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Introduction: Schistosomiasis is a neglected tropical disease (NTD) caused by blood-
dwelling flatworms which develop from skin-penetrating cercariae, the freely swimming
water-borne infective stage of Schistosoma mansoni, into adult worms. This natural
course of infection can be mimicked in experimental mouse models of schistosomiasis.
However, only a maximum of 20-30% of penetrated cercariae mature into fecund adults.
The reasons for this are unknown but could potentially involve soluble factors of the innate
immune system, such as complement factors and preexisting, natural antibodies.

Materials andMethods: Using our recently developed novel serum- and cell-free in vitro
culture system for newly transformed schistosomula (NTS), which supports long-term
larval survival, we investigated the effects of mouse serum and its major soluble
complement factors C1q, C3, C4 as well as preexisting, natural IgM in vitro and
assessed worm development in vivo by infecting complement and soluble (s)IgM-
deficient animals.

Results: In contrast to sera from humans and a broad variety of mammalian species,
serum from mice, surprisingly, killed parasites already at skin stage in vitro. Interestingly,
the most efficient killing component(s) were heat-labile but did not include important
members of the perhaps best known family of heat-labile serum factors, the complement
system, nor consisted of complement-activating natural immunoglobulins. Infection of
complement C1q and sIgM-deficient mice with S. mansoni as well as in vitro tests with
sera from mice deficient in C3 and C4 revealed no major role for these soluble factors in
vivo in regard to parasite maturation, fecundity and associated immunopathology. Rather,
the reduction of parasite maturation from cercariae to adult worms was comparable to
wild-type mice.
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Conclusion: This study reveals that not yet identified heat-labile serum factors are major
selective determinants of the host-specificity of schistosomiasis, by directly controlling
schistosomal development and survival.
Keywords: Schistosoma mansoni, host specificity, newly transformed schistosomula, host serum, schistomicidal
activity, complement system, antibodies
INTRODUCTION

Schistosomiasis, caused by blood-vessel dwelling trematodes
(blood flukes), is a common parasitic disease and considered a
neglected tropical disease (NTD). Schistosoma mansoni, the
pathogen causing devastating intestinal schistosomiasis, is
prevalent in Africa, the Middle East and South America (1, 2).
More than 250 million people are infected, especially in tropical
and subtropical areas, and 700 million, mostly children, are at
risk (3). Thousands of people die each year (4) and several
hundred millions are struggling with post-treatment residual
morbidity (5). In the regions with typical transmission pattern,
60-80% of school-aged children and 20-40% of adults can remain
actively infected (6) despite mass drug administration (MDA)
campaigns. Annual loss of disease-adjusted life years (DALYs) is
estimated at 2.54 million, the second most devastating parasitic
disease after malaria (7), and recently the overall disease burden
has increased further (8). Although the main anthelmintic
treatment, praziquantel , is widely available and its
administration rather simple, development of resistances and
high reinfection rates limit its overall effectiveness (9, 10). In fact,
praziquantel targets the adult worm, but has little or no effect on
its preceding larval stages. Neither does praziquantel target
parasite eggs, the main drivers of the immunopathology,
granuloma-formation, and fibrosis mainly in the liver and
intestinal tract, which is the cause of schistosomiasis-associated
mortality and morbidity (2). Still, for new drug discovery, only
newly transformed schistosomula (NTS) or in vivo generated
adult worms have so far been available. Therefore, we recently
developed a novel in vitro method that enables the development
of other stages (e.g., lung stage, early liver stage and late liver
stage (juvenile worms)), allowing the study of more stage-specific
effects and potentiating effective new drug discovery (11).

Infection of the human host starts when S. mansoni cercariae,
the free-living larvae that are released into fresh water by infected
snails infect humans by penetrating intact skin and transforming
into the succeeding developmental stage, the schistosomulae.
From the moment schistosomulae leave the skin to enter the
vasculature, all subsequent developmental stages (lung-stage
schistosomulae (LuS), early liver-stage schistosomulae (eLiS),
juvenile/late liver-stage schistosomulae (lLiS) and adult worms)
(11) of the parasite take place in intimate contact with the host
blood. Thriving in this hostile environment is a remarkable
feature, as besides cells of the innate and adaptive immune
system, the blood contains a vast array of highly effective
defensive humoral serum factors, including complement
factors and polyreactive natural antibodies that are mostly of
the IgM isotype. Indeed, during its co-evolutionary development
iersin.org 2
with its host, the parasite developed strategies to purposefully
counteract serum proteins (e.g. binding and inhibiting
complement pathways and antibodies (12–14). In mice, widely
used to investigate various aspects of schistosomiasis, closer
scrutiny of results suggests that serum factors may dominate
the apparent inborn resistance to schistosomiasis: first,
only ~30% of penetrating cercariae mature in the mouse (15),
and, second, full-body irradiation or genetic ablation of RAG1,
suppressing cellular immunity, does not notably improve S.
mansoni maturation in mice (16, 17). Such observations
support the notion that not yet identified serum components,
rather than cellular factors, dominate the early murine resistance
to invading cercariae.

