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Visual Abstract

Video tracking is an essential tool in rodent research. Here, we demonstrate a machine vision rodent tracking
camera based on a low-cost, open-source, machine vision camera, the OpenMV Cam M7. We call our device

Significance Statement

Video tracking is a critical tool in behavioral research. Here, we present an open source machine vision
tracking device called the rodent arena tracker (RAT). The main advance of our device over what has been
previously done with rodent video tracking is that our solution is small and battery powered, versus a teth-
ered computer running a software package. This small form factor (about the size of a point-and-shoot cam-
era) can enable new uses for video tracking, including in places where traditional video tracking solutions
would be cumbersome or not possible.
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the rodent arena tracker (RAT), and it is a pocket-sized machine vision-based position tracker. The RAT does
not require a tethered computer to operate and costs about $120 per device to build. These features
make the RAT scalable to large installations and accessible to research institutions and educational set-
tings where budgets may be limited. The RAT processes incoming video in real-time at 15Hz and saves x
and y positional information to an onboard microSD card. The RAT also provides a programmable multi-
function input/output pin that can be used for controlling other equipment, transmitting tracking informa-
tion in real time, or receiving data from other devices. Finally, the RAT includes a real-time clock (RTC) for
accurate time stamping of data files. Real-time image processing averts the need to save video, greatly re-
ducing storage, data handling, and communication requirements. To demonstrate the capabilities of the
RAT, we performed three validation studies: (1) a 4-d experiment measuring circadian activity patterns; (2)
logging of mouse positional information alongside status information from a pellet dispensing device; and
(3) control of an optogenetic stimulation system for a real-time place preference (RTPP) brain stimulation
reinforcement study. Our design files, build instructions, and code for the RAT implementation are open
source and freely available online to facilitate dissemination and further development of the RAT.
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Introduction
Video analysis has greatly improved animal behavior moni-

toring methodologies since its first application in research. In
early uses of this technology, human observers watched
saved videos and manually quantified the frequency or pat-
terns of various behavioral events. Advances in computer vi-
sion led to the development of algorithms that automatically
segment video frames and track rodent position across time.
Multiple open-source and commercial solutions followed
this technological progress (Noldus et al., 2001; Tort et al.,
2006; Aguiar et al., 2007; Patel et al., 2014; Lopes et al.,
2015; Salem et al., 2015; Samson et al., 2015; Ben-Shaul,
2017; Poffé et al., 2018; Rodriguez et al., 2018; Pennington
et al., 2019; Shenk, 2019). More recent advances in machine
vision and imaging sensors have enabled automatic identifi-
cation of behaviors and tracking of specific body parts such
as limb or whisker movements (Hong et al., 2015; Huang et
al., 2015; Wiltschko et al., 2015; Reeves et al., 2016; Nashaat
et al., 2017; Mathis et al., 2018; Salem et al., 2019).
Although many groups have developed methods to
track rodents via video, with the exception of Nashaat
et al. (2017), prior approaches all require a tethered
computer for computation, and some require post-re-
cording analysis due to high computational load of the
processing applications. Such implementations can

limit flexibility and scalability for high throughput ex-
perimental installations.
To circumvent these limitations, we developed the ro-

dent arena tracker (RAT), which is capable of automati-
cally tracking mice in high contrast arenas and using
position information to control other devices in real time.
Here, we present the design files, software, and validation
and testing data to demonstrate the utility of the RAT.
While rodent tracking has been accomplished by multiple
other systems and corresponding software packages (as
referenced above), the RAT device offers several novel
and useful features, including: (1) onboard processing
with no requirement of a connected computer, simplifying
experimental pipelines; (2) battery powered option for
wireless use; (3) reduced data storage needs afforded by
real-time video processing; (4) low cost of ;$120 per de-
vice; and (5) open-source implementation facilitating ex-
periment reproducibility in other laboratories, as well as
future method development.
As proof of concept, we implemented a dynamic

thresholding algorithm that is effective at tracking rodents
in high contrast arenas. The code is open-source, and the
OpenMV camera provides additional libraries to enable
more elaborate vision algorithms. Therefore, researchers
can develop more elaborate processing methods with this
same hardware to address their specific research prob-
lems. We also perform three practical use-case studies to
demonstrate the utility and capabilities of the RAT in a re-
search setting.

