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Human mitochondrial MTHFD2 is a dual
redox cofactor-specific
methylenetetrahydrofolate dehydrogenase/
methenyltetrahydrofolate cyclohydrolase
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Abstract

Background: Folate-dependent one-carbon metabolism provides one-carbon units for several biological processes.
This pathway is highly compartmentalized in eukaryotes, with the mitochondrial pathway producing formate for
use in cytoplasmic processes. The mitochondrial enzyme MTHFD2 has been reported to use NAD+ as a cofactor
while the isozyme MTHFD2L utilizes NAD+ or NADP+ at physiologically relevant conditions. Because MTHFD2 is
highly expressed in many cancer types, we sought to determine the cofactor preference of this enzyme.

Results: Kinetic analysis shows that purified human MTHFD2 exhibits dual redox cofactor specificity, utilizing either
NADP+ or NAD+ with the more physiologically relevant pentaglutamate folate substrate.

Conclusion: These results show that the mitochondrial folate pathway isozymes MTHFD2 and MTHFD2L both
exhibit dual redox cofactor specificity. Our kinetic analysis clearly supports a role for MTHFD2 in mitochondrial
NADPH production, indicating that this enzyme is likely responsible for mitochondrial production of both NADH
and NADPH in rapidly proliferating cells.
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Background
One-carbon (1C) metabolism is a universal folate-
dependent pathway that generates 1C units for de novo
purine and thymidylate synthesis, interconversion of sev-
eral amino acids, production of universal methyl donors,
and regeneration of redox cofactors. Because these meta-
bolic processes play critical roles in cancer cells [1, 2],
1C metabolism has long been an important target for
the development of chemotherapeutic drugs.
One-carbon metabolism is highly compartmentalized in

eukaryotes [3], and mitochondria play a critical role in cel-
lular 1C metabolism. Mitochondria import 1C donors
such as serine and glycine and oxidize the 1C units to for-
mate, which is exported to the cytoplasm as a 1C unit for
use in purine and thymidylate synthesis and homocysteine
remethylation (Fig. 1a) [4–8]. Interconversion of 1C units

in mammalian mitochondria is catalyzed by three distinct
members of the MTHFD (methylene-tetrahydrofolate
dehydrogenase) family of enzymes: MTHFD2L, MTHFD2,
and MTHFD1L. MTHFD1L is a monofunctional 10-
CHO-THF synthetase [9]. It catalyzes the final step in the
mitochondrial pathway to produce formate, thus con-
trolling the flux of 1C units from mitochondria into cyto-
plasmic processes.
Mitochondrial MTHFD2 and MTHFD2L are both bi-

functional enzymes possessing 5,10-methenyl-THF (CH
+-THF) cyclohydrolase and 5,10-methylene-THF (CH2-
THF) dehydrogenase activities. MTHFD2 was initially
identified as an NAD+-dependent 5,10-CH2-THF de-
hydrogenase [10]. The Mthfd2 gene is expressed only in
transformed mammalian cells and embryonic or nondif-
ferentiated adult tissues [10, 11]. MTHFD2L, identified
in 2011, is homologous to MTHFD2, sharing 60–65%
amino acid sequence identity among various mammals.
The Mthfd2l gene is expressed in adult mammals
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(highest expression in the brain and lung) and also at all
stages of embryogenesis [11, 12].
Mthfd2 has been identified in a screen of 19 cancer cell

types as one of the 50 most commonly overexpressed
genes [13]. Increased MTHFD2 expression is associated
with acute myeloid leukemia, breast cancer, lung cancer,
and liver cancer [14–20], and MTHFD2 is considered a
novel target for anticancer therapy [21, 22]. A number of
recent studies have shown that the mitochondrial 1C path-
way is often reprogrammed in cancer cells and is especially
critical for maintaining NADPH/NADP+ redox homeos-
tasis [19, 23–27]. MTHFD2 is generally regarded as the
enzyme responsible for this mitochondrial NADPH pro-
duction, although ALDH1L2 has also been invoked [28].
Whereas ALDH1L2 clearly uses NADP+ [29], MTHFD2
has been considered an NAD+-dependent methylenetetra-
hydrofolate dehydrogenase since its discovery and early
characterization [10, 30]. This raises the question whether
MTHFD2 is in fact involved in maintaining mitochondrial
NADPH/NADP+ redox homeostasis.

