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source(s) of CAP37 in brains of AD patients. Brain tissues 
from patients and age-matched controls were analyzed for 
CAP37 expression using immunohistochemistry (IHC). To 
determine factors that induce CAP37 in AD, HCN-1A pri-
mary human neurons were treated with tumor necrosis fac-
tor-alpha (TNF-α) or amyloid β1−40 (Aβ) and analyzed by 
IHC. Western blotting and quantitative reverse transcription 
polymerase chain reaction (qRT-PCR) were used to con-
firm CAP37 expression in neurons and brain tissues. IHC 
revealed CAP37 in cortical neurons in temporal and pari-
etal lobes as well as CA3 and CA4 hippocampal neurons 
in patients with AD. CAP37 was found in more neurons 
in AD patients compared with age-matched controls. qRT-
PCR and Western blotting showed an increase in CAP37 
transcript and protein in the AD temporal lobe, a brain 
region that is highly impacted in AD. qRT-PCR observa-
tions confirmed CAP37 expression in neurons. TNF-α and 
Aβ increased neuronal expression of CAP37. These find-
ings support our hypothesis that neuronal CAP37 may 
modulate the neuroinflammatory response in AD.

Keywords  Neuroinflammation · CAP37 · Alzheimer’s 
disease · Neurons · Amyloid-beta · Microglia

Abbreviations
AD	� Alzheimer’s disease
CAP37	� Cationic antimicrobial protein of 37 kDa
PMN	� Polymorphonuclear leukocyte
IHC	� Immunohistochemistry
TNF-α	� Tumor necrosis factor-alpha
Aβ	� Amyloid-beta
qRT-PCR	� Quantitative reverse transcription polymerase 

chain reaction
PKC	� Protein kinase C
LPS	� Lipopolysaccharide

Abstract  Inflammation is a well-defined factor in Alz-
heimer’s disease (AD). There is a strong need to identify 
the molecules contributing to neuroinflammation so that 
therapies can be designed to prevent immune-mediated 
neurotoxicity. The cationic antimicrobial protein of 37 kDa 
(CAP37) is an inflammatory mediator constitutively 
expressed in neutrophils (PMNs). In addition to antibi-
otic activity, CAP37 exerts immunomodulatory effects on 
microglia. We hypothesize that CAP37 mediates the neu-
roinflammation associated with AD. However, PMNs are 
not customarily associated with the pathology of AD. This 
study was therefore designed to identify non-neutrophilic 

 *	 H. Anne Pereira 
	 Anne‑Pereira@ouhsc.edu

1	 Oklahoma Center for Neuroscience, University of Oklahoma 
Health Sciences Center, 1110 N. Stonewall Ave., CPB 255, 
Oklahoma City, OK 73117, USA

2	 Department of Pharmaceutical Sciences, University 
of Oklahoma Health Sciences Center, 1110 N. Stonewall 
Ave., CPB 255, Oklahoma City, OK 73117, USA

3	 Department of Surgery, University of Oklahoma Health 
Sciences Center, 1122 NE 13th St., ORB 350, Oklahoma 
City, OK 73117, USA

4	 Department of Geriatrics, University of Oklahoma Health 
Sciences Center, 975 NE 10th St., BRC 1303, Oklahoma 
City, OK 73104, USA

5	 Department of Cell Biology, University of Oklahoma 
Health Sciences Center, 1110 N. Stonewall Ave., CPB 329, 
Oklahoma City, OK, USA

6	 Department of Pathology, University of Oklahoma Health 
Sciences Center, 1110 N. Stonewall Ave., CPB 329, 
Oklahoma City, OK 73117, USA

7	 Department of Pathology, Baylor College of Medicine, One 
Baylor Plaza, Rm 286A, Houston, TX 77030, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s00418-015-1347-x&domain=pdf


294	 Histochem Cell Biol (2015) 144:293–308

1 3

CNS	� Central nervous system
CERAD	� Consortium to establish a registry for Alzhei-

mer’s disease
DMEM	� Dulbecco’s modified Eagle’s medium
ATCC	� American type culture collection
HRP	� Horseradish peroxidase
GAPDH	� Glyceraldehyde dehydrogenase
BCA	� Bicinchoninic acid
TBST	� Tris-buffered saline with Tween
ECL	� Enhanced chemiluminescence
CA	� Cornu Ammonis
CSF	� Cerebrospinal fluid
AMP	� Antimicrobial peptide
NO	� Nitric oxide
ROS	� Reactive oxygen species

Introduction

The cationic antimicrobial protein of molecular weight 
37 kDa (CAP37) is an inflammatory mediator expressed 
constitutively in the azurophil granules of polymorpho-
nuclear neutrophils (PMNs), and is considered an impor-
tant component of the innate immune system (Pereira 
et al. 1990a; Griffith et al. 2013). Previous findings have 
shown increased CAP37 levels during inflammatory 
conditions such as sepsis and atherosclerosis (Lee et  al. 
2002; Pereira et al. 2003; Linder et al. 2009). CAP37 has 
potent antimicrobial activity (Pereira et  al. 1993, 1995, 
2006) and also exerts various regulatory functions in 
mammalian cells. Some of these functions include activa-
tion of protein kinase C (PKC) and upregulation of adhe-
sion proteins on endothelial cells and corneal epithelial 
cells; contraction of endothelial cells; proliferation of 
smooth muscle cells; corneal epithelial wound healing; 
and chemotaxis of monocytes, microglia, smooth muscle 
cells, and corneal epithelial cells (Pereira et  al. 1990a, 
2003, 2004; Gautam et  al. 2001; Gonzalez et  al. 2004; 
Griffith et al. 2014).