Materials and Methods
OpenMV camera tracking implementation
The RAT acquisition and real time processing software

was programmed in the OpenMV integrated development
environment (IDE). The image is processed using the follow-
ing steps: (1) an image is acquired and saved to a frame
buffer; (2) the image is segmented using a dynamic thresh-
olding procedure; (3) contiguous “blobs” of pixels in the
image are filtered based on a minimum and maximum size
threshold and the centroid information for the largest valid
blob is retained as the mouse centroid data; (4) mouse
speed is computed using the inter-frame centroid difference;
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(5) the centroid of the mouse position and speed and posi-
tional data are overlaid on a feedback image on the LCD
screen; (6) the RAT obtains the current date and time from
its onboard real-time clock (RTC) module; and (7) data are
locally stored in a text file including a per-frame timestamp,
centroid values, and computed speed value. In addition to
this processing scheme, the dynamic segmentation thresh-
old is updated every 50 frames (;4 s) to automatically adjust
for potential changes in lighting. Added device functionalities
for validation experiments included logging of Transistor-
Transistor Logic pulses from an external device on the RAT
input/output pin and triggering of an external device from
the RAT input/output pin.

Design
The most important component of the RAT hardware is

the OpenMV Cam M7 (available at https://openmv.io)
which acquires and processes images to extract mouse
location data (Fig. 1). The OpenMV Cam M7 also has
built-in near-infrared (NIR) LEDs which are always on to
enable illumination and tracking in dark environments. We
designed a printed-circuit board (PCB) with a battery con-
nection, BNC output, header for attachment of an Adafruit
RTC module, and push-button for controlling the RAT, as
well as a 3D-printed housing (Fig. 1). The RAT can be pow-
ered with an external battery, or via its micro USB port. All
design files necessary to complete this build (including
electronic layout/soldering instructions, Python code, and
3D printing design files) are located at https://hackaday.io/
project/162481-rodent-arena-tracker-rat (also see Table 1).

Build instructions
RAT device fabrication, assembly, and programming are

outlined at https://hackaday.io/project/162481-rodent-arena-
tracker-rat, including a step-by-step assembly video.We esti-
mate that assembling the RAT takes ;90min. To assemble
the hardware for the device, first populate the breakout PCB
by soldering the tactile button, right-angle BNC connec-
tor, JST right-angle connector, and long male headers to
the top of the board. Solder the included headers to the
OpenMV Cam M7 with the female pins facing away from
the side with the lens. The male pins of the headers
should be trimmed using wire cutters so they do not ex-
ceed the height of the other components on the OpenMV
Cam M7. Finally, solder the RTC module directly onto the
PCB using including male headers, with the battery holder
facing toward the LCD shield (it is positioned this way for
easy removal of battery if necessary; Fig. 1A–C). Once the
breakout PCB and OpenMV Cam M7 are assembled,
mount the OpenMV Cam M7 in the bottom of the 3D-
printed enclosure (Fig. 1D,E). The lens will fit through the
square opening at the bottom of the enclosure, and the
two mounting holes on either side of the OpenMV Cam
M7 will align with their counterparts on the 3D-printed en-
closure. Secure the OpenMV Cam M7 to the 3D-printed
enclosure using a 4–40 screw in each of the two mounting
holes. Connect the breakout PCB to the mounted
OpenMV CamM7 by aligning the mating faces of the con-
nectors and pushing them together until they’re fully en-
gaged. After the headers are connected, secure the

