of interest for each network
are depicted in Fig. 4. We also adjusted data for effects of interest, thus
effectively mean-correcting the time series.

At the first level, fully connected models (i.e., between all nodes plus self-
loops) were estimated for each subject individually, separately for bilateral
exteroceptive, interoceptive, and motor networks.

A basic diagnostic of the success of model inversion is to look at the aver-
age percentage of variance explained by DCM model estimation when fitted
to the observed (cross-spectra) data. We implemented this diagnostic test
across participants.

At the second (group) level, we used parametric empirical Bayes—
a between-subjects hierarchical Bayesian model over parameters—which
models how individual (within-subject) connections relate to different
between-subjects effects (41, 116). Unlike a classical test (e.g., t test), it
uses the full posterior density over the parameters from each subject’s
DCM—both the expected strength of each connection and the associated
uncertainty (i.e., posterior covariance)—to inform the group-level result.
The group mean, by default, is the first regressor or covariate. In the pri-
mary study, BDI scores, age, and sex are the next three regressors. Age
and BDI scores were mean-centered (across all subjects) to enable the first
regressor to be interpretable as the mean. In the follow-up study, treatment
(treatment received vs. not treated) was included as the fifth regressor. To
evaluate how regions in the network of interest interact, we used Bayesian
model comparison to explore the space of possible hypotheses (or models).
Candidate models were obtained by removing one or more connections
to produce nested or reduced forms of the full model. As there is a large
number of possible nested models in the model space, the search algorithm
used Bayesian model reduction (BMR) (41) that enables an efficient (greedy)
search of the model space. BMR prunes connection parameters from the full
model and scores each reduced model based on the log model evidence or
free energy. The process continues until there is no further improvement
in model evidence. The parameters of the selected models from this search
procedure were then averaged, weighted by their model evidence (Bayesian
model averaging) (117).

Leave-One-Out Validation Analysis. Finally, we tested whether the severity
of depression could be predicted based on the modulation of effective con-
nectivity. In other words, was the effect size large enough to have predictive
validity? We chose connections that survived a threshold of 95% posterior
probability (very strong evidence) in the previous analysis (primary study).
We used a leave-one-out scheme as described in ref. 41. A parametric empir-
ical Bayesian model was estimated while leaving out a subject and was used
to predict the BDI score of the left-out subject, based on the specific con-
nections chosen. The Pearson’s correlation between the predicted score and
known score was calculated.

Data Availability. Our analysis code is available on GitHub (https:/github.
com/dipanjan-neuroscience/depression2021). Imaging data are available on
OpenNeuro (118, 119).
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