In this study, we explore to what extent host-serum factors
influence and contribute to schistosome development and
survival. We report here that, in contrast to human serum,
which in fact promotes and supports NTS survival and
development in vitro, mouse serum rapidly killed NTS, revealing
the presence of strongly schistomicidal serum compound(s) in
murine blood. Furthermore, although the highly efficient
schistomicidal component(s) of mouse serum was clearly heat-
labile, it could not be attributed to the complement system nor
preexisting natural IgM immunoglobulins. In addition, in vivo
infection experiments using mice lacking selected antibody
isotypes or key complement factors did not proceed significantly
different from experiments using wild-type mice, supporting the
notion that the mouse-specific schistomicidal serum activity must
be derived from distinct therapeutic candidate compounds other
than antibodies and three of the most abundant complement
proteins in the serum including the central factor C3.
MATERIALS AND METHODS

S. mansoni Life Cycle Maintenance
A Brazilian strain of S. mansoni, maintained in Biomphalaria
glabrata snails as previously described (18, 19), was used in
all experiments.

Generation of NTS
NTS were generated as previously described (11). Briefly,
cercariae were harvested from infected snails using the light
induction method. After thorough washing, cercariae were
resuspended in ice-cold HBSS medium (Cat. No. H6648,
Sigma-Aldrich, Germany) supplemented with 200 U/ml
Penicillin and 200 mg/ml Streptomycin (Cat. No. P4333,
Sigma-Aldrich, Germany), pipetted vigorously 40 times, and
then vortexed for three minutes at the highest speed to trigger
April 2021 | Volume 12 | Article 635622
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tail loss, which was confirmed by microscopy (10x). Lost tails
were removed by washing extensively with ice-cold HBSS. NTS
were then re-suspended in culture media and counted.

Animals and Sera
C57BL/6 mice were purchased (Envigo, Germany) or bred in-
house. C1q-/-, sIgM-/-, C3-/-, C4-/- or Rag1-/- (C57BL/6
background) were bred in-house as described (20–24). Animals
of both sexes were used. In vivo experiments and serum
collection from all animals were approved and conducted in
accordance with local government authorities Bezirksregierung
Oberbayern (license number AZ 55.2-1-54-2532-115-14). Sera
from horses, swine, sheep, hamsters, rabbits and rats were
prepared from blood collected by venipuncture in non-
medicated Falcon tubes from well-restrained anaesthetized
horses, swine, bovines, sheep or rabbits. Hamsters, rats and
mice were euthanized before serum preparation.

Animals were maintained under specific pathogen-free
conditions at the Institute for Medical Microbiology,
Immunology and Hygiene (MIH) and at the Center for
Preclinical Research (CPR) (Technical University of Munich
(TUM)) in accordance with national and EU guidelines 86/809.

Origin and Preparation of Human and
Non-human Primate Serum
Sera were prepared from fresh blood collected from S. mansoni-
naïve non-human primates (NHP, rhesus macaques) (license
number AZ 33.9-42502-04-12/0704, Deutsches Primatenzentrum,
Göttingen, Germany) and from consenting healthy volunteers with
no previous history of schistosomiasis as approved by the TUM
ethical committee (license number AZ 215/18 S). Fresh blood was
left to clot at room temperature for 30 min., then centrifuged at
1845 g for 20 min and serumwas collected and stored at -20°C until
further use. Sera were collected from both male and female
individuals and pooled before further use. For bovine serum,
commercially available FCS (Sigma, Germany) was used.

NTS Assays With Sera From
Different Hosts
To compare the effects of the serum-specific factors of human
and mouse, the main definitive and laboratory host, respectively,
we cultured NTS (100 NTS in 150 µl) in a 96-well flat bottom
tissue culture plate (Cat. No. 353075, Corning Incorporated,
USA) in hybridoma medium (HM, HybridoMed Diff 1000,
Biochrom GmbH, Germany) supplemented with 200 U/ml
Penicillin and 200 mg/ml Streptomycin, adding their serum at
different dilutions (0-40%) and scored at day seven. The NTS
were incubated at 37°C in 5% CO2 and humidified air.
Additionally, NTS were cultured following the same procedure
in the presence or absence of 20% human or mouse sera and
scored initially at day zero, one and three and then weekly up to
four weeks. Medium was replaced weekly. To determine the host
specificity and observe developmental changes, we cultured and
maintained NTS in hybridoma medium (100 NTS in 150 µl)
supplemented with 200 U/ml Penicillin and 200 mg/ml
Streptomycin with or without 20% serum derived from NHP,
Frontiers in Immunology | www.frontiersin.org 3
horses, swine, bovines, sheep, hamsters, rabbits, or rats for four
weeks. Stage determination was assessed visually using an
inverted microscope (10x) (Zeiss, Germany). The skin stage
(SkS) presented with a plump almost oval shape and irregular
contractions, the lung stage (LuS) presented with an initial
elongation and increase in activity/contractions, the early liver
stage (eLiS) presented itself with a clearly visible bifurcated gut as
well as a drastic increase in overall size. The juvenile worm stage
(lLiS) showed a growing elongation of the aboral part of the body
as well as further differentiation of the oral and ventral sucker.
For heat inactivation, mouse serum was treated at 56°C for
30 min. NTS were maintained in hybridoma medium
supplemented with 200 U/ml Penicillin and 200 mg/ml
Streptomycin (100 NTS in 150 µl) adding 20% mouse serum
with or without heat inactivation and scored accordingly.
Furthermore, NTS were cultured and maintained in
hybridoma medium supplemented with 200 U/ml Penicillin
and 200 mg/ml Streptomycin (100 NTS in 150 µl) with 20%
mouse serum derived from C1q-/-, sIgM-/-, C3-/-, C4-/-, Rag1-/- or
wild-type C57BL/6 mice, and viability was scored at the indicated
time points. Finally, NTS were cultured in media supplemented
simultaneously with both human and mouse sera at different
concentrations (10-20%). In all experiments, all conditions were
carried out in technical triplicates. All experiments were repeated
at least three times.