Figure 1. Assembly of the RAT. A, Exploded schematic of the major parts for building RAT. B, Photograph of the parts for building
rat. a, 3D-printed housing top. b, OpenMV LCD shield. c, Adafruit DS3231 RTC module. d. Push-button. e. BNC connector. f, 3D-
printed housing bottom. g, Custom PCB. h, JST 2 pin connector. i, OpenMV M7 camera. j, MicroSD card with RAT code. C,
Photograph of assembled RAT circuit board. D, Photograph of the assembled RAT electronics. E, Photograph of assembled RAT in
3D-printed housing.
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breakout PCB to the enclosure using a 4–40 screw
through each of the two mounting holes on the breakout
PCB. Plug the LCD shield into the top of the breakout
PCB by aligning the pins on the shield with the header
rows on the breakout PCB. Next, align and mount the top
cover of the 3D-printed enclosure with the base using 4–
40 screws in each mounting hole. Finally, unscrew the
supplied camera lens from the OpenMV camera, remove
the small IR optical filter from the back of the lens with for-
ceps, and replace the lens on the camera.

Programming the RAT device
To program and configure the RAT, first download and in-

stall the OpenMV IDE (https://openmv.io/pages/download)
and download the two files, RAT_v1.1_setTime.py and
RAT_v1.1_auto_threshold_RTC.py from the project’s hacka-
day page (https://hackaday.io/project/162481-rodent-arena-
tracker-rat). Format a microSD card as FAT32 and plug it into
the RAT’s microSD card slot on the side of the enclosure.
Open the OpenMV IDE on a PC, connect the RAT to the PC
using the micro USB port on the back of the unit, and pair it
with the IDE by clicking the connect button at the bottom
of the IDE interface. Load “RAT_v1.1_setTime.py” in the
OpenMV IDE and edit it to include the current date and time.
Click the green arrow and it will program the RTC with the
correct time. Once this is set it will not need to be reset for ap-
proximately fiveyears, or until the coin cell in the RTCmodule
dies. Next load “RAT_v1.1_auto_threshold_RTC.py” and nav-
igate to Tools.Save open script to OpenMV Cam to upload
the code. Unpair the RAT from the IDE using the disconnect
button at the bottom left of the IDE and disconnect it from the
PC. When using the device for the first time, focus the RAT’s
lens using the live feed as a reference and lock it into place
using the screw on the RAT’s lens holder. Take care not to
overtighten this lens screw as it can easily break. The
OpenMV Python files for controlling the RAT are also pro-
vided as Extended Data 1.

Operation instructions
Connect the RAT into a power source using either an

external battery or micro USB cable. As soon as the de-
vice receives power it will create a new experiment data
folder, begin tracking, and start recording data. The
mouse centroid and speed will be overlaid on a feedback
image on the LCD screen along with the current time and
the experiment data file name. Press the button on the de-
vice to start a new data file. The new filename will appear
on the screen and all rows in the data file will be time-
stamped with the current date and time.

Subjects for validation experiments
A total of ten adult male mice (nine C57Bl/6J black

mice, one BALB/cJ white mouse) were housed in murine
vivarium caging in a 12/12 h light/dark circadian cycle at
room temperature. Four additional mice expressing D1-
cre were obtained from the GENSAT project (EY242;
Gong et al., 2007; Gerfen et al., 2013). Mice were given ad
libitum access to rodent laboratory chow (5001 Rodents
Diet; LabDiet) and water, and cages were changed every
two weeks. Treatment and use of all animals conformed
to the welfare protocols approved by the National
Institute of Diabetes and Digestive and Kidney Diseases/
National Institutes of Health Animal Care and Use
Committee.

Viral infusions and optic fiber implantation
Viral infections of DMS were conducted on four adult

male mice (8–12weeks old). Anesthesia delivered via a
mouse mask mounted on a stereotaxic apparatus
(Stoelting) was administered with isoflurane at 2–3% and
maintained during the entire surgery at 0.5–1.5%. Ear
bars secured the mouse head in place while the skin was
shaved and disinfected with a povidone/iodine solution.
The skull was exposed and a hole;0.5–1 mm in diameter
was opened with a microdrill. A hydraulic injection system