CAP37 is induced in corneal epithelial cells, endothe-
lial cells, and smooth muscle cells in response to cytokines, 
lipopolysaccharide (LPS), and infection (Pereira et  al. 
1996b; Lee et  al. 2002; Ruan et  al. 2002; Gonzalez et  al. 
2004). In addition, CAP37 expression has been found in 
endothelial cells of hippocampal vasculature in patients with 
Alzheimer’s disease (AD), while this expression was absent 
in age-matched controls (Pereira et al. 1996a). This finding 
is important, as the hippocampus is responsible for memory 
formation and is one of the main regions where AD pathol-
ogy first manifests (Pereira et al. 1996a). Although CAP37 
shares ~45, ~42, and ~32  % sequence homology with the 
serine proteases elastase, proteinase 3, and cathepsin G, 

respectively, CAP37 itself lacks serine protease activity due 
to the loss of 2 of 3 conserved residues of the catalytic triad 
(Pereira et al. 1990b). Elastase and proteinase-3 have been 
observed in various regions of the brain, including the hip-
pocampus, cerebellum, and cerebral cortex (Davies et  al. 
1998), and elastase has been detected in murine microglial 
cells (Nakajima et al. 1992). However, the exact cell expres-
sion profile of these other proteases in the human brain is 
unknown. Expression of human β-defensin-1, another cati-
onic antimicrobial peptide, has been reported within brain 
hippocampal astrocytes, neurons, and the choroid plexus 
and was increased in these regions in patients with AD 
(Williams et al. 2013). The role of these proteins in AD is 
unknown. However, since all are involved in innate immu-
nity and defense, their expression in brain cells raises the 
question of whether any of these proteins might have a role 
in the low-grade chronic inflammatory response that occurs 
in neurodegenerative diseases such as AD (Wilson et  al. 
2002; Heneka et  al. 2010; Hensley 2010; Grammas 2011; 
Eikelenboom et al. 2012).

A primary research focus of our laboratory is defin-
ing the mechanisms whereby CAP37 modulates neuroin-
flammation. As CAP37 is a potent activator of microglia, 
we hypothesized that CAP37 expressed within the brain 
parenchyma was one of the mediators of neuroinflamma-
tion in Alzheimer’s disease. Thus, in this study, we aimed 
to determine the CAP37 cellular expression and localiza-
tion in brains from patients with Alzheimer’s disease. Our 
results indicate that CAP37 is expressed in neutrophils, the 
vascular endothelium, and neurons in specific brain regions 
from patients with AD. CAP37 transcript and protein levels 
are increased in patients with AD, and primary neurons can 
be induced to express CAP37 in response to tumor necrosis 
factor-alpha (TNF-α) and amyloid-beta (Aβ).

Materials and methods

Tissue specimens

Tissues from nine patients diagnosed with AD and nine 
respective age-matched controls were kindly provided by 
Dr. Eileen Bigio of the Department of Pathology, North-
western University Feinberg School of Medicine, Alzhei-
mer’s Disease Center, Neuropathology Core. All patients 
and age-matched controls were characterized for AD 
pathology using the Consortium to Establish a Registry 
for Alzheimer’s Disease (CERAD) plaque grades (A–C) 
and Braak tangles stages (I–VI) to determine the approxi-
mate disease stage. All AD tissue specimens used for IHC 
were given CERAD scores of C and Braak & Braak stage 
VI for tangles. Age-matched controls were given CERAD 
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scores of A, B, or 0, and were Braak & Braak stages I–III 
or 0.

Cell culture and treatment of HCN‑1A neurons

We purchased HCN-1A, primary human cortical neuronal 
cells, from American Type Culture Collection (ATCC, 
Manassas, VA). Dulbecco’s modified Eagle’s medium 
(DMEM, ATCC) supplemented with 20  % bovine calf 
serum, 1 % antibiotic–antimycotic, and 1 % l-glutamine 
(Life Technologies, Grand Island, NY) was used to cul-
ture HCN-1A cells according to the ATCC recommen-
dations. The HCN-1A cells were used in immunohis-
tochemistry. During the course of our studies, ATCC 
discontinued the distribution of HCN-1A cells due to 
quick senescence of the cells and insufficient inventory. 
The HCN-1A cells were thus unavailable for use in other 
assays. HCN-1A cells were treated overnight (17 h) with 
either the 40 amino acid Aβ peptide (Aβ1−40, Bachem, 
Torrance, CA, stock solution in ultrapure water) at a con-
centration of 125  µg/ml or human recombinant tumor 
necrosis factor-alpha (TNF-α, Roche, Indianapolis, IN) at 
a concentration of 25 ng/ml. Control treatments included 
HCN-1A incubation with either inactive (reverse peptide 
order) Aβ peptide (Aβ40−1) (Bachem, stock solution in 
10 % acetic acid) or vehicle alone (basal medium or basal 
medium containing an equivalent volume of 10 % acetic 
acid). Aβ was diluted in basal medium and incubated for 
2  h at room temperature before administration, to allow 
the formation of toxic oligomers and fibrillar aggregates 
that are found in AD.

Antisera

We used 7 μg/ml rabbit anti-CAP37 antiserum as described 
previously (Pereira et al. 1996a), a control of 7 μg/ml nor-
mal rabbit antiserum (Jackson ImmunoResearch Labora-
tories, West Grove, PA), an in-house made mouse mono-
clonal antibody to CAP37 (D5F10), and a mouse IgG1 
isotype antibody was used as a control (Sigma-Aldrich, St. 
Louis, MO). D5F10 and the isotype control were diluted in 
Emerald antibody diluent (Cell Marque, Rocklin, CA) to a 
concentration of 4 μg/ml for IHC and were diluted in 2 % 
bovine serum albumin (BSA, Calbiochem, Billerica, MA) 
in Tris-buffered saline with 0.05 % Tween (TBST) block-
ing solution to a concentration of 0.2 μg/ml for Western 
blots. Rabbit polyclonal anti-Aβ (Cell Signaling, Danvers, 
MA) and rabbit polyclonal anti-phospho-tau (Santa Cruz, 
Dallas, TX) were diluted in Emerald antibody diluent to 
a concentration of 10 μg/ml to detect Aβ plaques and tau 
tangles, respectively. A rabbit IgG antibody was employed 
as an isotype control (Cell Signaling, Danvers, MA). We 
also used the following secondary antibodies: horseradish 

peroxidase (HRP)-conjugated donkey anti-mouse and don-
key anti-rabbit IgGs diluted in TBST to concentrations of 
0.04 μg/ml (Jackson ImmunoResearch Laboratories, West 
Grove, PA).

Immunocytochemistry

HCN-1A cells were evenly seeded into 4-well LAB-TEK 
tissue culture chambers (NUNC, Inc., Naperville, IL) and 
incubated until confluency. Cells were then treated with 
either Aβ1−40, TNF-α, or serum-free DMEM as described 
above. Following treatment, cells were fixed with formol 
acetone and stained using the Vectastain ABC peroxidase 
system (Vector Laboratories, Burlingame, CA) as previ-
ously described (Pereira et  al. 1996a). The rabbit anti-
CAP37 and normal rabbit serum were added for 17  h. 
Images of stained neurons were taken at 400X magnifica-
tion (Nikon TE2000, Nikon Instruments Inc., Melville, 
NY). Figures were created using Microsoft PowerPoint 
2010.