Viability Scoring of NTS
Viability scoring was performed visually using an inverted
microscope (10x) (Zeiss, Germany) as previously described (11).
Briefly, the scoring was assessed as an average across all parasites per
well and ranged from zero (no movement, heavy granulation,
blurred outline, rough outer tegument and blebs) to one (strongly
reduced motility, rough outer tegument and blebs), to two (reduced
motility or increased uncoordinated activity, slight granulation,
intact tegument with slight deformations) to three (regular smooth
contractions, no blebs and smooth outer surface, no granulation
with clear view of internal structures) (Supplementary Table 1).
After mechanical transformation and before adding serum, each well
of parasites was scored microscopically based on the scoring system
described in Supplementary Table 1. To ensure no excessive
transformational damage, investigation was only continued if a
score of two or higher was reached. Due to applying the score as
an average it was applied in 0.25 steps per well. Experiments were
repeated three times with technical triplicates for each condition.
Each data point is presented here as mean ± SD with pooled data
from all repeat experiments (n=3). For determination of larval
development stage, morphological characteristics were used as
described (11).

Infection of sIgM-/- or C1q-/- Mice and
Assessment of Parasite Maturation
and Fecundity
To assess the maturation and fecundity of parasites, wild-type
(WT), sIgM-/- or C1q-/- mice were infected by injecting
subcutaneously 200 viable cercariae. Each experiment was
repeated at least four times (WT, n=28; sIgM-/-, n=12; C1q-/-,
April 2021 | Volume 12 | Article 635622
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n=34). Survival of animals was monitored up to 11 weeks. At
indicated time points, animals were euthanized, and mature
worms were flushed out of the portal vein to determine worm
burden, size and gender of the worms. Additionally, liver egg
burden was analyzed as described before (18, 25). Briefly, livers
were collected from infected, euthanized animals as mentioned
above at indicated time points minced and digested with KOH
for 2 h at 37°C temperature under continuous shaking. Digested
tissue was centrifuged at 1500 rpm for 10 min and vortexed
before counting under a microscope.

Histopathology
To estimate the size of granuloma, WT, sIgM-/- or C1q-/- mice
were infected by injecting subcutaneously 200 viable cercariae as
mentioned above and livers were collected. Livers were preserved
in 10% buffer neutral formalin and washed with phosphate buffer
saline (PBS) and embedded in paraffin. Thin sections (4 µm)
were prepared and stained with Masson’s Blue. At least three
sections from each sample were evaluated to estimate the size of
granuloma. Average granuloma size from individual mice was
calculated by assessing 30-40 granulomas/section. The
experiment was repeated at least four times.

ELISA
WT or C1q-/- mice were infected by injecting subcutaneously 200
viable cercariae as mentioned above and lymphocytes from
mesenteric lymph nodes (MLN) were collected. Bulk
lymphocytes (2x105) from non-infected WT, infected WT or
C1q-/- mice were cultured in RPMI medium at 37°C and 5% CO2

in humidified air and were stimulated in vitro with soluble egg
antigen (SEA) (20 µg ml-1) or anti-CD3/28 (Miltenyibiotec.com,
Germany) (1 µg ml-1) for 48 h. IFN-g and IL-10 levels were
analyzed in the culture supernatants by ELISA (Ready-SET-Go!,
eBioscience, USA) following the manufacturer’s instructions.
Each experiment was repeated at least three times (total mouse
number WT, n=28; C1q-/-, n=34). Each condition was carried
out as technical triplicates. SEA was prepared as described before
(25, 26).