Table 1: Bill of materials

Component Number Cost per unit Total cost Source of materials
OpenMV Cam M7 1 $65.00 $65.00 Openmv.io
LCD shield 1 $20.00 $20.00 Openmv.io
Adafruit DS3231 RTC breakout 1 $13.95 $13.95 Adafruit.com
3D-printed enclosure 1 ;$5 ;$5 Any printer will work
Breakout PCB 1 $2.00 $2.00 Seeed.io
JST right-angle connector 1 $0.95 $0.95 Karlsson Robotics

P/N PRT-09749
Tactile button 1 $0.49 $0.49 Karlsson Robotics

P/N COM-10302
Long break away male headers 2 $0.75 $0.75 Mouser

P/N 474-PRT-12693
Right-angle BNC connector 1 $2.43 $2.43 Mouser

P/N 523-31-5431
Undercut flat head screws
4–40 thread
5=8’’ length

7 $0.06 $0.42 McMaster-Carr
P/N 91099A169

Li-Ion battery (optional) 1 $9.95 $9.95 Adafruit
P/N 1781

MicroUSB cable
(optional)

1 $6.97 $6.97 Cdwg.com
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(NanoJect III) was loaded with AAV virus for expressing
channelrhodopsin-2 in a cre-dependent manner (UNC
viral core), and lowered into the brain at the following co-
ordinates: AP10.5 mm, ML 61.5 mm, DV �2.8 mm (from
bregma). A total volume of 500 nl of viral solution was de-
livered to each side of the brain, and the injector was left
in place for 5min after the infusion. In the same surgery,
the mouse received two fiber optic cannulae (200mm,
0.39NA, 1.25 mm, ceramic ferrule) for optogenetic stimu-
lation, secured to the skull with dental adhesive.

Use case validation experiments
In experiment 1, the circadian study, a single C57NL/6J

mouse was placed in a 9 � 12” Plexiglas box that was en-
closed in a light-tight cabinet for 4 d, with ad libitum ac-
cess to food and water. Lights were left off for the
duration of the experiment. The RAT was positioned
above the box for continuous tracking.
In experiment 2, four C57NL/6J mice were individually

housed in 9 � 12” Plexiglas boxes with a FED feeding

device (Nguyen et al., 2016) attached to the side and a
RAT mounted above facing the arena floor. The output of
the FED was connected to the input of the RAT, enabling
the RAT to log the time and position of pellet retrieval
events.
In experiment 3, four mice expressing channelrhodop-

sin-2 in direct pathway neurons and with unilateral optical
fiber implants, were individually placed in a 9 � 12”
Plexiglas box. The RAT device was centered over the
Plexiglas box, and a 15-Hz triggering pulse was gener-
ated when the mice were detected in one side of the box.
A wireless head-mounted LED stimulator (Plexon Helios)
was placed on the head of each mouse, controlled by the
pulses from RAT. The mice received unilateral stimulation
when they entered one side of the box. After 15min, the
stimulation side was reversed.

Software availability
All code and design files are freely available at https://

hackaday.io/project/162481-rodent-arena-tracker-rat.

Figure 2. Validation of tracking performance. A, Example images of black and white mice tracked by RAT in light or dark conditions.
B, Example xy scatter track plot of data exported from RAT. C, Photograph of experimental validation setup recording the same
mouse with RAT and a webcam connected to Bonsai. D, x and y positions from both RAT and Bonsai, demonstrating strong corre-
lation in mouse position data between the two systems.
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Results
We evaluated RAT performance under different lighting

conditions using both black and white mice in a high con-
trast arena with the room lights on and off (Fig. 2A,B). The
dynamic thresholding procedure was robust against
changes in room lighting, automatically “re-thresholding”
every;4 s to continue to track the mice. The RAT tracked

black mice on a white background in both lighting condi-
tions, although non-reflective flooring was necessary to
limit the glare created from NIR LED reflections when
tracking in the dark. We modified the segmentation code
and threshold for tracking white mice on a black back-
ground and the device performance was comparable to
the black mouse test (Fig. 2A,B). To validate the tracking

Figure 3. Experimental use cases for RAT. A, Demonstration of RAT tracking, showing a circadian rhythm in movement levels over
90 h. Lights were off for duration of experiments, gray bars represent the normal night cycle. B, Schematic of mouse nose-poking
to obtain pellets from FED3 device. C, Example track plot for 30min, showing locations of a mouse when he retrieved pellets from
FED3. D, Perievent histogram and raster showing speed of mouse around pellet retrieval events. E, Example track plot for optoge-
netic real-time self-stimulation experiment. Blue squares show location when blue LED turned on to stimulate direct pathway me-
dium spiny neurons in the striatum. F, G, Quantification of average time on each side of the chamber (n=4 mice).