Immunohistochemistry

Formalin-fixed, paraffin-embedded brain tissues from 
patients with Alzheimer’s disease and age-matched con-
trols were sectioned at a thickness of 5  μm. Sections 
were incubated in antigen retrieval solution (Tris buffer, 
pH 9) for 20 min in a rice steamer, followed by a 20-min 
cool down in distilled water. Staining was performed 
using reagents from the HiDef HRP kit (Cell Marque) 
according to the manufacturer’s instructions. Tissues 
were incubated with mouse anti-CAP37 (4  μg/ml) or 
the equivalent amount of mouse IgG1 isotype control 
for 60 min. Color was developed with 3,3′-diaminoben-
zidine (Cell Marque), and sections were counterstained 
with hematoxylin (American Master Tech, Lodi, CA). 
Images were examined, and photographs were taken 
using bright-field microscopy at 400X and 1000X mag-
nifications (Nikon eclipse E200, Nikon Instruments Inc., 
Melville, NY). Figures were created using Microsoft 
PowerPoint 2010.

Quantitative RT‑PCR

Total RNA from primary human neurons and primary 
human astrocytes (Sciencell, Carlsbad, CA) and total 
RNA from temporal, frontal, and occipital lobe tissues of 
patients with AD and five donor pool normal controls (Bio-
chain, Newark, CA) were purchased from their respective 
commercial vendors. AD patients included a 73-year-old 
male (frontal lobe RNA), 77-year-old male (occipital lobe 
RNA), 80-year-old male (temporal and frontal lobe RNA), 
83-year-old male (temporal lobe RNA), 85-year-old female 
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(occipital lobe RNA), and an 87-year-old male (temporal, 
frontal, and occipital lobe RNA) for a total of six patients 
analyzed with three utilized for each brain region. Pooled 
controls were all from males with ages ranging from 20 
to 44 years. PCR-ready first-strand cDNA from peripheral 
blood leukocytes was obtained from Biochain. PCR-ready 
first-strand cDNA from human microglia was obtained 
from Sciencell. Primary neuron RNA (2  μg), primary 
astrocyte RNA (2 μg), AD patient RNA (3 μg), and nor-
mal control pooled RNA (3 μg) were converted to cDNA 
using the Qiagen RT2 First-Strand Kit (Qiagen Inc., Valen-
cia, CA) in a final volume of 111  μL according to the 
manufacturer’s instructions. Amplification of cDNA was 
performed using RT2 SYBR Green mastermix (containing 
HotStart DNA Taq Polymerase), Qiagen RT2qPCR primers 
(GAPDH: #PPH00150F, PRTN3: #PPH07029A, ELANE: 
#PPH01057A, AZU1: #PPH01031A), and Solaris prim-
ers (CTSG #AX-005838-00-0100, GAPDH# AX-005838-
00-0100), following the manufacturer’s instructions. For 
each 25-μL reaction, 1  μL of the prepared cDNA was 
mixed with 1 μL (0.4 μM) of respective primer, 12.5 μL 
of RT2 SYBR Green mastermix, and 10.5 μL of RNase-
free water. All reactions were performed in triplicate. PCRs 
were performed using the MyiQ Single Color Real-Time 
PCR Detection System (Bio-Rad, Hercules, CA) begin-
ning with a denaturation step (10 min at 95  °C) followed 
by 40 repeated cycles of annealing/extension: 15 s at 95 °C 
and 1 min at 60 °C. qRT-PCR was performed on primary 
neurons, primary microglia, primary astrocytes, and nor-
mal control pools twice and on AD patients and leuko-
cytes once. The ΔCt values were calculated to normal-
ize each gene expression to glyceraldehyde 3-phosphate 
dehydrogenase (GAPDH). To calculate fold difference in 
mRNA expression relative to GAPDH, the equation [fold 
change  =  2(−ΔCt)] was used. Figures were created using 
Prism software (GraphPad Software Inc., version 6, La 
Jolla, CA.)

Western blot analysis

Total protein lysates from the temporal lobe of one patient 
with AD (75-year-old male), from the frontal lobe of one 
patient with AD (83-year-old male), and from the tempo-
ral (26-year-old male) and frontal (71-year-old male) lobes 
of normal controls were obtained from Biochain. Accord-
ing to the vendor, all tissues were obtained 4–6  h post-
mortem and were stored in liquid nitrogen before distribu-
tion. Human astrocyte and microglia lysates were derived 
from single healthy donors and obtained from Sciencell. 
The protein concentration of each sample was provided by 
the respective vendors. The protein concentration of total 
temporal and frontal lobe lysates was verified using the 

bicinchoninic acid (BCA) assay (Pierce, Rockford, IL). 
Purified CAP37 derived from human neutrophils (Athens 
Research Technology, Athens, Georgia) was also run as a 
marker for CAP37 migration. Total lysates from human 
astrocytes, human microglia, temporal lobes, frontal lobes 
(40 μg), PMNs (50 ng), and purified CAP37 (5 ng) were 
separated by a 12.5 % SDS-PAGE gel. Proteins were trans-
ferred to a nitrocellulose membrane (Whatman, Pittsburgh, 
PA) overnight, and the membranes were blocked in 2  % 
BSA in TBST. Membranes were probed with either mouse 
monoclonal anti-CAP37 (0.2  μg/ml) or the equivalent 
amount of mouse isotype control overnight at 4 °C. Blots 
were incubated with HRP-conjugated donkey anti-mouse 
secondary antibody (0.04  μg/ml; Jackson Laboratories) 
for 1 h at room temperature. Enhanced chemiluminescence 
(ECL) substrates (Pierce, Rockford, IL) were used to 
develop all blots. ImageJ software (National Institutes of 
Health [NIH], Bethesda, MD) was used to quantify mean 
band density. Figures were created using Microsoft Pow-
erPoint 2010.

Statistical analysis

Statistical analysis was performed using Prism software. 
Student’s unpaired t tests were used to analyze the AZU1, 
ELANE, and PRTN3 mRNA expressions of individual 
patients with AD relative to the normal control pools. The 
mRNA expression values were calculated as described in 
the above methods and are represented as mean ±  SEM, 
and p < 0.05 was considered statistically significant.