Quantification and Statistical Analysis
Data were presented as mean ± SD for multiple group comparisons.
One-way ANOVA followed by post-hoc Bonferroni’s analysis was
used for normally distributed data, otherwise it was followed by
post-hoc Kruskal-Wallis’ analysis. For direct comparisons, unpaired
two-tailed Student’s t-test was employed if normally distributed
otherwise a Mann-Whitney-test was employed. A value of P < 0.05
was considered as significant.
RESULTS

Murine Serum Rapidly Kills
Whereas Human Serum Supports
Larval Development
After entering their definite host, schistosomes migrate and
develop in a hostile and immune defense-rich environment,
Frontiers in Immunology | www.frontiersin.org 4
including the skin, blood, lungs and lymphatic system, which
all contain soluble serum factors to different extents. Human is
the primary definitive host for S. mansoni, and mouse is the most
widely used experimental laboratory host. Previous research
suggests that in various mouse strains only a maximum of 30%
of all penetrated cercariae mature to adult worms (15). It was
proven that this is at least partly due to soluble (humoral) serum
factors rather than cellular immunity (15–17). Our recently
established in vitro serum- and cell- free long-term culture
system allowed us to test the effect of host-specific serum
factors (11). We observed that HM supplemented with 20% of
human serum (HSe) supported the larval development and
survival in vitro up to the juvenile worms (lLiS), the pre-
pairing stage of S. mansoni (Figures 1A–C) from skin-stage
schistosomulae (SkS) via lung stage (LuS) and early liver stage
(eLiS). To our surprise, we found that mouse serum (MSe)
efficiently killed all NTS in a concentration-dependent manner
(Figure 1A). Specifically, MSe concentrations higher than 10%
killed all NTS by day three (Figure 1B). In contrast, HSe did not
kill NTS at any concentration tested (1-40%) but rather
supported the larval survival and development in vitro
throughout the entire culture period (minimum of four weeks)
with a viability score nearing three (Figures 1A, B). In addition,
although larval survival was supported in the presence of HM
alone, the development of the NTS was halted at the lung stage
(Figure 1C). Importantly, this developmental halt in the serum-
free condition was overcome by adding 20% HSe, promoting
development to the juvenile worms, the pre-pairing stage of S.
mansoni (Figure 1C). Thus, in contrast to HSe, MSe harbors
non-permissive factors for schistosomal development
and survival.

Host Serum Dictates Larval Survival
and Development
Since mouse and human sera influenced the survival and
development of NTS in such a contrasting manner, we sought
to unveil whether those effects were exclusive to humans and
mice or if sera from other mammalian species also exert similar
effects. To evaluate long-term survival and development of NTS,
we cultured NTS in HM in presence or absence of serum from
schistosome-naïve rhesus macaques as a non-human primate
(NHPSe), horses (HoSe), swine (SwSe), bovines (FCS), sheep
(ShSe), rabbits (RbSe), hamsters (HmSe) or rats (RtSe) at the
same concentration (20%) as before. NTS survived well in the
culture media supplemented with RbSe, with a viability score of
2.92 ± 0.14 after four weeks of culture comparable to that in HSe
(Figures 2A, B). However, in the presence of RbSe, NTS
developed only up to the eLiS and not to juvenile worms like
in HSe (Figure 2C). NTS also survived well in both swine (2.25 ±
0.25) and horse (1.92 ± 0.14) sera (Figure 2A), but again never
reached the eLiS (Figure 2C). In contrast, viability of NTS
cultured in HM supplemented with serum from NHP,
evolutionarily most related to human but not a natural host of
S. mansoni, started to decline quickly within the first three days
and very few NTS survived until week four (Figure 2B) and
again their development stagnated in the lung stage similarly to
April 2021 | Volume 12 | Article 635622

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Anisuzzaman et al. Serum Factors Control Schistosomal Development
ShSe, RtSe and HmSe, which, however, killed nearly all NTS by
week two of culture (Figures 2B, C) but not as effectively as MSe.
This prompted us to characterize the properties of the
components with killing effect in mouse serum.

Both Heat-Stable and Heat-Labile Mouse
Serum Components Contribute to Killing
of S. mansoni
Components of the complement system are crucial for innate
and adaptive immunity (27). Therefore, we investigated whether
the NTS killing capacity of MSe could be abrogated by heat
inactivation since those components are sensitive to heat
treatment. Interestingly, we observed that heat-inactivated MSe
(MSe(HI)) abrogated the killing effect at day three as viability of
NTS is clearly improved (2.10 ± 0.14) compared to non-
inactivated MSe, in presence of which all NTS were already
dead (0 ± 0) (Figure 3A). Within the first seven days of culture,
NTS survived equally well in medium supplemented with MSe
(HI) as in the control HM (Figures 3A, B). Still, even though
NTS initially survived well in the presence of heat-inactivated
serum within the first week of transformation, survival rapidly
declined thereafter, with only few larvae surviving after two or
four weeks (viability of 0.67 ± 0.14) (Figures 3A, B). Taken
together, our results show that heat-labile MSe factors strongly
contribute to rapid killing effects of MSe, and that heat-stable
factors affect long-term survival of NTS.
Frontiers in Immunology | www.frontiersin.org 5
Natural Murine Immunoglobulins Are Not
Involved in Larval Killing
Besides a heat-labile murine serum component that induced
rapid larval killing, we also identified the existence of a slower
acting, heat-stable serum compound, which contributed to the
killing effect of MSe. As outlined earlier, Schistosoma has been
known to bind antibodies (14), presumably in a fashion that
neutralizes their immune effector function. As antibodies are
comparatively heat stable, we tested their contribution to the
killing of NTS in vitro by using sera from completely antibody
deficient Rag1-/-mice or soluble IgM deficient (sIgM-/-) mice. We
observed that sIgM-/- and Rag1-/- sera already significantly
affected NTS viability at day three and killed NTS in the same
manner by day seven (sIgM-/- (0.25 ± 0), Rag1-/-(0 ± 0))
compared to wild-type (WT) (0 ± 0) serum, ruling out the
possibility of lethal effects by natural IgM (Figure 4A) and
immunoglobulins in general (Figure 4B and Supplementary
Figure 1). We next sought to verify whether antibodies indeed
have a subordinate role in the control of Schistosoma in an in vivo
setting. We tested this in the sIgM-/- mouse for several reasons:
first, IgM is the most potent complement activating antibody
isotype. Second, it is the first antibody isotype to emerge upon B
cell activation, before class switching to IgG and further isotypes.
Third, “natural” IgM, with comparatively high avidity to
conserved microbial compounds, is present even in naïve sera
and has the potential to target NTS upon first contact with blood.
A

