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Abstract: This paper proposes a command filtering backstepping (CFB) scheme with full-state
constraints by leading into time-varying barrier Lyapunov functions (T-BLFs) for a dual-motor servo
system with partial asymmetric dead-zone. Firstly, for the convenience of the controller design, the
conventional partial asymmetric dead-zone model was replaced with a new smooth differentiable
model owing to its non-smoothness. Secondly, neural networks (NNs) were utilized to approximate
the nonlinearity that exists in the dead-zone model, improving the control performance. In addition,
CFB was utilized to deal with the inherent computational explosion problem of the traditional
backstepping method, and an error compensation mechanism was introduced to further reduce
the filtering errors. Then, by applying the T-BLF to the CFB process, the states of the system never
violated the prescribed constraints, and all signals in the dual-motor servo system were bounded.
The tracking error and synchronization error could converge to a small desired neighborhood of the
origin. In the end, the effectiveness of the proposed control scheme was verified through simulations.

Keywords: dual-motor servo systems; robot; neural networks; full-state constraints; time-varying
barrier Lyapunov functions; command filtering backstepping

1. Introduction

Over the past few decades, tracking control of motors have attracted considerable
attention in the field of control theory and engineering [1–5]. Compared to dual-motor
systems, it is difficult to satisfy the precision requirements of large inertia loads owing to the
limited power of single motor systems. Therefore, dual-motor systems have recently been
proposed and utilized in various applications [6–10] because of their advantages of high
power, large inertia, and high-control performance. With the widespread usage of robots,
especially industrial and agricultural robots, such as automatic assembly manipulator
and high-precision automatic gantry hammock, large load and high-power application
requirements are proposed. Thus, it is necessary to explore the control schemes of dual-
motor systems for enabling robots or other control systems with large inertia to operate
effectively. However, due to the complexity of dual-motor models, dealing with the
nonlinearity and designing the control scheme for the systems brings great challenges.

It is universally acknowledged that backstepping technology is an effective tool for
handling nonlinear dynamics. However, the controller design is complex when using
traditional backstepping in dual-motor systems, and there also exists the problem of com-
putational explosion. Thus, dynamic surface control (DSC) was introduced to overcome
the drawback of “explosion of complexity”. In [11,12], the control methods for permanent
magnet synchronous motors (PMSMs) were investigated. Dynamic surface control was
utilized based on adaptive fuzzy logic (AFL) and NNs, respectively, which resolved the
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computational explosion problem, and the desired dynamic performance was achieved.
The authors of [13] combined DSC with AFL in induction motors, guaranteeing that the
closed-loop signals were bounded, and the tracking error converged to a small neighbor-
hood of the origin. However, the problem of errors arose from the first-order filters, which
was not considered in DSC, and which affected the control property. At the same time,
they took no account of introducing an error compensation mechanism to obtain a better
control performance for the controlled systems. Fortunately, a CFB approach was presented
in [14–17] to solve the same problem, and the error compensation was also introduced to
cope with the drawbacks of DSC. Thus, the computational burden of the design process
was reduced, and the tracking error decreased. Fuzzy finite-time CFB was developed for
position tracking control of induction motors with input saturation [15]. It guarantees the
convergence of the tracking error in finite time and improves the dynamic performance of
the control system. In [17], AFL via CFB was proposed for uncertain strict-feedback nonlin-
ear systems with unknown non-symmetric dead-zone input signals. The aforementioned
research was mainly focused on single motor systems or a class of nonlinear systems but
is rarely applied to dual-motor systems. Although the above schemes have shown good
control performances, they are not able to tackle the control problem when there are state
or output constraints.

Obviously, severe performance degradation and safety problems or other problems
can be caused by violation of these constraints. Constraints are widespread in most physical
systems, and many methods have also been discussed to guarantee the stability and good
control performance for various kinds of systems with the state or output constraints.
Barrier Lyapunov functions (BLFs) have been proposed and used in the controller design of
various systems to tackle the state constraints such as spacecraft [18], uncertain robot [19],
hypersonic flight vehicles [20], and robotic manipulators [21]. For robot manipulators,
a tracking controller considering the output error constraints was developed. It was
guaranteed that the system could remain stable by using the bounded BLF when the output
errors exceeded the constrained boundaries [21]. In this research, full-state constraints
were handled using BLF, guaranteeing the uniform ultimate boundedness of the closed-
loop system, and the constraints were never violated. Output constraints also became
front-line research for researchers. The authors of [22,23] combined BLF with NNs to tackle
the output constraint of a robotic manipulator with uncertainties and input dead-zone,
respectively. In [24], the same methods were used to solve multiple output constraints
for a fully actuated marine surface vessel. But in the abovementioned literature, constant
constraints were adopted. In fact, in many practical situations, time-varying constraints are
more realistic because of various changing factors. The integral barrier Lyapunov function
(IBLF) was used in control design to guarantee the condition of output constraints for an
uncertain 2-DOF helicopter system [25]. In [26], a control design without constraint and
full-state constraint was considered, and IBLF was introduced to avoid the violation of the
constraint. For a class of nonlinear strict-feedback systems with uncertain parameters, the
asymmetric T-BLF was applied in each step of the backstepping approach to handle the full-
state constraints in [27]. To sum up, driven by theoretical challenges and practical needs,
the design scheme of constrained control has become a significant research topic. Thus, it
is meaningful to consider the dual-motor servo system subject to full-state constraints.