Results

Both parietal and temporal lobes from AD patients 
express CAP37

CAP37 expression in the endothelial cells lining vessels 
of the hippocampus in patients with AD has been pre-
viously demonstrated (Pereira et  al. 1996a). However, 
whether CAP37 was also expressed in additional brain 
regions from AD patients has not been studied. There-
fore, parietal and temporal lobe tissues from patients 
with AD (n = 9) or age-matched normal controls (n = 9) 
were evaluated for CAP37 expression. Performing IHC 
using a novel monoclonal antibody specific for CAP37 
detected expression of this immune modulator in the 
polymorphonuclear leukocytes (PMNs) and endothelial 
cells in both the parietal (Fig.  1a) and temporal lobes 
(Fig.  1b) of all AD patients and age-matched controls 
(Fig. 1e, f). Staining with isotype control antibody failed 
to detect PMNs and endothelial cells, indicating the 
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specificity of staining for CAP37 in these two cell types 
(Fig. 1c, d, g, h). These assays confirmed the applicabil-
ity of this monoclonal antibody for use in IHC on brain 

tissues since CAP37 is constitutively expressed in neu-
trophils and is also expressed in endothelial cells from 
other tissues.

Fig. 1   CAP37 is expressed 
in neutrophils and endothelial 
cells of parietal and temporal 
cortices. a Parietal lobe and b 
temporal lobe cortical tissues 
from an Alzheimer’s disease 
(AD) patient stained with anti-
CAP37. c Parietal lobe and d 
temporal lobe cortical tissues 
from an AD patient stained with 
isotype control. e Parietal lobe 
and f temporal lobe cortical 
tissues from an age-matched 
control stained with anti-
CAP37. g Parietal lobe and h 
temporal lobe cortical tissues 
from an age-matched control 
stained with isotype control. 
Neutrophils are indicated by 
arrowheads, and endothelial 
cells are represented by arrows. 
Scale bars 20 μm
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Cortical pyramidal neurons in temporal and parietal 
lobes are a novel cellular source of CAP37 expression 
and are a site of CAP37 upregulation in AD patients

The temporal and parietal lobes of AD patients were then 
evaluated to identify additional CAP37 cellular sources. 
CAP37 was detected in the cytoplasm of cortical neurons 
in the temporal lobes of patients with AD (Fig.  2ai, aii). 
The pattern of CAP37 staining varied from localized in 
pyramidal layers 3 and 5 to a diffuse cortical distribution. 

We observed a predominant limitation to pyramidal layers 
3 and 5 more often than a diffuse cortical pattern. How-
ever, a diffuse pattern was often associated with a more 
intense cytoplasmic staining on a per-patient basis. No 
temporal lobe staining was observed with the isotype con-
trol (Fig. 2bi, bii), indicating the CAP37 staining specific-
ity in PMNs, endothelial cells, and neurons. CAP37 was 
observed in temporal lobe pyramidal layers 3 and 5 in some 
control subjects as well. However, fewer neurons were 
CAP37-positive in control tissues (Fig.  2ci, cii) than in 

Fig. 2   Temporal cortical 
neurons have increased CAP37 
expression during AD. ai AD 
temporal cortical lobe tissue 
stained with monoclonal anti-
CAP37 showing strong staining 
in the AD neuron cell bodies. 
CAP37 staining varied from 
localized staining in pyramidal 
layers 3 and 5 to a diffuse corti-
cal distribution. bi AD temporal 
cortical lobe tissue stained 
with isotype control. ci Age-
matched control brain stained 
with monoclonal anti-CAP37. 
Note the reduced staining in the 
neuron cell bodies. aii, bii, cii 
Lower magnification images of 
respective sections. Aster-
isks (*) with pointing arrows 
indicate microglial cells that 
lack CAP37. Scale bars ai, bi, 
and ci, 20 μm; aii, bii, and cii, 
50 μm
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tissues from patients with dementia. No CAP37 expression 
was observed in glial cells, including microglia (Fig. 2aii, 
cii). CAP37 staining in the parietal lobes of patients with 
AD and controls showed a similar pattern to that seen in the 
temporal lobes. Neurons within pyramidal layers 3 and 5 of 
the parietal cortex from AD patients were also positive for 
CAP37 (Fig. 3ai, aii). This was not observed with the iso-
type control (Fig. 3bi, bii). Again, some age-matched con-
trols showed neuronal staining for CAP37 in the parietal 

lobes, but fewer control neurons stained positive than did 
AD neurons (Fig.  3ci, cii). No glial cells stained positive 
for CAP37 in the parietal lobe (Fig. 3aii).

CAP37 is expressed in the CA3 and CA4 hippocampal 
neurons

The hippocampus was evaluated in AD patients using 
the CAP37 monoclonal antibody to determine additional 

Fig. 3   Parietal cortical neurons 
have increased CAP37 expres-
sion during AD. ai AD cortical 
brain tissue from parietal lobes 
stained with monoclonal anti-
CAP37. Intense CAP37 staining 
is localized to the AD neuron 
cell bodies. CAP37 appeared 
in pyramidal layers 3 and 5 in 
some patients and showed a 
more diffuse cortical distribu-
tion in others bi AD parietal 
lobe tissues stained with isotype 
control. ci Age-matched control 
brain stained with monoclonal 
anti-CAP37 IgG. aii, bii, cii 
Lower magnification images of 
respective sections. Asterisks 
(*) with pointing arrows indi-
cate microglial cells that lack 
CAP37. Scale bars ai, bi, and 
ci, 20 μm; aii, bii, cii, 50 μm
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CAP37 cellular sources other than sources previously 
revealed. IHC analysis on hippocampal sections from 
three patients with AD (Fig. 4a) and age-matched controls 

(Fig.  4b) revealed CAP37 expression in pyramidal neu-
rons of the Cornu Ammonis (CA) regions 3 and 4. All 
three patients with AD were previously analyzed for AD 

Fig. 4   CAP37 is expressed in 
CA3 and CA4 hippocampal 
neurons. a AD and b age-
matched control hippocampal 
tissue stained with anti-CAP37 
showing staining in neuronal 
cell bodies. c AD patient and 
d age-matched control stained 
with anti-amyloid-β showing 
frequent neuritic plaques in 
both. e AD patient and f age-
matched control stained with 
anti-phospho-tau (Thr 205) 
showing Braak stage VI tangles 
in patient and Braak stage II 
tangles in age-matched control. 
Scale bars a and b, 40 μm; c–f: 
50 μm
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pathology and characterized to have CERAD plaque scores 
of C and Braak and Braak stage VI for tangles. Our IHC 
staining also confirmed the high frequency of plaques 
(Fig.  4c) and tangles (Fig.  4e) in these patients. Although 
one of the age-matched controls showed no signs of neuritic 
plaques or tangles, the other two contained both plaques 
and tangles, with one also having frequent neuritic plaques 
(Fig. 4d) and Braak stage II for tangles (Fig. 4f). One age-
matched control was, therefore, characterized as having low 
AD neuropathological change, while another was character-
ized as displaying intermediate AD pathological change.