C

B

FIGURE 1 | Mouse serum rapidly kills NTS whereas human serum promotes their development and survival. NTS were cultured and maintained in hybridoma
medium (HM) with or without host sera at 37°C in 5% CO2 for four weeks. Medium was refreshed weekly. (A) Mouse serum (MSe) kills NTS in a concentration-
dependent manner. NTS were cultured in the absence or presence of increasing concentrations of human serum (HSe) or MSe and the viability scored at day seven.
(B) MSe kills NTS rapidly. NTS were cultured in HM in the absence or presence of 20% of HSe or MSe and viability scored at indicated time points. Results are
representative of at least three individual experiments. Each data point has been shown as mean ± SD of at least three technical replicates. (C) Schematic
presentation of development of schistosomula. NTS were cultured in HM in the presence or absence of HSe or MSe in the same manner and monitored as above
and the development assessed. SkS, skin stage; LuS, lung stage; eLiS, early liver stage; lLiS, late liver stage; p.t., post transformation; s.p., scoring point.
April 2021 | Volume 12 | Article 635622
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Finally, unlike Rag1-/-mice, sIgM-/-mice have polyclonal B and T
cell compartments that ensure a normal secondary lymphoid
organ architecture (28). Still, we did not observe any significant
difference between sIgM-/- and WT mice (Figures 4C–F).
Infected sIgM-deficient mice tolerated the infection compared
to WT mice, survived well up to euthanizing (ten weeks post
infection) (Figure 4C) and showed comparable worm burden
and male/female ratios (Figure 4D). Also, no significant
difference in liver egg burden was observed (Figure 4E),
implying that fecundity of the worm was not influenced by the
loss of IgM. Finally, the development of liver granuloma was
similar in sIgM-/- and WT mice (Figure 4F). Taken together,
these data strongly indicate that antibodies present in MSe do
not significantly influence the survival and maturation
of Schistosoma.

Complement C1q, C3 and C4 Proteins
Have No Role in Larval Killing by
Murine Serum
The complement system is a prototypic example of a heat-labile
cascade of zymogens (29, 30). We, therefore, considered that the
rapid, heat-labile killing of schistosomulae could be due to the
complement system, a heterogeneous group of more than 20
proteins circulating in the blood, with C1q, C3 and C4 playing
key roles in the initiation and/or sustenance of the three main
complement activation pathways (classical, lectin, and
alternative). We thus tested the role of murine C1q, C3 or C4
Frontiers in Immunology | www.frontiersin.org 6
by comparing the effects of sera from C1q-/-, C3-/-, C4-/- or WT
mice on the survival of NTS. Against our expectations, no
obvious improvement in NTS viability was observed in the
absence of C1q (Figure 5A), C3 (Figure 5B) or C4
(Figure 5C). Indeed, all NTS died at day seven in presence of
complement-deficient sera as in WT serum, suggesting that the
tested complement factors, which control all characterized
complement activation pathways, are not directly or
dominantly involved in the rapid killing of NTS by the heat-
labile murine serum compound(s) that we observed in vitro. We
further verified if these in vitro observations would be equally
reflected in the in vivo infection setting. Indeed, C1q-deficient
mice showed no significant difference in survival compared to
WT mice (Figure 5D). C1q-/- and WT mice also displayed
comparable adult worm burden and development, and male
and female ratio (Figure 5E). Eventually, assessment of classical
parameters of schistosome-induced immunopathology, such as
liver egg count (Figure 5F) and granuloma size (Figure 5G), did
not display significant differences. In addition, schistosome egg-
specific immune response as determined by SEA-induced IFN-g
(Supplementary Figure 2A) and IL-10 (Supplementary Figure
2B) secretion by splenocytes was comparable between WT and
C1q-deficient mice. These results imply that the most abundant
heat-labile complement components, such as C1q, C3 and C4,
affecting all three complement activation pathways are not the
compound(s) displaying prominent schistomicidal activity in
murine serum.
A