Being universal approximators, fuzzy logic systems (FLSs) have been applied to
identify the nonlinear terms in controller design [28,29]. For NNs, many outstanding
results have also been given in various systems [30–37]. A new adaptive funnel controller
based on the backstepping method was designed for the servo mechanism with friction
in [31], and the nonlinear parts were approximated by NNs. In [33], the design of NNs
using a broad learning framework was given. An adaptive neural controller was developed
to ensure the tracking performance in the robot system with uncertainties [34]. In a robot
learning system, NNs were used to deal with the effects of dynamic environments [36].
Similar to aforementioned literature, NNs were adopted to identify nonlinear functions in
this paper.
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However, to the authors’ best knowledge, there are few related studies regarding
adaptive NNs based on CFB for a dual-motor servo system. On the other hand, the output
and state constraints for various systems have become a hot research topic. This motivates
the present study. Taking these factors into account, adaptive NNs based on CFB for the
dual-motor servo system with full-state constraints was investigated in this paper.

In this paper, the nonlinearity was handled by CFB and adaptive NNs, which gives a
systematic scheme to solve the nonlinear issues. The T-BLF was employed to tackle the
full-state constraints of the dual-motor servo system. The simulation results prove that the
whole control scheme improves the control performance of the system. Thus, the main
contributions of this paper are summarized as follows:

(1) The mathematical model of the dual-motor servo system with the partial asym-
metric dead-zone was re-established. The T-BLF was utilized to cope with the full-state
constraints in the system so that the states were never transgressed;

(2) By using CFB, the issue of “explosion of complexity” that arises from the traditional
backstepping in the dual-motor system was solved, and the error compensation mechanism
introduced can effectively reduce the filtering errors to gain a smaller tracking error. It can
be proved that the tracking error can converge to a small neighborhood of the origin;

(3) In dual-motor servo systems, adaptive NNs are used to approximate the nonlinear
parts, improving the control precision of the system. By constructing suitable virtual controllers,
the synchronization error eventually converges to a small neighborhood of the origin.

The remainder of this paper is organized as follows. The system descriptions and
preliminaries in Section 2. The controller design in Section 3. The stability analysis is given
in Section 4. Section 5 provides simulation results that illustrate the effectiveness of the
proposed control scheme. Finally, the conclusions are drawn in Section 6.

2. System Descriptions and Preliminaries

Consider the dynamic model of the dual-motor servo system with partial asymmetric
dead-zone in the following form:

.
θL(t) = ωL(t).
θmj(t) = ωmj(t).

ωL(t) = [Dead(θ1) + Dead(θ2)]/JL − bLωL(t)/JL.
ωmj(t) = [Ktjij(t)− Dead(θj)]/Jmj − bjωmj(t)/Jmj.
ij(t) = [−Rjij(t)− Kejωmj(t) + Uj(t)]/Lj,

(1)

where the subscript j(j = 1, 2) represents different groups of motor parameters, and
θmj, ωmj, Ktj, Kej, Jmj, bj, ij, Rj, Lj, Uj are the angular position, angular velocity, electromag-
netic torque constant, back electromotive force constant, inertia, viscous friction coefficients,
current, resistance, inductance, and the control voltage of each motor, respectively. The
angular position, angular velocity, inertia, and viscous friction coefficient of the load are
converted to the motor shaft as θL, ωL, JL, bL. The structure diagram of the dual-motor
synchronized driving servo system is shown in the following Figure 1.

Dead(θj) is the transmission torque and is expressed as the partial asymmetric dead-zone:

Dead(θj) =


k(θj − ∂r), i f θj ≥ ∂r
0, i f θj ∈ (−∂l , ∂r)
k(θj + ∂l), i f θj ≤ −∂l ,

(2)

where θj = θmj − θL, which is the relative displacement, k is the rigidity coefficient, ∂r and
∂l are break points satisfying ∂r > 0, −∂l < 0. But the dead-zone model is non-smooth,
resulting in collision and bringing great difficulty in the controller design. Thus, a new
differentiable dead-zone model with non-symmetric break points is proposed as:

Ts(θj) = kθj +
k
2r

ln(
cosh(r(θj − ∂r))

cosh(r(θj + ∂l))
) +

k
2
(∂l − ∂r), (3)
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in which r is called soft degree, a positive adjustable parameter. The meaning of other
parameters is the same as in Dead(θj).
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Figure 1. Structure diagram of the dual-motor synchronized driving servo system.