Next, CAP37 association with either Aβ plaques or tau 
tangles was determined by IHC to analyze the localiza-
tion patterns of CAP37, Aβ, and tau. Serial sections of the 
temporal cortex and hippocampus stained for CAP37, Aβ, 
and tau revealed that both Aβ and tau were more heavily 
distributed than the sporadic neuron staining observed for 
CAP37. Although CAP37, Aβ, and tau overlapped in some 
regions, there did not appear to be a strong correlation in 
localization as some regions with CAP37 did not show tan-
gles or plaques, and many regions with plaques and tangles 
did not also contain CAP37 (data not shown).

TNF‑α and Aβ induced expression of CAP37 in human 
primary cortical neurons

The ability of two AD mediators, TNF-α, a pro-inflam-
matory cytokine, and Aβ1−40 to induce the expression of 
CAP37 was tested using primary human cortical neurons 
(HCN-1A) as a model for induced expression. These cells 
are non-malignant and retain their native neuronal phe-
notype. They have the ability to divide more rapidly due 
to their derivation from a patient with unilateral megalen-
cephaly, a low-grade proliferation and migration disorder 
affecting neurons. We initially examined these cells for 
constitutive expression of CAP37 and detected faint CAP37 
expression (data not shown). Faint immunopositivity was 
also seen in vehicle-treated controls (Fig. 5a). HCN-1A neu-
rons were treated with TNF-α and Aβ1−40. Then, CAP37 
expression was determined using IHC. Both TNF-α and 
Aβ1−40 induced CAP37 expression in the neuronal cyto-
plasm (Fig.  5c, d). Cells treated with the inactive form of 
Aβ (Aβ40−1) were not induced to express CAP37 (Fig. 5b). 
Minimal staining was observed with Aβ- and TNF-α-treated 
cells probed with rabbit control serum (Fig. 5e, f), confirm-
ing the specificity of the CAP37 staining.

CAP37 mRNA is expressed in neurons, astrocytes, 
and microglia

The expression of CAP37 mRNA in primary human neu-
rons, astrocytes, and microglia was analyzed using qRT-
PCR. AZU1 mRNA, which encodes for CAP37 protein, 

was detected in resting neurons, astrocytes, and micro-
glia (Fig.  6). AZU1 expression in astrocytes, however, 
was very low compared to expression in neurons and 
microglia. ELANE (elastase) and PRTN3 (proteinase-3), 
two other proteins expressed abundantly in neutrophils 
with high sequence homology to CAP37, also showed 
mRNA expression in neurons, but at considerably lower 
levels compared with AZU1 (Fig. 6). ELANE and PRTN3 
expression was comparable to AZU1 expression in astro-
cytes and microglia. To compare the levels of AZU1, 
ELANE, and PRTN3 mRNA expressed in resting neu-
rons and glial cells relative to resting leukocytes, includ-
ing PMNs, we performed qRT-PCR on leukocyte cDNA 
isolated from buffy coats, the blood fractions containing 
leukocytes and platelets. Upon calculating fold differ-
ences in mRNA relative to GAPDH, we detected approxi-
mately five times the amount of AZU1 mRNA, 283 times 
the amount of ELANE mRNA, and 65 times the amount 
of PRTN3 mRNA in total leukocytes compared with neu-
rons (Fig. 6). There was ~100 times the amount of AZU1 
mRNA, ~500 times the amount of ELANE mRNA, and 
~850 times the amount of PRNT3 mRNA in total leuko-
cytes compared with astrocytes. We detected ~2 times 
the amount of AZU1 mRNA and ~4 times the amount 
of ELANE mRNA in leukocytes compared to microglia. 
Interestingly, PRTN3 expression in microglia was ~4 
times higher than in total leukocytes. The Ct, Δ Ct, and 
fold difference expression values of all transcripts are 
shown in Table 1.

Only the temporal lobe has increased expression 
of both CAP37 mRNA and protein during AD

Brain regions are differentially affected during AD progres-
sion. The temporal and frontal lobes are heavily impacted 
regions in AD, while the occipital lobe is less severely 
impacted. If CAP37 contributes to inflammation during AD, 
then temporal or frontal lobes are expected to have increased 
expression of CAP37 versus the occipital lobe in AD 
patients compared to normal controls. The mRNA expres-
sion of AZU1, ELANE, and PRTN3 in these three lobes 
was compared in AD and normal controls. CTSG mRNA 
levels (cathepsin G) in the temporal and frontal lobes were 
also compared. Cathepsin G was included in this analysis 
as this protein is expressed abundantly in neutrophils and 
shares homology with CAP37. Significantly increased lev-
els of AZU1 mRNA were found in the temporal and fron-
tal lobes of patients with AD compared with normal con-
trols (Fig. 7a), which is consistent with these regions being 
heavily impacted in AD. Importantly, the mRNA levels of 
ELANE, PRTN3, and CTSG were unchanged in the tem-
poral and frontal lobes of patients with AD compared with 
normal controls. No significant increase in AZU1 expression 
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was detected in the occipital lobe, which is a region of the 
brain that is less severely impacted in AD. Interestingly, 
PRTN3 mRNA expression was significantly decreased in 
the occipital lobe of the brain with AD (Fig. 7a). Neither the 
cause nor the consequence of this decrease is known. Com-
paring the mRNA levels of AZU1, ELANE, PRTN3, and 
CTSG in five donor pools of normal controls, we found that 

levels of AZU1 and CTSG were ~5–35 times lower than the 
levels of ELANE and PRTN3 in all brain regions analyzed 
(Fig. 7b). As noted in the methods section, all mRNA values 
were normalized to GAPDH expression.

CAP37 protein expression in the temporal and frontal 
lobes of patients with AD and normal controls was analyzed 
by Western blot to confirm transcript expression analysis. 