Open Source Tools and Methods 6 of 9

May/June 2020, 7(3) ENEURO.0485-19.2020 eNeuro.org



performance, we compared the RAT data output head-to-
head with video tracking in Bonsai, an open-source soft-
ware language that is widely used for video tracking appli-
cations (Lopes et al., 2015). We positioned the RAT
device and a USB camera connected to Bonsai above an
arena containing a single black mouse (Fig. 2C). Both sys-
tems tracked mice successfully, with no instances of lost
tracking. A quantitative analysis revealed 94.9% correla-
tion between the x and y tracking positions of the RAT
and Bonsai (Fig. 2D, n=2 mice). We concluded that the
RAT device was robust against changes in lighting and is
useful for tracking mouse centroid position.
In addition to validating RAT tracking with two mouse

coat colors and two lighting conditions, we performed
three experiments to demonstrate device utility and eval-
uate how the RAT performed in real-world “use-cases.”
In experiment 1, we assessed how the RAT would per-
form in a multi-day circadian study. We positioned the
RAT over a single mouse in a dark chamber for ;3.5 d
(90 h). As the RAT does not save video, this experiment
generated a single text file that was ;100 MB in size,
which we estimated to be ;20–100 times smaller than a
video stream of the same length. The circadian rhythm of
mouse activity was apparent in the RAT data, even in
total darkness, demonstrating the utility of RAT for
measuring endogenous circadian activity rhythms (Fig.
3A).
In experiment 2, we synchronized the RAT input/output

connection with an open-source pellet dispensing device,
the feeding experimentation device (FED; Nguyen et al.,
2016). We programmed the FED device to send a TTL
pulse to the RAT each time a pellet was taken (Fig. 3B).
We individually tested four mice in this setup, enabling us
to synchronize mouse activity with pellet retrieval. We re-
corded both the position of the mouse at the time of pellet
retrieval and the speed of the mouse around these events
(Fig. 3C,D).
Finally, in experiment 3, we re-programmed the input

on RAT to operate as an output for a real-time place pref-
erence (RTPP) brain stimulation study. We expressed an
excitatory opsin, channelrhodopsin-2 in direct pathway
neurons in the striatum, a population of neurons that is
reinforcing when stimulated (Kravitz et al., 2012). When
the mouse crossed onto one half of the box, the RAT
sent 15-Hz TTL pulses to a wireless transmitter that de-
livered 4-mW pulses of blue light to the mouse. This
stimulation was highly reinforcing, resulting in rapid

acquisition of preference behavior toward the LED-
paired side of the cage within 5min of the first session
(n= 4 mice; Movie 1; Fig. 3E,F). After 15min, we reversed
which side was stimulated by rotating the RAT camera
180 degrees. This reversal caused the mice to rapidly
switch their preference to the opposite side (Fig. 3F,G).
As both the RAT and the optogenetic stimulation device
were wireless, this experiment highlighted the simple
and flexible nature of embedded electronics for research
applications.

Discussion
Review of the device
The RAT is a low cost, wireless position tracker, opti-

mized for tracking mice in high contrast arenas. The RAT
is based on the OpenMV Cam M7 (openmv.io), an open
source machine vision camera. We optimized control
code for tracking mice and created a hardware board
for conveniently connecting a battery, RTC, BNC input/
output, and push button for starting the recording. We
present validation data demonstrating the effectiveness
of the device for tracking mice, as well as connecting
the RAT to other devices for flexible experimental
arrangements.