Let χ(θj) = Dead(θj)− Ts(θj) and combine (2) and (3), then we have:

χ(θj) =


−k∂r −

kρ(θj)
2r −

k
2 (∂l − ∂r), i f θj ≥ ∂r

−kθj −
kρ(θj)

2r −
k
2 (∂l − ∂r), i f θj ∈ (−∂l , ∂r)

k∂l −
kρ(θj)

2r −
k
2 (∂l − ∂r), i f θj ≤ −∂l ,

(4)

where ρ(θj) = ln(
cosh(r(θj−∂r))

cosh(r(θj+∂l))
).

Owing to dρ/dθj < 0, from (4) we can get:
−k∂r − k

2r ln( 2
e2r∂r+e−2r∂l

) ≤ χ(θj) < 0, i f θj ≥ ∂r

−k∂r − k
2r ln( 2

e2r∂r+e−2r∂l
) < χ(θj) < k∂l +

k
2r ln( 2

e2r∂l+e−2r∂r
), i f θj ∈ (−∂l , ∂r)

0 < χ(θj) ≤ k∂l +
k
2r ln( 2

e2r∂l+e−2r∂r
), i f θj ≤ −∂l .

(5)

The Equation (5) shows that −k∂r − k
2r ln( 2

e2r∂r+e−2r∂l
) ≤ χ(θj) ≤ k∂l +

k
2r ln( 2

e2r∂l+e−2r∂r
).

Therefore, we can conclude that−(k ln 2)/2r < χ(θj) < (k ln 2)/2r, and lim
r→+∞

∣∣χ(θj)
∣∣ = 0.

It implies that the non-smooth property of the dead-zone nonlinearity can be smoothed to any
arbitrary precision by an additional design parameter r in Ts. For instance, r = 5 in Ts1 and
r = 10 in Ts2 as shown in Figure 2. The new dead-zone model greatly facilitates the
controller design in practice.
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Figure 2. Dead-zone approximation: k = 2, ∂r = 1.5, ∂l = 0.5.
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The T-BLF candidate utilized in the control design process can be chosen as fol-
lows [38]:

Vi =
1
2

log(
k2

bi
(t)

k2
bi
(t)− v2

i
), kbi

(t) = (ιi − ψi)e−γit + ψi, i = 1, 2, 3, 4, 5, (6)

where ιi, γi, ψi are positive adjustable parameters. vi will be defined in the following control
design process. Define a compact set Ωv :=

{
|vi| < kbi

(t)
}

and label kvi =
vi

k2
bi
(t)−v2

i
.

All states of the dual-motor servo system are constrained in a compact set, for example,
|xi| ≤ kci (t) with kci (t) > 0.

Remark 1. Owing to the existence of the constraints of control variables and state variables in
many practical systems as well as the time-varying parameters, it is necessary to consider both the
time-varying and constrained characteristics of the dual-motor servo system.

Then, we let a0 = k/JL, a1 = bL/JL,}1j = Ktj/Jmj,}2j = k/Jmj,}3j = bj/Jmj,}4j =
Rj/Lj and }5j = Kej/Lj,}6j = 1/Lj. Define the state variables in the dual-motor servo
system x1 = θL, x2 = ωL, x3j = θmj, x4j = ωmj, x5j = ij.

Therefore, the state equations can be rewritten as:

.
x1 = x2.
x2 = a0x3 − 2a0x1 − a1x2 + Φ2 + Φ3.
x3j = x4j.
x4j = }1jx5j − }2j(x3j − x1) + Φ4j −Φ5j − }3jx4j.
x5j = −}4jx5j − }5jx4j + }6jUj
y = x1,

(7)

where Φ2 = [ k
2r (ρ(θ1)+ ρ(θ2))+ k(∂l − ∂r)]/JL, Φ3 = (χ(θ1)+ χ(θ2))/JL, Φ5j = χ(θj)/Jmj

and Φ4j = [− k
2r ρ(θj)− k

2 (∂l − ∂r)]/Jmj.
For the convenience of control design, the following lemmas are given.

Lemma 1 ([38]). For any constant kb > 0, and any z ∈ R satisfying |z| < kb, we have:

log(
k2

b
k2

b − z2
) <

z2

k2
b − z2

. (8)

Lemma 2 ([39]). The NNs are employed to approximate a continuous function f (x). The approxi-
mation of function f (x) over a compact domain Ω is defined as:

f (x) = W∗TS(x) + ς(x), ∀x ∈ Ω. (9)

S(x) = [s1(x), s2(x), · · · , sl(x)]Tis the basis function vector, and l > 0 denotes the node number
of NNs. ς(x) is the approximation error. W∗ is the ideal value of the NNs’ weight that minimizes

the approximation error ς(x). Thus, we have: W∗ = arg min
W∈RL

{
sup
x∈Ω

∣∣ f (x)−W∗TS(x)
∣∣}. A Gaus-

sian function is usually chosen as the basis function si(x), that is: si(x) = exp[− (x−vi)
T(x−vi)

η2
i

], i =

1, 2, · · · , l, in which vi = [vi1, vi2, · · · , vin] is the center of the basis function and ηi is the width.
Because the ideal NNs weight, W∗, is unknown, we can only use the estimation value Ŵ of W∗ in
the control design, which can be updated online via adaptive laws.