Fig. 5   CAP37 is induced 
in HCN-1A primary human 
neurons. a HCN-1A neurons 
incubated with vehicle only 
(basal medium ± equivalent 
volume of 10 % acetic acid used 
as solvent for peptide). b HCN-
1A neurons treated with Aβ40−1 
(reverse/inactive peptide) 
stained with rabbit anti-CAP37 
serum. c HCN-1A cortical neu-
rons treated with TNF-α (25 ng/
ml) and stained with rabbit anti-
CAP37 serum. d HCN-1A cells 
treated with Aβ1−40 (125 μg/
ml, pre-aggregated) and stained 
with rabbit anti-CAP37 serum. 
e HCN-1A cortical neurons 
treated with TNF-α (25 ng/
ml) and stained with normal 
rabbit control serum. f HCN-1A 
neurons treated with Aβ1−40 
(125 μg/ml, pre-aggregated) 
and stained with normal rabbit 
control serum. Treatments were 
performed overnight (17 h), 
and cells were stained using 
the Vectastain ABC peroxidase 
system. Scale bars 20 μm
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Total lysates from the temporal and frontal lobes showed low 
levels of CAP37 expression in normal controls (Fig. 8ai, bi, 
lane 1) as determined by the detection of an approximately 

29-kDa band when blots were probed with monoclonal anti-
CAP37. This is the same molecular weight to which the iso-
lated native CAP37 migrated (Fig. 8ai, bi, lane 4). The tissues 
from the patient with AD demonstrated a band of increased 
intensity in the temporal lobe lysate that was absent in the 
normal control (Fig. 8ai, lane 1, 2). This result confirms qRT-
PCR and IHC results showing an increase in CAP37 expres-
sion in the temporal lobe of AD patients. We observed no 
difference in the intensity of the 29-kDa CAP37 band in the 
frontal lobe normal control or AD lysates (Fig. 8bi, lanes 1, 
2). However, the extract from the frontal lobe of the patient 
with AD demonstrated a band of high intensity migrating at 
a molecular weight of ~15 kDa (Fig. 8bi, lane 2). This was 
not observed in the normal control (Fig. 8bi, lane 1). Blots 
were also probed with mouse isotype control which showed 
no corresponding bands at 29 or 15 kDa for the total lysates 
or purified CAP37 (Fig. 8aii, bii, lanes 1, 2, 4).

CAP37 protein is not detected in astrocytes or microglia 
by Western blotting

Since we observed CAP37 transcript in astrocytes and 
microglia, but did not observe CAP37 protein in these cells 
by IHC analysis of brain sections, we performed Western 
blotting on proteins extracted from astrocytes and micro-
glial cells. No band corresponding to the CAP37 molecular 
weight was detected in astrocytes or microglia (Fig. 9, lanes 
1,2). Purified native CAP37, PMN lysate, and total lysates 
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Fig. 6   CAP37 mRNA is expressed in human primary neurons, astro-
cytes, microglia, and leukocytes. AZU1, ELANE, and PRTN3 (encode 
for CAP37, elastase, and proteinase-3 proteins, respectively) mRNA 
expression in neurons (black bars), astrocytes (gray bars), microglia 
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GAPDH (2(−ΔCT)). Analysis of AZU1, ELANE, and PRTN3 neuronal 
and glial expression was performed in triplicate, and leukocyte expres-
sion was performed in duplicate. Data are mean ± SEM of results

Table 1   Expression of AZU1, ELANE, and PRTN3 transcripts in primary human neurons, astrocytes, microglia, and leukocytes

HN Human neurons; HA human astrocytes; HM human microglia; HL human leukocytes

GAPDH AZU1 ELANE PRTN3

Mean Ct Ct Δ Ct 2(−Δ Ct) Ct Δ Ct 2(−Δ Ct) Ct Δ Ct 2(−Δ Ct)

HN 17.95 27.83
27.19
27.05

9.88
9.24
9.10

0.00106
0.00165
0.00182

31.19
32.03
32.04

13.24
14.08
14.09

0.00010
5.7742 × 10−5

5.7344 × 10−5

33.64
32.52
33.55

15.69
14.57
15.60

1.8916 × 10−5

4.1114 × 10−5

2.0134 × 10−5

18.04 28.30
27.21
27.32

10.26
9.17
9.28

0.00817
0.00174
0.00161

33.01
31.70
31.52

14.97
13.66
13.48

3.1231 × 10−5

7.7434 × 10−5

8.7724 × 10−5

HA 15.76 30.07
30.28
29.71

14.31
14.52
13.95

4.9119 × 10−5

4.2466 × 10−5

6.3042 × 10−5

31.41
31.28
30.60

15.65
15.52
14.84

1.9403 × 10−5

2.1233 × 10−5

3.4018 × 10−5

34.27
35.67
35.27

18.51
19.91
19.51

2.6726 × 10−6

1.0127 × 10−6

1.3363 × 10−6

15.91 30.85
29.79

14.94
13.88

3.1814 × 10−5

6.6329 × 10−5

HM 14.74 23.59
23.63
23.57

8.85
8.89
8.83

0.00217
0.00211
0.00220

23.00
22.86
23.00

8.26
8.12
8.26

0.00327
0.00360
0.00327

22.11
22.09
22.16

7.37
7.35
7.42

0.00606
0.00614
0.00585

15.37 24.01
23.95

8.65
8.59

0.00250
0.00260

HL 13.60 21.23
21.16

7.64
7.57

0.00503
0.00528

19.50
19.39

5.91
5.80

0.01669
0.01801

22.80
22.65

9.21
9.06

0.00169
0.00188
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from the temporal and frontal lobes of normal controls were 
loaded as controls for CAP37 migration and expression. 
Bands of high intensity can be seen for isolated CAP37 
(Fig. 9, lane 4) and PMN lysates (Fig. 9, lane 5) between 25 
and 30 kDa. Low levels of CAP37 were observed in tempo-
ral and frontal lobes of normal controls (Fig. 9, lanes 7, 8).

Discussion

The common phenotype among many neurodegenerative 
diseases is the death of neurons, which leads to cognitive 

decline in patients. Therapeutic routes that clinicians and 
researchers focus on include preventing neuron death, iden-
tifying methods to reverse or treat the neuronal damage, or 
using stem cell therapy to replace the defunct neurons with 
new healthy neurons. Some researchers focus on a prophy-
lactic approach, which involves identifying early disease 
biomarkers. Such biomarkers could then be used to deter-
mine treatment options before clinical symptoms arise. 
Further research identifying and characterizing these bio-
markers could potentially lead to therapeutics that prevent 
disease progression.