We previously showed that MTHFD2L can use either
NAD+ or NADP+ at physiologically relevant substrate
levels [11]. The use of NAD+ versus NADP+ will have a
dramatic effect on the rate and direction of flux of 1C
units in mitochondria, by affecting the equilibrium be-
tween 5,10-CH2-THF and 10-CHO-THF (and thus for-
mate), depending on the relative levels of NAD+ and
NADP+ in the mitochondrial matrix [11, 31]. Given the
importance of MTHFD2 as a potential chemotherapeu-
tic drug target, we have reinvestigated the redox cofactor
specificity of the enzyme under more physiologically
relevant conditions. We show here that MTHFD2, like
MTHFD2L, possesses dual redox cofactor specificity for
its CH2-THF dehydrogenase activity at physiologically
relevant substrate levels.

Methods
Chemicals and reagents
NAD+ and NADP+ were purchased from US Biological
(Swampscott, MA) and Sigma (St. Louis, MO), respectively.

b c

a

Fig. 1 MTHFD2 exhibits NADP+-dependent dehydrogenase activity with 5,10-CH2-THF pentaglutamate. a Compartmentation of mammalian one-carbon
metabolism. MTHFD1 is the cytoplasmic trifunctional C1-THF synthase that catalyzes 10-formyl-THF synthetase, 5,10-methenyl-THF cyclohydrolase, and
5,10-methylene-THF dehydrogenase activities. In mammalian mitochondria, bifunctional MTHFD2 or MTHFD2L enzymes catalyze 5,10-methenyl-THF
cyclohydrolase and 5,10-methylene-THF dehydrogenase activities, and monofunctional MTHFD1L catalyzes the 10-formyl-THF synthetase reaction. SHMT1
and SHMT2 represent cytoplasmic and mitochondrial serine hydroxymethyltransferase isozymes, respectively. Gray ovals represent putative metabolite
transporters. b, c Purified MTHFD2 was assayed for NAD+- and NADP+-dependent 5,10-CH2-THF dehydrogenase activity with saturating
concentrations of CH2-H4PteGlu1 or CH2-H4PteGlu5 (insets, 5,10-CH2-THF dehydrogenase activity of MTHFD2L; data from ref. 11). CH2-H4PteGlu1
and CH2-H4PteGlu5 concentrations were 354 and 429 μM, respectively. NAD+ and NADP+ concentrations were 1.0 and 6.0 mM, respectively.
NAD+-dependent reactions also included 5 mM MgCl2 and 25 mM Pi. NADP

+-dependent reactions included only 5 mM MgCl2. Each column
represents the mean ± S.E. of triplicate determinations
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THF was prepared by the hydrogenation of folic acid
(Sigma) using platinum oxide as a catalyst and purification
of the THF product on a DEAE cellulose column (Sigma)
[32]. CH2-THF was prepared nonenzymatically from THF
and formaldehyde (Fisher, Waltham, MA) [33]. The yield
of CH2-THF was determined by solving the equilibria of
THF, formaldehyde, and β-mercaptoethanol [34]. Tetrahy-
dropteroylpentaglutamate (H4PteGlu5) was prepared by a
modified NaBH4 reduction from the corresponding pter-
oylpentaglutamate (PteGlu5) (Schircks Laboratories, Jona,
Switzerland), as described previously [35]. Further prepar-
ation of 5,10-CH2-H4PteGlu5 was accomplished by incuba-
tion with formaldehyde as described previously [33].

Preparation of MTHFD2 and MTHFD2L
Purified human MTHFD2 was a gift from Dr. Vipin Suri
(Raze Therapeutics). Briefly, 6× histidine-tagged human
MTHFD2 was expressed in Escherichia coli and purified
using size exclusion chromatography. The resulting pro-
tein corresponded to the molecular weight of 36.7 kDa
with the tag. Cloning, expression, and purification of rat
MTHFD2L were conducted as described previously [11].