Assumption 1. For any x ∈ Ω, the approximation error satisfies |ς(x)| ≤ εM, where εM > 0 is
an unknown bound.
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Remark 2. NNs have been widely utilized in the modeling and control of nonlinear systems with
unknown dynamics by using their approximations and learning abilities, so NNs were employed to
approximate nonlinearity to obtain good control performance in this paper.

Lemma 3 ([40]). Command filter was defined as:{ .
ϕ1 = ωn ϕ2.
ϕ2 = −2ζωn ϕ2 −ωn(ϕ1 − α).

(10)

If the input signal α satisfies
∣∣ .
α
∣∣ ≤ λ1 and

∣∣ ..α∣∣ ≤ λ2 for all t ≥ 0, where λ1 and λ2 are positive
constants, ϕ1(0) = α(0) and ϕ2(0) = 0, then for any β > 0, there exist ωn > 0 and ζ ∈ (0, 1],
such that |ϕ1 − α| ≤ β,

∣∣ .
ϕ1
∣∣, ∣∣ ..

ϕ1
∣∣, and |

...
ϕ1| are bounded.

Assumption 2. yd and its first derivative
.
yd are known, bounded and smooth with |yd| ≤ kc1(t).

The control objective was to design a smooth CFB controller with an appropriate selec-
tion of control parameters such that (1) all the closed-loop signals of the dual-motor servo
system with a partial asymmetric dead-zone were bounded and the state constraints were
never violated and (2) the output, x1, followed the specified desired trajectory, yd, so that
the tracking error was uniformly ultimately bounded with practical accuracy. Meanwhile,
the speed synchronization error converged to a small neighborhood of the origin.

3. Controller Design of Command Filtering Backstepping with Full-State Constraints

In this section, for the purpose of alleviating the high complexity, an adaptive NN
controller based on CFB is presented for the dual-motor servo system (1) by employing
T-BLF. The development procedure was composed of five steps, and the detailed process is
elaborated as follows.

Owing to the error compensation mechanism utilized in this paper, the compensated
tracking error was designed as vi = zi − ξi, i = 1, 2, 3, 4, 5. zi, as the tracking error, is given
later, and ξi is the error compensation signal as:

.
ξ1 = −k1ξ1 + ξ2 + (x2,c − α1).
ξ2 = −k2ξ2 + ξ3 + (x3,c − α2).
ξ3 = −k3ξ3 + ξ4 + (x4,c − α3).
ξ4 = −k4ξ4 + ξ5 + (x51,c − α41 + x52,c − α42).
ξ5 = −k5ξ5,

(11)

where ξi(0) = 0, i = 1, 2, 3, 4, 5. The compensation signal, ξi, is bounded and denoted as
lim
t→∞
|ξi| ≤

√
2m0/n0, the m0, n0 is defined in a later proof.

In (11), (xi,c − αi−1), i = 2, 3, 4 and (x51,c − α41 + x52,c − α42) are the filtering errors,
which may bring difficulty in obtaining a satisfactory control performance. xi,c, x51,c and
x52,c are the output signals of the command filtering, while the virtual controllers αi−1, α41
and α42 go through the filter. The virtual controllers are defined in the process of con-
troller design.

Step1: According to the control objective of the system (1) and Equation (7), the first
tracking error was defined as z1 = x1 − yd. The time derivative of z1 is

.
z1 =

.
x1 −

.
yd =

x2 −
.
yd, where yd is the reference signal.
In order to make the system states constrained, the first T-BLF candidate was chosen as:

V1 =
1
2

log(
k2

b1
(t)

k2
b1
(t)− v2

1
). (12)
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Then, the time derivative of V1 can be deduced by:

.
V1 =

v1
.
v1−v2

1[
.
kb1

(t)/kb1
(t)]

k2
b1
(t)−v2

1

= kv1 [
.
v1 − v1(

.
kb1(t)/kb1(t))]

= kv1 [
.
x1 −

.
yd −

.
ξ1 − v1(

.
kb1(t)/kb1(t))]

= kv1 [x2 − x2,c + x2,c − α1 + α1 −
.
yd −

.
ξ1 − v1(

.
kb1(t)/kb1(t))].