Comparison with current technologies
Many commercial and open-source solutions exist for

video tracking of rodents, and they all achieve high accu-
racy detection. Nearly all also have a richer feature set
than the RAT and can accomplish more complex tracking
and behavioral control tasks, including importing diverse
data types and task control. As a pure tracking solution
however, we see the value of RAT in its compact form fac-
tor, simplicity, and low cost.

Device limitations
There are several limitations to the RAT. The first is it

does not save video. Because of the size of the OpenMV
Cam M7 frame buffer and the real-time video processing,
it was not possible for the hardware to also save video.
This limitation means experimental videos cannot be “re-
scored” at a later date. The consequence is that more up-
front testing is required to ensure the tracking algorithm is
working before use in experiments. In our hands, the RAT
works consistently and accurately on rodents in high con-
trast environments, and we noted no dropped data points
in validation testing. We recommend that new users test
in their own environments as changes in camera position
or lighting could require modification to the tracking set-
tings. A second limitation is the RAT does not have any
automated calibration procedure for measuring the size of
an arena. Currently, tracking data must be calibrated off-
line to get real-world position and speed values (i.e., in
centimeters and centimeters per second). While this pro-
cess could be implemented onboard on the RAT, it would
likely be cumbersome on the small device. Finally, data
are saved to an on-board microSD card which must be re-
moved to retrieve the data. In future versions of the RAT,
we hope to include wireless communication technology

Movie 1. RTPP_example.mp4. Video demonstrating the real-
time-place-preference assay. [View online]
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that will stream tracking data in real time. Wireless data
transfer will be especially important in large installations
where removal of many SD cards would be cumbersome.

Potential future improvements
We envision several future improvements that can be

made to both the hardware and the software of the RAT.
The OpenMV project is actively developing new hardware
to increase processing power and memory of the camera,
allowing for more advanced algorithms to run in real time.
For example, while this paper was in review the OpenMV
project released the OpenMV H7 model, which is faster
and more powerful than the M7 model used here. Our
code and hardware are forward-compatible with the H7
camera, which should be able to achieve higher frame
rates for tracking. In addition, the OpenMV project is ac-
tively supporting new camera sensors, including an infra-
red heat sensor for tracking heat signatures, which may be
useful for improving tracking and identification of specific
behaviors. Additionally, the OpenMV camera uses the
common M12 lens mount, enabling use of many commer-
cially available lenses and optical components. Tracking al-
gorithmsmay have to take the specific lens being used into
account, particularly if it distorts the image geometry, as
with a fish-eye or super-wide-angle lens. As the OpenMV
hardware improves, the camera board in the RAT can be
upgraded to enable new functionality.
We prioritized low rates of data storage by tracking in

real-time and storing only tracking positions and speed.
This low data rate should also be compatible with wire-
less data transfer. The OpenMV project already sells a
WIFI-enabled “shield” for OpenMV cameras, and there is
discussion online that a Bluetooth shield is being devel-
oped. Because of the low data rate, tracking data from
multiple RAT devices could be sent automatically to an
Internet server for remote monitoring of tracking data.
Additionally, the existing data storage method could be
changed to a more compressed format such as a binary
data file to further reduce bandwidth and storage
requirements.
Finally, the hardware presented here is limited to a sin-

gle input/output pin, which is tied to the single analog out-
put pin of the OpenMV camera. This allows for a user to
export a derived parameter such as speed in real time. In
future versions of the RAT, we hope to include more digi-
tal inputs and outputs to create richer interactions be-
tween the user, the RAT, and additional external devices.
These examples for improvement are not exhaustive, and
we imagine that individual users will have diverse and
specific modifications. The open-source nature of the
RAT allows researchers to modify functionality to fit their
specific needs. We put all the code and design files we
produced online, where we will include further modifica-
tions as they are developed.

Conclusion
The RAT is a machine vision tracking device based on

the OpenMV Cam M7. The RAT is wireless, inexpensive,
and offers real-time processing and low storage require-
ments, all of which facilitate large-scale studies of animal

behavior. Open-source implementations like this enable
experimental reproducibility across research centers and
can lead to innovative new rodent-based experiment
methodologies.
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