5,10-Methylene-THF dehydrogenase assay
A microplate assay was used for determination of kinetic
parameters as described previously [36]. CH2-THF de-
hydrogenase activity was determined by an end-point
assay. The reaction buffer consisted of 50 mM HEPES
(pH 8.0), 100 mM KCl, 5 mM MgCl2, 0.4 mM CH2-
THF, 40 mM β-mercaptoethanol, and either NAD+

(1 mM) or NADP+ (6 mM). Potassium phosphate
(25 mM) was also included for the NAD+-dependent ac-
tivity. Sixty microliters of reaction mixture without CH2-
THF and 20 μl of purified MTHFD2 or MTHFD2L were
mixed, and the enzyme reaction was initiated by the
addition of 20 μl of CH2-THF followed by incubation at
30 °C for 5 min. The reaction was quenched with 200 μl
of 3% perchloric acid, and the plate was read at 350 nm
on FlexStation 3 (Molecular Devices, Sunyvale, CA). The
path length was corrected using near-infrared measure-
ments [37]. For the determination of kinetic parameters,
initial rate data was fitted to the Michaelis-Menten
equation by non-linear regression using Prism (Graph-
Pad, La Jolla, CA).

Results and discussion
Although the bifunctional MTHFD2 is widely known as
a NAD+-dependent 5,10-CH2-THF dehydrogenase, it
has been reported to use NADP+ at low efficiency [31].
However, that study did not use physiologically relevant
substrate concentrations. To verify redox cofactor speci-
ficity of MTHFD2, we first compared 5,10-CH2-THF de-
hydrogenase activities of the enzyme with NAD+ and
NADP+ under standard saturating substrate conditions.

In order to allow direct comparisons between MTHFD2
and MTHFD2L, MTHFD2L activity assays were con-
ducted in parallel. The MTHFD2L data were virtually
identical to our previously published results [11]; data
from [11] are included in the figures for comparison.
With 5,10-CH2-H4PteGlu1 substrate, NAD+-dependent
dehydrogenase activity of MTHFD2 was 8.5-fold higher
than its NADP+-dependent activity (Fig. 1b). NAD
+-dependent dehydrogenase activity of MTHFD2L was
3.4-fold higher than its NADP+-dependent activity under
saturating substrate conditions (Fig. 1b; inset).
To explore redox cofactor specificity in MTHFD2

under more physiologically relevant substrate condi-
tions, we repeated the assay with CH2-H4PteGlu5. Folyl-
polyglutamate specificity is one of the characteristic
features of enzymes in the one-carbon metabolism [38],
and the folate coenzymes typically found in mammalian
mitochondria contain chain lengths of 6–9 glutamates
[39]. While the NAD+-dependent activity of MTHFD2
slightly decreased, its maximal NADP+-dependent activity
considerably increased with CH2-H4PteGlu5 compared to
CH2-H4PteGlu1 (Fig. 1c). By comparison, MTHFD2L ex-
hibits an even more dramatic increase in NADP
+-dependent activity with the pentaglutamate coenzyme
(Fig. 1c; inset).
To further investigate redox cofactor specificity of

MTHFD2, steady-state kinetic parameters for CH2-THF
dehydrogenase activity were determined using CH2-
H4PteGlu1. MTHFD2 showed higher specific activity than
MTHFD2L with both NAD+ and NADP+ (Fig. 2a, b).
With the monoglutamate folate substrate, MTHFD2 ex-
hibited a kcat/KM ratio eightfold higher for NAD+ than for
NADP+, indicating a strong preference for NAD+ at satur-
ating substrate concentrations (Table 1). In comparison,
MTHFD2L has only a twofold higher kcat/KM for NAD+

versus NADP+ [11].
To better understand the cofactor preference of the

MTHFD2 dehydrogenase activity, the ratio of NAD
+-dependent specific activity versus NADP+-dependent
specific activity was calculated at each CH2-H4PteGlu1
concentration (Fig. 2c). At high CH2-H4PteGlu1 concen-
trations, both MTHFD2 and MTHFD2L clearly preferred
NAD+. However, as the folate substrate concentration was
lowered into the physiological range (2.5–25 μM reported
mitochondrial matrix CH2-THF concentration range), the
ratio of NAD+- to NADP+-dependent activity for both en-
zymes decreased. MTHFD2L approached a ratio of 1,
whereas the ratio for MTHFD2 dropped from 8 to 2–4 in
the physiological folate range (Fig. 2d).
With the more physiologically relevant pentaglutamate

substrate (CH2-H4PteGlu5), MTHFD2’s preference for
NAD+ is dramatically decreased (Fig. 3a, b). MTHFD2
exhibited a kcat/KM ratio only twofold higher for NAD+

than for NADP+ (Table 1). Moreover, importantly, as the
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pentaglutamate substrate concentration was lowered
into the physiological range, the ratio of NAD+- to
NADP+-dependent activity for MTHFD2 approached 1
(Fig. 3c, d), similar to MTHFD2L.