(13)

The first virtual controller is constructed as:

α1 = −k1z1 +
.
yd + v1(

.
kb1(t)/kb1(t)), (14)

where k1 is a positive adjustable parameter.
By substituting (11) and (14) to (13), we have:

.
V1 = kv1(z2 − k1z1 + k1ξ1 − ξ2)

≤ kv1 v2 − kv1 k1v1.
(15)

Step2: The second tracking error was z2 = x2 − x2,c; thus, the time derivative of z2 is
.
z2 =

.
x2 −

.
x2,c = a0x3 − 2a0x1 − a1x2 + Φ2 + Φ3 −

.
x2,c.

The T-BLF candidate was defined as:

V2 = V1 +
1
2

log(
k2

b2
(t)

k2
b2
(t)− v2

2
). (16)

Then, the time derivative of V2 is:

.
V2 =

.
V1 +

v2
.
v2−v2

2[
.
kb2

(t)/kb2
(t)]

k2
b2
(t)−v2

2

=
.

V1 + kv2 [
.
x2 −

.
x2,c −

.
ξ2 − v2(

.
kb2(t)/kb2(t))]

=
.

V1 + kv2 [a0x3 − x3,c + x3,c − α2 + α2 − 2a0x1 − a1x2 + Φ2 + Φ3 −
.
x2,c −

.
ξ2

−v2(
.
kb2(t)/kb2(t))].

(17)

Select the second virtual controller:

α2 = −k2z2 +
.
x2,c + 2a0x1 + a1x2 + ŴT

2 S2 − kv1(k
2
b2
− v2

2)− kv2

+v2(
.
kb2(t)/kb2(t)),

(18)

where k2 is a positive adjustable parameter, and Ŵ2 is the estimation value of W∗2 .
By substituting (11) and (18) to (17) yields:

.
V2 =

.
V1 + kv2(z3 − k2z2 + ŴT

2 S2 − kv1(k
2
b2
− v2

2)− kv2 + Φ2 + Φ3 + k2ξ2 − ξ3)

=
.

V1 + kv2(v3 − k2v2 + (W̃T
2 S2 − ς2)− kv1(k

2
b2
− v2

2)− kv2 + Φ3)

= −
2
∑

i=1
kvi kivi + kv2 v3 + kv2W̃T

2 S2 − kv2 ς2 + kv2 Φ3 − k2
v2

,

(19)

in which Φ2 = f2(x) = W∗T2 S2(x) + ς2(x).
We have Φ3 = (χ(θ1) + χ(θ2))/JL and−(k ln 2)/2r < χ(θj) < (k ln 2)/2r, so Φ3 < H2.

In addition, kv2 Φ3 satisfies kv2 Φ3 ≤ 1
2 k2

v2
+ 1

2 H2
2 according to the Young’s inequality. Simi-

larly, from Assumption 1, we can obtain−kv2 ς2 ≤ 1
2 k2

v2
+ 1

2 ε2
2, since ς2 ≤ ε2. H2 is a positive

parameter, ε2 is an unknown bound, and ς2 is the approximation error in this procedure.
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Therefore, we have the final result of taking the time derivative of V2:

.
V2 ≤ −

2
∑

i=1
kvi kivi + kv2 v3 + kv2W̃T

2 S2 +
1
2 k2

v2
+ 1

2 ε2
2 +

1
2 k2

v2
+ 1

2 H2
2 − k2

v2

= −
2
∑

i=1
kvi kivi + kv2 v3 + kv2W̃T

2 S2 +
1
2 ε2

2 +
1
2 H2

2 .
(20)

Step3: Design the third tracking error z3 = a0x3 − x3,c, and its time derivative is
.
z3 = a0

.
x3 −

.
x3,c = a0x4 −

.
x3,c.

The T-BLF candidate in this step was chosen as:

V3 = V2 +
1
2

log(
k2

b3
(t)

k2
b3
(t)− v2

3
). (21)

Analogously, differentiating V3 with respect to time, we obtain:

.
V3 =

.
V2 +

v3
.
v3−v2

3[
.
kb3

(t)/kb3
(t)]

k2
b3
(t)−v2

3

=
.

V2 + kv3 [a0
.
x3 −

.
x3,c −

.
ξ3 − v3(

.
kb3(t)/kb3(t))]

=
.

V2 + kv3 [a0x4 − x4,c + x4,c − α3 + α3 −
.
x3,c −

.
ξ3 − v3(

.
kb3(t)/kb3(t))].

(22)

The virtual controller is designed as:

α3 = −k3z3 +
.
x3,c − kv2(k

2
b3
− v2

3) + v3(
.
kb3(t)/kb3(t)), (23)

where k3 is a positive adjustable parameter.
By introducing (11) and (23) to (22) yields:

.
V3 =

.
V2 + kv3 [z4 − k3z3 − kv2(k

2
b3
− v2

3) + k3ξ3 − ξ4]

≤ −
3
∑

i=1
kvi kivi + kv3 v4 + kv2W̃T

2 S2 +
1
2 ε2

2 +
1
2 H2

2 .
(24)

Step4: The tracking error in the fourth subsystem was z4j = a0x4j − 1
2 x4,c, j = 1, 2.