C

B

FIGURE 2 | Short- and long-term survival of NTS in serum is host specific. NTS were cultured and maintained in hybridoma medium (HM) with or without 20%
mammalian sera at 37°C in 5% CO2 for four weeks. Medium supplemented with 20% of the corresponding serum was refreshed weekly. (A) Serum effects of
mammalian species which ensured long-term survival of NTS. NTS were cultured in the absence (HM) or presence of 20% serum from swine (SwSe), horses (HoSe)
or rabbits (RbSe) and viability was scored. All sera ensured survival of NTS for at least four weeks after transformation. (B) Serum effects of mammalian species that
heavily impaired viability of NTS. NTS were cultured in the absence or presence of 20% serum from rhesus macaques (NHPSe), sheep (ShSe), rats (RtSe) or
hamsters (HmSe) and viability was scored. Results are representative of at least three individual experiments. Each data point has been shown as mean ± SD of at
least three technical replicates. (C) Schematic representation of stage-dependent development of schistosomula. NTS were cultured with sera of indicated species in
the same manner as above and monitored microscopically. SkS, skin stage. LuS, lung stage. eLiS, early liver stage. lLiS, late liver stage. p.t., post transformation.
s.p., scoring point.
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Murine Schistosomicidal Activity Is
Preserved in Human Serum
Given the lack of therapeutic agents that target the different
larval developmental stages of Schistosoma, we tested whether
the schistosomicidal activity of mouse serum is preserved in the
presence of HSe, a prerequisite for any therapeutic potential. To
do so, we incubated NTS in HM supplemented with 10-20% of
mouse and 10-20% of human sera. Strikingly, even in the
presence of HSe, which, previously, strongly promoted larval
developmental and survival, addition of 10-20% MSe killed NTS
overtime (Figure 6A). The killing effect is more pronounced in
presence of 20%MSe. We observed that viability peaked at 1.50 ±
0.20 at day seven and afterwards gradually declined to 0.42 ± 0.10
at week four of culture. Morphologically, although the tegument
of the NTS seems less affected, distinct vacuoles developed in the
gut of the larvae within seven days of culture with increased
Frontiers in Immunology | www.frontiersin.org 7
cytoplasmic granularity in contrast to NTS maintained in HSe
alone (Figure 6B), suggesting that internal organs may possibly
be more vulnerable to the killing effects of MSe than the outer
surface of the larvae. Importantly, the results indicate that
murine schistosomicidal activity is retained in the presence of
HSe, opening the door to further characterization and isolation
of the compound(s) for potential therapeutic use in humans.
DISCUSSION

Despite decades-long MDA with anthelminthics, mostly
praziquantel, the size of the schistosome infected population
has not decreased substantially but has rather increased, resulting
in severe socioeconomic problems in the endemic countries (1, 8,
31). Efforts to develop effective control strategies, such as a
therapeutic agent targeting all mammalian, host-dwelling
stages or a protective vaccine, have increased. But, to rapidly
and efficiently screen a large number of new drugs, an easy,
reliable and cost-effective in vitro culture technique is essential
that supports long-term survival and development of the
different stages of the parasite. We have developed a novel,
reliable and highly standardized in vitro serum and cell-free
method which ensure to test specific effects of potential candidate
components on early and advanced larval stages, phenotypically
comparable to most previously published works for ex vivo
harvested parasites (11, 32).

Currently, the most widely used preclinical animal model for
in vivo schistosome infection studies and for maintenance of the
lifecycle under laboratory condition, is the mouse. It allows
the establishment of patency and mimics most of the
immunopathologies observed in humans. However, this is
achieved at the cost of a surprisingly high loss of invading
cercariae of up to 70%. In this line, we show here that mouse
serum added to hybridoma medium killed NTS very rapidly
within three days, even though hybridoma medium on its own
supports NTS survival for at least four weeks. This finding clearly
suggests that massive death of NTS in the presence of mouse
serum is not merely due to nutrient deficiency present in mouse
serum but rather argues for the presence of a component(s),
which actively kill(s) the larvae. This notion of potentially
harmful soluble factors contained within mice is further
supported by the finding that, in vivo, death of a large number
of penetrants still occurs in completely immunodeficient, whole-
body irradiated mice (15, 16). In sharp contrast, hybridoma
medium supplemented with human serum not only supported
the prolonged survival of NTS but also promoted in vitro
development of NTS up to juvenile worms, the pre-pairing
adult stage. Up to recently, this has only been observed in vitro
upon continuous feeding of larval stages with RBC (33–35),
suggesting further the problematic nature of using mouse models
as a ‘black-box test bed’ to study vaccine or therapeutic targets in
schistosome-challenge infection or to test blood soluble factors
such as complement factors.