Conclusion
The role of MTHFD2 in 1C metabolism and generation of
redox coenzymes places this enzyme in two pathways of
central metabolic importance. Understanding how
MTHFD2 is involved in both of these biological processes
is of critical importance to effectively develop therapeutics
targeting this enzyme for cancer treatment. As previously
reported [31, 40], the methylenetetrahydrofolate dehydro-
genase activity of MTHFD2 exhibits a higher preference
for NAD+ than for NADP+ with monoglutamylated THF
(Figs. 1b and 2). However, using pentaglutamylated THF, a
physiologically relevant substrate that the enzyme would

encounter in mitochondria, MTHFD2 shows increased
NADP+-dependent activity (Figs. 1b and 3). Indeed, at the
lowest CH2-H4PteGlu5 concentrations, MTHFD2 is more
active with NADP+ than with NAD+ (Fig. 3d). These data
reveal that MTHFD2, like MTHFD2L, is a dual redox
cofactor-specific methylenetetrahydrofolate dehydrogen-
ase, active with both NAD+ and NADP+ under physio-
logical conditions.
The mitochondrial 1C pathway is now understood to

be especially critical for maintaining NADPH/NADP+

redox homeostasis [19, 23–27]. Despite the fact that
MTHFD2 has been consistently described as an NAD
+-dependent 5,10-CH2-THF dehydrogenase since its ini-
tial description in 1960 [30], several of these studies in-
voked MTHFD2 as the source of mitochondrial NADPH
production. The kinetic analyses reported here clearly
reveal the ability of MTHFD2 to use NADP+ in vitro
and provide a mechanistic basis for these flux analyses

a

c

b

d

Fig. 2 Redox cofactor specificity of MTHFD2 with CH2-H4PteGlu1. CH2-THF dehydrogenase activity of purified MTHFD2 was assayed with respect
to CH2-H4PteGlu1 concentration using NAD+ (1.0 mM) (panel a) or NADP+ (6.0 mM) (panel b). NAD+-dependent reactions also included 25 mM Pi.
The data were fit to the Michaelis-Menten equation. c The ratio of NAD+- to NADP+-dependent activity plotted as a function of CH2-H4PteGlu1
concentration. The 0–100 μM CH2-H4PteGlu1 range is magnified in panel (d). Data for MTHFD2L from ref. [11]. The shaded boxes in c and d indicate
the reported mitochondrial matrix concentration ranges for 5,10-CH2-THF (2.5–25 μM) [41–43]

Table 1 Kinetic parameters for MTHFD2 5,10-CH2-THF dehydrogenase activity. 5,10-CH2-THF kinetic parameters were determined
using saturating concentrations of NAD+ (1.0 mM) or NADP+ (6.0 mM). When NAD+ was used, potassium phosphate (25 mM) and
MgCl2 (5 mM) were also included

CH2-H4PteGlu1 CH2-H4PteGlu5

KM (μM) kcat (s
−1) kcat/KM (s−1 μM−1) KM (μM) kcat (s

−1) kcat/KM (s−1 μM−1)

NAD+-dependent 133 ± 20 12.4 ± 0.71 0.093 359 ± 32 15.4 ± 0.55 0.043

NADP+-dependent 123 ± 24 1.5 ± 0.11 0.012 302 ± 35 6.4 ± 0.29 0.021
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that implicate MTHFD2 in mitochondrial NADPH pro-
duction [24, 26].
Both Mthfd2 and Mthfd2l are expressed during embryo-

genesis but differ in timing of expression. Mthfd2l expres-
sion is low in early developmental stages but begins to
increase at embryonic day 10.5 and remains elevated
through birth while Mthfd2 is expressed more abundantly
during early developmental stages and begins to taper off,
with little or no expression observed in most adult tissues
[4, 11]. Due to the similarity of the enzymatic activities of
MTHFD2 and MTHFD2L, we propose that MTHFD2
may be expressed to boost flux through the mitochondrial
folate pathway during early periods of embryogenesis
when MTHFD2L alone is not sufficient to support high
rates of cell proliferation. Likewise, enhanced expression
of MTHFD2 in cancer cells is predicted to enable in-
creased flux through the mitochondrial 1C metabolic
pathway, enabling unregulated proliferation.
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