From (7), we can obtain
.
z4j = a0

.
x4j − 1

2
.
x4,c = a0(}1jx5j − }2j(x3j − x1) + Φ4j − Φ5j −

}3jx4j)− 1
2

.
x4,c. Define z4 = z41 + z42, zs = z42 − z41. zs is the speed synchronization error

between two motors, which was used later.
The T-BLF candidate can be selected as:

V4 = V3 +
1
2

log(
k2

b4
(t)

k2
b4
(t)− v2

4
). (25)

Then, the time derivative of V4 can be deduced by:
.

V4 =
.

V3 +
v4

.
v4−v2

4[
.
kb4

(t)/kb4
(t)]

k2
b4
(t)−v2

4

=
.

V3 + kv4 [a0
.
x4 −

.
x4,c −

.
ξ4 − v4(

.
kb4(t)/kb4(t))]

=
.

V3 + kv4 [a0(}11x51 − }21(x31 − x1) + Φ41 −Φ51 − }31x41 + }12x52−
}22(x32 − x1) + Φ42 −Φ52 − }32x42)−

.
x4,c −

.
ξ4 − v4(

.
kb4(t)/kb4(t))]

=
.

V3 + kv4 [a0}11x51 − x51,c + a0}12x52 − x52,c + (x51,c − α41 + x52,c − α42) + α41
+α42 + a0(−}21x31 + }21x1 − }31x41 − }22x32 + }22x1 − }32x42) + a0(Φ41 + Φ42)

−a0(Φ51 + Φ52)−
.
x4,c −

.
ξ4 − v4(

.
kb4(t)/kb4(t))].

(26)
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Design the virtual controller:

α4j = −k4z4j +
1
2

.
x4,c + a0(}2j(x3j − x1) + }3jx4j) + ŴT

4jS4j

− 1
2 kv3(k

2
b4
− v2

4)− kv4 +
1
2 v4(

.
kb4(t)/kb4(t)) + (−1)j+1kSzs,

(27)

where k4 and kS are positive adjustable parameters, and Ŵ4j is the estimation value of W∗4j.

Remark 3. (−1)j+1kSzs in α4j is the synchronization feedback signal, which is designed to decrease
the synchronization error between two motors.

By substituting (11) and (27) to (26), we have:

.
V4 ≤ −

4
∑

i=1
kvi kivi + kv4 v5 + kv2W̃T

2 S2 +
1
2 ε2

2 +
1
2 H2

2 + kv4W̃T
41S41 + kv4W̃T

42S42

−kv4 ς41 − kv4 ς42 − a0kv4 Φ51 − a0kv4 Φ52 − 2k2
v4

.
(28)

Similar to step2, there exists Φ4j = f4j(x) = W∗T4j S4j(x) + ς4j(x) in this step. We can

get−kv4 ς41 ≤ 1
2 ε2

41 +
1
2 k2

v4
and−kv4 ς42 ≤ 1

2 ε2
42 +

1
2 k2

v4
by combining the Young’s inequality

and Assumption 1, in which ς41 < ε41, ς42 < ε42 are satisfied. ε41, ε42 are unknown
bound, and ς41, ς42 are the approximation errors. We have known Φ5j = χ(θj)/Jmj and
−(k ln 2)/2r < χ(θj) < (k ln 2)/2r, thus −a0Φ51 < H41 and −a0Φ52 < 1

2 H42 are obtained.
H41 and H42 are positive parameters. In the end, we have −a0kv4 Φ51 ≤ 1

2 H2
41 +

1
2 k2

v4
and

−a0kv4 Φ52 ≤ 1
2 H2

42 +
1
2 k2

v4
in accordance with the Young’s inequality.

Therefore, we obtain:

.
V4 ≤ −

4
∑

i=1
kvi kivi + kv4 v5 + kv2W̃T

2 S2 + kv4W̃T
41S41 + kv4W̃T

42S42 +
1
2 ε2

2 +
1
2 H2

2+

1
2 ε2

41 +
1
2 H2

41 +
1
2 ε2

42 +
1
2 H2

42.
(29)

Step5: The tracking error in this subsystem was designed as z5j = a0}1jx5j − x5j,c,
j = 1, 2. Then, its time derivative is

.
z5j = a0}1j

.
x5j −

.
x5j,c = a0}1j(−}4jx5j − }5jx4j +

}6juj)−
.
x5j,c. Define z5 = z51 + z52 and zT = z52 − z51. zT is the torque synchronization

error between two motors, which is also used later.
The T-BLF candidate is defined as:

V5 = V4 +
1
2

log(
k2

b5
(t)

k2
b5
(t)− v2

5
). (30)

Then, we have the time derivative of V5:

.
V5 =

.
V4 +

v5
.
v5−v2

5[
.
kb5

(t)/kb5
(t)]

k2
b5
(t)−v2

5

=
.