The complement system has been shown to play a role in the
killing of pathogens (36); however, hemoparasites, including
A

B

FIGURE 3 | Rapid killing effects of mouse serum are mainly due to heat labile
factors. NTS were cultured in hybridoma medium (HM) supplemented or not
with 20% of native (MSe) or heat-inactivated (56°C for 30 min) (MSe(HI))
mouse sera at 37°C in 5% CO2 for four weeks. Supplemented medium was
refreshed weekly. HM alone was used as a control. (A) Survival of NTS is
prolonged by heat inactivation of serum. Viability scoring was performed at
the indicated time points. Results are representative of at least three individual
experiments. Each data point has been shown as mean ± SD of at least three
technical replicates. (B) Morphological changes of NTS induced by MSe with
and without heat inactivation. Representative photographs of NTS were taken
from the NTS cultured using a digital camera fitted with an inverted
microscope (10x). p.t., post transformation; s.p., scoring point.
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schistosomes, have evolved diversified evasion strategies through
co-evolutionary processes. These include shedding of the surface
membrane glycocalyx by cercariae upon invasion, binding of
antibodies and complement components or expression of
molecules (e.g., paramyosin), which cleave complement factors
(13, 36), indicating that complement and antibodies form a
relevant challenge to the parasite to develop immune evasion
strategies against them. Antibodies and complement are closely
intertwined immune effector systems, with antibodies, especially
antigen-bound IgM, being major initiators of the classical
pathway of complement activation, providing a “docking
point” for C1q, which then leads to C2, C4 and to C3
activation, the central component in which all three
complement pathways, including the alternative pathway,
converge for pathogen lysis (37–39). Although a study reported
Frontiers in Immunology | www.frontiersin.org 8
that C3-deficiency in schistosome-infected mice has no effect on
worm development or liver pathology (40), the role of
complement factors and antibodies in reducing the progression
of schistosomes within the host remains elusive. Within our
studies, we expand on these findings substantially and
demonstrate, using gene-deficient mice, that upstream
components like C1q or IgM did not affect the survival,
development, fecundity or immunopathology of the worms.
Furthermore, we show that neither C1q, C3, C4 nor antibodies
were responsible for the killing effect of mouse serum on NTS.
Furthermore, C2 and factor B, one of the most abundant serum
complement proteins and key activators of the alternative
pathway, are heat sensible (41, 42). Their influence as a major
contributor to the killing effect could be ruled out by heat
inactivation of serum. Additional investigations are required to
A B

C D

E F

FIGURE 4 | Unspecific immunoglobulins (Igs) have no impact on the viability of S. mansoni NTS. NTS were cultured and maintained using hybridoma medium (HM)
supplemented with 20% sIgM-/-, Rag1-/-, or wild-type mouse (WT) sera at 37°C in 5% CO2 for four weeks. HM alone was used as a control. (A) Viability of NTS is
not restored by the loss of soluble IgM (sIgM) or (B) Igs. Results are representative of at least three individual experiments. Each data point has been shown as
mean ± SD of at least three technical replicates. (C) Loss of sIgM does not significantly influence the mortality of S. mansoni-infected mice. sIgM-deficient mice were
infected by injecting 200 cercariae and survival of the animals was monitored on a weekly basis. (D) Worm maturation was not affected by the deficiency of sIgM.
After ten weeks of infection, the animals were euthanized and mature worms from mesenteric veins were flushed out, enumerated and male/female ratio was
determined. Shown data is the mean ± SD of worms per mouse. (E) Lack of sIgM does not affect the fecundity of the worm. Eggs from the liver were isolated and
counted. (F) sIgM does not influence the egg-induced immunopathology of the worm. Liver sections (4 µm) from infected wild-type or sIgM-/- mice were stained with
Masson’s Blue and the diameter of 30-40 granulomas/section was measured microscopically (10x). Data shown is pooled data from five individual experiments (WT,
n=28; sIgM-/-, n=12). Each data point shows a single mouse. Mean ± SD is indicated with bars. p.t., post transformation. s.p., scoring point.
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fully elucidate the role of all the components of the complement
system such as MBL-associated serine proteases (MASPs) (MBL/
lectin pathway). Taken together, we conclude that the major
complement proteins C1q, C3 and C4, key players in classical
and alternative complement pathways, are not playing a major
role in the immunological defense against penetrating S. mansoni
and their development in mice.

To investigate further if the killing effect observed in mouse
serum is unique, we applied our in vitro NTS culture system to
study the effects of serum, harvested from a large number of
mammalian species . The invest igated species were
phylogenetically diverse and included those which are
Frontiers in Immunology | www.frontiersin.org 9
commonly used in various laboratory procedures or models.
Of these, surprisingly rabbit serum, which is phylogenetically
closer to rodents, such as mice, rats and hamsters whose sera
killed NTS, promoted NTS survival and development up to eLiS.
Further development could not be observed, however.
Interestingly though, rabbits are known to be non-permissive
hosts in which development is stunted (43); furthermore, in
rabbits, percentages of worms comparable to mice can be
retrieved (44). Taken together, it seems that in schisto-naïve
rabbits, soluble factors might only play a minor role.
Interestingly, this could indicate two different selection time
points for the determination of host specificity: Mice could be
A B