Unexpectedly, hippocampal staining with IHC herein 
demonstrated CAP37 expression in brain tissue from two 
controls that contained mild-to-moderate AD pathological 
changes, without showing clinical symptoms of demen-
tia. This surprising finding indicates the potential use of 
this early increase in CAP37 expression as an early AD 
biomarker. Changes in protein levels in cerebrospinal 
fluid (CSF) have recently been demonstrated in forms of 
dementia, such as AD, and CSF is now considered a key 
source for identifying biomarkers that predict the onset 
of dementia (Sun et  al. 2003; Kaerst et  al. 2013; Kapaki 
et al. 2013; Scherling et al. 2014). Interestingly, CAP37 has 
been reported in the CSF at significantly increased levels 
in patients with bacterial meningitis (Linder et  al. 2011). 
Whether there is an increase or decrease in CAP37 expres-
sion in the CSF of AD patients is currently unknown, but 
it is worth investigating in future studies. We must be able 
to identify more of these biomarkers that can be detected 
at early stages of these progressive diseases to determine 
which are toxic and can be targeted, and which are protec-
tive and can potentially be developed into therapeutics.

Within the past 5  years, researchers have postulated 
that chronic bacterial and viral infections may be respon-
sible for initiating the formation of Aβ plaques and thus 
the subsequent pathological events that occur in AD 
(Balin et  al. 2008; Miklossy 2008; Urosevic and Martins 
2008; Bu et al. 2014; Piacentini et al. 2014; Welling et al. 
2014). The role of antimicrobial peptides (AMPs) which 
increase in response to these infections has also been ques-
tioned. Aβ itself has been determined to be an AMP and 
has also been found to inhibit both the H3N2 and H1N1 
influenza A viruses (Soscia et al. 2010; White et al. 2014). 
As previously mentioned, β-defensin-1 is another AMP 
that is upregulated in AD (Williams et  al. 2013). CAP37 
can now also be added to this list. Many pathogens that 
cause chronic infections have been found to compromise 
the blood–brain barrier which is disrupted in AD (Dick-
stein et  al. 2006; van Sorge and Doran 2012; Erickson 
and Banks 2013; Marques et al. 2013; White et al. 2014). 
Notably, CAP37 promotes vascular permeability by induc-
ing rearrangement of the cytoskeleton in endothelial cells 
and increasing endothelial cell permeability (Gautam et al. 
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Fig. 7   CAP37 mRNA is upregulated in AD temporal and fron-
tal lobes. AZU1, ELANE, PRTN3, and CTSG mRNA (encode for 
CAP37, elastase, proteinase-3, and cathepsin G-proteins, respec-
tively) expression was determined by performing qRT-PCR. a 
Total RNA from tissues from the temporal (circles, n =  3), frontal 
(squares, n = 3), and occipital lobes (triangles, n = 3) of individual 
AD patients (n =  6) was used. Values are relative to the calculated 
values of the normal controls for each respective tissue that were 
each set to 1 (indicated by the dashed line). b Total RNA from the 
temporal (black bars), frontal (gray bars), or occipital lobes (open 
bars) of normal adult human controls (five donor pool) expressed as 
fold differences in mRNAs relative to GAPDH (2(−ΔCT)). All values 
in a and b were normalized to GAPDH (internal control). Data are 
mean ± SEM of results. *p < 0.05 (Student’s unpaired t test)
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2001; Ley 2001). One study has suggested that CAP37 
may be involved in the breakdown of the blood–retinal bar-
rier (Skondra et al. 2008), but direct effects of CAP37 on 
the blood–brain barrier are currently unknown.

In the present study, we showed that CAP37 is the only 
neutrophil-derived mRNA of the four analyzed homologs that 
demonstrates high expression in neurons and increased levels 
in the AD brain. Although IHC analysis and Western blotting 
did not reveal CAP37 expression in astrocytes or microglia, 
we did detect CAP37 transcript in these cells. CAP37, there-
fore, could potentially be translated and expressed in micro-
glia and astrocytes in other conditions or perhaps pathologies 
with more acute inflammation. Further studies must be con-
ducted to determine this. The lack of an increase in the neu-
trophil markers ELANE, PRTN3, and CTSG (Korkmaz et al. 
2010) in patients with AD indicates that the increase in AZU1 
(CAP37) expression was not due to an increase in neutrophil 
influx into the brains of these patients. The low expression of 
ELANE, PRTN3, and CTSG in neurons and the high expres-
sion of these transcripts in brain tissues of normal controls 
indicate the source of these mRNAs is non-neuronal brain 
cells such as neutrophils or glial cells.

During AD, the entorhinal cortex is the first region of 
the brain that is affected, and it acts as a gateway for dam-
age into the hippocampus, where atrophy has been dem-
onstrated in many presymptomatic individuals (Fox et  al. 
1996; Scahill et al. 2002). As the disease progresses, atro-
phy begins to occur in the inferior temporal cortex, cingu-
late cortex, and the precuneus, a region of the superior pari-
etal lobe. In advanced stages of the disease, atrophy of the 
frontal lobe occurs before eventual spread to the entire neo-
cortex (Scahill et al. 2002; Serrano-Pozo et al. 2011; Khan 
et al. 2014). Regions of the neocortex that suffer the most 
severe atrophy include the inferior temporal cortex and the 
prefrontal cortex, while the occipital cortex is one of the 
last and least severely impacted (Serrano-Pozo et al. 2011). 
Herein, we detected CAP37 within pyramidal neuron 
cell bodies in cortical layers 3 and 5 of the temporal and 
parietal lobes, which are the specific layers with the most 
neurofibrillary degeneration in AD (Serrano-Pozo et  al. 
2011). The levels of CAP37 in neurons of the hippocampus 
were already elevated in age-matched controls. We did not 
observe an increase in CAP37 in neurons from this loca-
tion in patients with AD. Our observation that tissues from 