V4 + kv5 [a0}11
.
x51 −

.
x51,c + a0}12

.
x52 −

.
x52,c −

.
ξ5 − v5(

.
kb5(t)/kb5(t))]

=
.

V4 + kv5 [a0}11(−}41x51 − }51x41 + }61u1)−
.
x51,c + a0}12(−}42x52

−}52x42 + }62u2)−
.
x52,c −

.
ξ5 − v5(

.
kb5(t)/kb5(t))].

(31)

Construct the actual control signal as:

Uj = 1
a0}1j}6j

[−k5z5j +
.
x5j,c + a0}1j(}4jx5j + }5jx4j)− 1

2 kv4(k
2
b5
− v2

5)

+ 1
2 v5(

.
kb5(t)/kb5(t))] + (−1)j+1 1

}1j}6j
[kTzT + 1

2a0
zs],

(32)

in which k5 and kT are positive adjustable parameters.
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Remark 4. In Uj, (−1)j+1 1
}1j}6j

[kTzT + 1
2a0

zs] is also the synchronization feedback signal. In
order to improve the control accuracy and avoid unnecessary energy consumption in the dual-motor
servo system, synchronization feedback signals are designed.

Finally, substituting (11) and (32) into (31) yields:

.
V5 ≤ −

5
∑

i=1
kvi kivi + kv2W̃T

2 S2 + kv4W̃T
41S41 + kv4W̃T

42S42 +
1
2 ε2

2 +
1
2 H2

2+

1
2 ε2

41 +
1
2 H2

41 +
1
2 ε2

42 +
1
2 H2

42.
(33)

4. Stability Analysis

Theorem 1. Considering the dual-motor servo system (1) satisfying Assumptions 1 and 2, the
virtual controllers (14), (18), (23), (27) and actual controller (32), along with the adaptive laws (36)
and compensating signals (11) are constructed. If the control design parameters are all appropriately
selected, it can be ensured that tracking error and synchronization error converge to a small
neighborhood of the origin. In addition, all the signals in this closed-loop system are bounded and
the state constraints are never violated.

Proof of Theorem 1. The total Lyapunov function for the dual-motor servo system can be
written as

V = V5 +
1
2

W̃2
TΓ−1

2 W̃2 +
1
2

W̃41
TΓ−1

41 W̃41 +
1
2

W̃42
TΓ−1

42 W̃42 +
1
2

z2
s +

1
2

z2
T . (34)

Remark 5. There exist synchronization error and torque error in the studied system, so they are
added to the total Lyapunov function, guaranteeing the convergence of these errors.

Combining with (33), the derivative of V with respect to time can be deduced by:

.
V =

.
V5 + W̃2

TΓ−1
2

.
Ŵ2 + W̃41

TΓ−1
41

.
Ŵ41 + W̃42

TΓ−1
42

.
Ŵ42 + zs

.
zs + zT

.
zT

≤ −
5
∑

i=1
kvi kivi + W̃T

2 (kv2 S2 + Γ−1
2

.
Ŵ2) + W̃T

41(kv4 S41 + Γ−1
41

.
Ŵ41)+

W̃T
42(kv4 S42 + Γ−1

42

.
Ŵ42) + zs

.
zs + zT

.
zT + 1

2 ε2
2 +

1
2 H2

2 +
1
2 ε2

41+
1
2 H2

41 +
1
2 ε2

42 +
1
2 H2

42.

(35)

According to (35), adaptive laws are designed as follows:
.

Ŵ2 = −Γ2S2kv2 −m2Ŵ2.
Ŵ41 = −Γ41S41kv4 −m41Ŵ41.
Ŵ42 = −Γ42S42kv4 −m42Ŵ42.

(36)
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Taking the time derivative of zs, and combining with the virtual control signals, we
then have:

.
zs =

.
z42 −

.
z41

= a0[}12x52 − }22(x32 − x1) + Φ42 −Φ52 − }32x42 − }11x51+
}21(x31 − x1)−Φ41 + Φ51 + }31x41]
= a0}12x52 − x52,c − a0}11x51 + x51,c + (x52,c − α42 − x51,c + α41)−
α41 + α42 + a0(}21x31 − }21x1 + }31x41 − }22x32 + }22x1 − }32x42)+
a0(Φ42 −Φ41) + a0(Φ51 −Φ52)

= zT + (x52,c − α42 − x51,c + α41)− 2kSzs + (W̃T
42S42 − ς42)+

(−W̃T
41S41 + ς41) + a0(Φ51 −Φ52)

≤ zT − 2kSzs + β0 + ϑ + ε0 + H3
= zT − 2kSzs + λ,

(37)

in which a0(Φ51 − Φ52) < H3, β0 + ϑ + ε0 + H3 = λ. β0, ϑ, ε0, H3 and λ are all positive
parameters.