C D

E F G

FIGURE 5 | Loss of C1q alters neither rapid killing of NTS nor in vivo maturation and immunopathology after S. mansoni infection. NTS were cultured and
maintained using sera collected from (A) C1q-/-, (B) C3-/-, (C) C4-/- or wild-type (WT) mice and viability scoring was performed at the indicated time points.
Hybridoma medium (HM) alone was used as a control. Results are representative of at least three individual experiments. Each data point has been shown as
mean ± SD of at least three technical replicates. (D) Loss of C1q does not significantly influence the mortality of S. mansoni-infected mice. C1q-deficient mice were
infected by injecting 200 cercariae subcutaneously and survival of the animals was monitored on a weekly basis. (E) Worm maturation was not affected by the
deficiency of C1q. After nine to 11 weeks of infection, the animals were euthanized and mature worms from mesenteric veins were flushed out, enumerated and
male/female ratio was determined. (F) Lack of C1q does not affect the fecundity of the worm. Animals were infected and euthanized, and eggs from a weighted liver
were isolated and counted. (G) C1q does not influence the egg-induced immunopathology of the worm. Liver sections (4 µm) from infected wild-type or C1q-/- mice
were stained with Masson’s Blue and the diameter of 30-40 granuloma/section was measured under microscope (10x). Data shown is pooled data from five
individual experiments (WT, n=28; C1q-/-, n=34). Each data point shows a single mouse. Mean ± SD is indicated with bars. p. t., post transformation; s.p.,
scoring point.
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seen as an example for early mechanisms in defense whereas
rabbi t s cou ld be seen as an example for a la t er
defense mechanism.

Another interesting finding within this study was the
dramatic, detrimental effect on early NTS survival caused by
serum from rhesus macaques, the closest relative to humans that
we tested so far. In fact, we noticed that most NTS died rapidly
but some single larvae survived until week four with a low
viability score and reduced motility. Indeed, previous reports
suggest that rhesus macaques have a strong ‘self-cure’
mechanism against both S. mansoni and S. japonicum (45, 46)
whereby the exact mechanism driving this ‘self-cure’mechanism
is still unclear. About 43% of penetrated cercariae became mature
in infected macaques (47) and the recovered parasites from
infected macaques showed severe developmental defects with
altered ultrastructural architecture (45). However, there still
seems to be quite dramatic differences between different non-
human primates; the rhesus macaque, for example, seems to be a
rather poor host compared to the baboon (43). The only
important naturally occurring final host for S. mansoni is the
human (48, 49). This might explain why S. mansoni NTS not
only survived but also developed to juvenile stage in vitro solely
upon addition of serum from humans and not upon addition of
sera from other tested species that supported long term survival
Frontiers in Immunology | www.frontiersin.org 10
and development. Importantly, the schistosomicidal activity of
the killing component(s) in mouse serum is preserved in the
presence of human serum at both lower and higher
concentration, revealing a notable feature for any therapeutic
potential. The schistosomulae-killing mechanism of mouse and
other animal sera is yet to be revealed; however, the
schistosomicidal component(s) present in the ‘killer group’
sera possibly inhibit lipid metabolism, thus preventing the
synthesis of the cuticle of schistosomulae, which was evident
by the development of blabbing and roughness of the tegument.
Moreover, an important group of heat-labile factors in serum to
focus on are enzymatic proteins and lipo-proteins, reported to
exhibit anti-schistosome activity as well (50, 51). This may have
relevance in our setting as the killing component(s) in mouse
serum strongly affect the integrity of schistosome tegument,
which is crucial for parasite survival. Additionally, massive
granules (vacuoles) are developed in the severely devitalized or
dead schistosomulae, indicating restriction of energy
metabolism. However, our research is in progress to identify
the killing component(s) present in the mouse sera as well as
its mechanism.

Cumulatively, our data identify a new level of host-pathogen
interaction in schistosome biology. We present here a
contrasting effect of different host sera on schistosome survival
and development. We reveal that not yet identified component
(s) present in mouse, but not in human serum efficiently kill
NTS. The component(s), which do not belong to the
complement system or antibodies, are partially heat stable and
heat labile. Revealing the identity of the culprit(s) responsible for
the killing are important future tasks that will endorse our
understanding of helminth-host crosstalk at the early
developmental stage and might lead to the discovery of new
drug candidates.
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Supplementary Figure 1 | Morphological effect of Rag1-/- serum on NTS. NTS
were cultured in HM in the presence or absence of 20% WT or Rag1-/- serum.
Microphotographs were taken at indicated time points with a digital camera fitted to
an inverted microscope (10x).

Supplementary Figure 2 | Loss of C1q does not alter cytokine production by
splenocytes. Lymphocytes (2x105) from wild-type or C1q-/- mice infected for 11
weeks with S. mansoni were re-stimulated in vitro with or without (Ctrl) SEA (20 µg/
ml) or anti-CD3/28 (1µg/ml) for 48 h. Secreted levels of IFN-g (A) or IL-10 (B) were
analyzed in the culture supernatants by ELISA. Graph shows representative data
from at least 3 independent infection experiments. Each data point has been shown
as mean ± SD of at least three technical replicates. (*P <0.05, **P <0.01). Inf,
infected.

Supplementary Table 1 | Viability scoring points description.
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