Fig. 8   CAP37 protein expres-
sion is increased in the temporal 
lobes of an AD patient. Protein 
lysates (40 μg) from an AD 
patient and normal control 
(NC) were electrophoresed 
with 12.5 % SDS-PAGE gels 
and transferred to nitrocellulose 
membranes. Lane order is as 
follows: Lane 1, NC; lane 2, 
AD sample; lane 3, empty; lane 
4, purified CAP37. Temporal 
lobe blots were probed with 
ai monoclonal anti-CAP37 
(D5F10) or aii mouse isotype 
control. CAP37 migrates at 
29 kDa in the AD sample 
on SDS-PAGE gels. CAP37 
varies between 28 and 39 kDa 
depending on its glycosyla-
tion state. The mouse isotype 
control shows no corresponding 
29-kDa band. Frontal lobe blots 
were probed with bi D5F10 or 
bii mouse isotype control. A 
29-kDa band corresponding to 
the CAP37 molecular weight 
was observed in both the normal 
control and the AD patient with 
equivalent intensity. A dense 
band at ~15 kDa was observed 
in the AD patient lysate, but not 
in the normal control. Mouse 
isotype control shows no corre-
sponding 29- or 15-kDa bands
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the age-matched controls contained a substantial number 
of plaques and some neurofibrillary tangles indicates that 
CAP37 may be an early factor in the disease process. These 
age-matched control tissues demonstrated pathological 
changes, but the patients did not show clinical symptoms of 
dementia. However, based on the progressive nature of AD, 
there is substantial potential for such clinical symptoms to 
have developed with increased longevity of the patients. 
The high increase in CAP37 mRNA and the lack of an 
increase in CAP37 protein in the frontal lobe suggest that 
CAP37 may also precede the pattern of atrophy that occurs 
in AD. We cannot, however, rule out the possibility that 
the 15-kDa band observed in the frontal lobe of the patient 
with AD is a proteolytic degradation product of CAP37 that 
is only present in the tissues from the patient with AD and 
not the control. Many Aβ degradation products cleaved by 
enzymes, such as neprilysin and insulin-degrading enzyme, 
have recently been identified; the role of several altered 
proteolytic pathways in AD is under investigation (De 
Strooper 2010; Saido and Leissring 2012). Whether CAP37 
is also degraded or cleaved in particular regions of the brain 

in AD is currently unknown. The increase in CAP37 in 
regions severely impacted in AD suggests that CAP37 may 
play a role in regulating the toxic events that occur in the 
specific areas of the brain that suffer the greatest atrophy 
in AD.

Although we are uncertain whether CAP37 expression 
induces molecular events that cause AD progression or is 
a result of molecular events that arise in AD, our observa-
tions indicate that CAP37 does not directly overlap with Aβ 
or tau. The plaques and tangles could spread into CAP37-
positive regions (or vice versa) with disease progression. 
Our results using HCN-1A neurons showed that Aβ1−40 
could induce CAP37 expression, while the inactive peptide 
Aβ40−1 could not. This finding indicates that CAP37 induc-
tion is specific to the Aβ structure associated with AD and 
not to a similar protein sequence found within the inactive 
peptide. These results also suggest that CAP37 expression 
may occur after Aβ accumulation. If so, CAP37 would 
also fall into the microglial activation and inflammatory 
response stage of the amyloid cascade hypothesis. The 
amyloid cascade hypothesis posits that AD pathological 
events are initiated by Aβ, which augments an inflamma-
tory response that leads to oxidative stress, and is followed 
by tangles and widespread neuron degeneration (Citron 
2004, 2010; Harrington 2012; McGeer and McGeer 2013). 
Most ongoing clinical trials are understandably aimed at 
targeting Aβ in an attempt to stop cascade initiation. Aβ, 
which may be responsible for many toxic AD events, has 
a plethora of receptors it can bind and activate (Doens 
and Fernandez 2014). Blocking Aβ, therefore, may block 
a large number of cellular events that are needed to main-
tain homeostasis and thus may produce unintended effects. 
Although anti-inflammatory approaches may not be the 
central focus for AD therapeutics, it is plausible that tar-
geting specific molecules responsible for initiating fewer 
signaling pathways in this component of the cascade may 
decrease nonspecific events and adverse side effects.

Inflammation in the brain is predominantly driven by 
resident macrophages known as microglia. These cells 
function primarily to survey the microenvironment for 
pathogens, maintain neuronal synaptic integrity, and kill 
exogenous pathogens. Alterations or disruptions in the 
homeostasis of the brain are known to activate the micro-
glia, causing them to change from a ramified to ameboid 
morphology, upregulate specific cell surface receptors, 
and secrete toxic molecules, including pro-inflammatory 
cytokines, nitric oxide (NO), and reactive oxygen species 
(ROS) (Perry et  al. 2010). Importantly, CAP37 activates 
microglial cells by various mechanisms including the abil-
ity to change the morphology of microglia from ramified to 
ameboid, induce the release of pro-inflammatory cytokines, 
increase the expression of class II major histocompatibil-
ity antigens and chemokines, and induce phagocytic and 
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Fig. 9   CAP37 protein is not detected in astrocytes or microglia by 
Western blotting. Protein lysates in the following order were loaded: 
lane 1, human astrocytes (HA, 40 μg); lane 2, human microglia (HM, 
40 μg); lane 3, empty; lane 4, purified CAP37 (5 ng); lane 5, PMNs 
(50 ng); lane 6, empty; lane 7, normal control brain lysates (40 μg) 
from the temporal lobe (NC-T); lane 8, normal control brain lysates 
from the frontal lobe (NC-F) and were electrophoresed with 12.5 % 
SDS-PAGE gels and transferred to nitrocellulose membranes. Blot 
was probed with anti-CAP37 (D5F10). No band corresponding to the 
CAP37 molecular weight was observed in HA or HM lysates
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chemotactic activities (Pereira et al. 2003). The receptor for 
CAP37 on microglial cells is currently unknown. However, 
previous studies from our laboratory suggest that signal-
ing may occur through a G-protein-coupled receptor since 
CAP37 induced chemotaxis of human corneal epithelial 
cells is inhibited with pertussis toxin, a known disruptor of 
GPCR activation (Griffith et al. 2013).

Conclusions

Based on the results of the present study, we infer that 
CAP37, an established inflammatory mediator previously 
shown to activate microglial cells, may mediate the chronic 
neuroinflammation associated with AD from within the 
brain parenchyma. Whether CAP37 could be a potential 
target or therapeutic is uncertain. However, our data sug-
gest that CAP37 is involved in the AD process, and it 
should be a strong candidate for further investigation.
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