Remark 6. From Lemma 3, we know |x52,c − α42 − x51,c + α41| ≤ β0 if appropriate filtering
parameters are selected. The speed of the two motors is required to be synchronized, that is, the
speed difference between them is almost zero. The only different variable of the two approximation
parts is the speed, so W̃T

42S42− W̃T
41S41 is bounded, and denoted as (W̃T

42S42− W̃T
41S41) ≤ ϑ. From

Assumption 1, we can easily know that (ς41 − ς42) ≤ ε0.

Similarly, the
.
zT is calculated:

.
zT =

.
z52 −

.
z51

= a0}12
.
x52 −

.
x52,c − a0}11

.
x51 +

.
x51,c

= a0}12(−}42x52 − }52x42 + }62U2)−
.
x52,c − a0}11(−}41x51

−}51x41 + }61U1) +
.
x51,c

= −(k5 + 2a0kT)zT − zs.

(38)

From (37) and (38), we can obtain:

zs
.
zs + zT

.
zT = −2kSz2

s − (k5 + 2a0kT)z2
T + λzs ≤ −(2kS − 1)z2

s − (k5 + 2a0kT)z2
T +

1
4

λ2. (39)

Combining the Equations (35), (36), and (39), we conclude:

.
V =

.
V5 + W̃2

TΓ−1
2

.
Ŵ2 + W̃41

TΓ−1
41

.
Ŵ41 + W̃42

TΓ−1
42

.
Ŵ42 + zs

.
zs + zT

.
zT

≤ −
5
∑

i=1
kvi kivi −m2W̃T

2 Γ−1
2 Ŵ2 −m41W̃T

41Γ−1
41 Ŵ41 −m42W̃T

42Γ−1
42 Ŵ42

−(2kS − 1)z2
s − (k5 + 2a0kT)z2

T + 1
4 λ2 + 1

2 ε2
2 +

1
2 H2

2 +
1
2 ε2

41+
1
2 H2

41 +
1
2 ε2

42 +
1
2 H2

42

≤ −
5
∑

i=1
kvi kivi − m2

2 W̃2
TΓ−1

2 W̃2 − m41
2 W̃41

TΓ−1
41 W̃41 − m42

2 W̃42
TΓ−1

42 W̃42

−(2kS − 1)z2
s − (k5 + 2a0kT)z2

T + m2
2 W∗2

TΓ−1
2 W∗2 + m41

2 W∗41
TΓ−1

41 W∗41+
m42

2 W∗42
TΓ−1

42 W∗42 +
1
4 λ2 + 1

2 ε2
2 +

1
2 H2

2 +
1
2 ε2

41 +
1
2 H2

41 +
1
2 ε2

42 +
1
2 H2

42.

(40)

According to Lemma 1, we obtain:

.
V ≤ −

5
∑

i=1
ki log(

k2
bi
(t)

k2
bi
(t)−v2

i
)− m2

2 W̃2
TΓ−1

2 W̃2 − m41
2 W̃41

TΓ−1
41 W̃41−

m42
2 W̃42

TΓ−1
42 W̃42 − (2kS − 1)z2

s − (k5 + 2a0kT)z2
T + m2

2 W∗2
TΓ−1

2 W∗2
+m41

2 W∗41
TΓ−1

41 W∗41 +
m42

2 W∗42
TΓ−1

42 W∗42 +
1
4 λ2 + 1

2 ε2
2 +

1
2 H2

2 +
1
2 ε2

41+
1
2 H2

41 +
1
2 ε2

42 +
1
2 H2

42
≤ −q0V + p0,

(41)
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where q0 = min{2k1, 2k2, 2k3, 2k4, 2k5, m2, m41, m42, 2(2kS − 1), 2(k5 + 2a0kT)},
p0 = m2

2 W∗2
TΓ−1

2 W∗2 + m41
2 W∗41

TΓ−1
41 W∗41 +

m42
2 W∗42

TΓ−1
42 W∗42 +

1
4 λ2 + 1

2 ε2
2 +

1
2 H2

2 +
1
2 ε2

41+
1
2 H2

41 +
1
2 ε2

42 +
1
2 H2

42.
From (41), we can obtain:

V ≤ (V(t0)− p0/q0)e−q0(t−t0) + p0/q0 ≤ V(t0) + p0/q0, ∀t ≥ t0, (42)

further

log(
k2

bi
(t)

k2
bi
(t)− v2

i
) ≤ 2(V(t0)− p0/q0)e−q0(t−t0) + 2p0/q0. (43)

Take the natural logarithm for (43) and we have
k2

bi
(t)

k2
bi
(t)−v2

i
≤ e2(V(t0)−p0/q0)e−q0(t−t0)+2p0/q0 .

Thus, we have |vi| ≤ kbi

√
1− e−2(V(t0)−p0/q0)e−q0(t−t0)−2p0/q0 .

When t→ ∞ , we get:
|vi| ≤ kbi

√
1− e−2p0/q0 . (44)

A Lyapunov function was designed for the compensation signal system as:

V0 =
1
2

ξ2
1 +

1
2

ξ2
2 +

1
2

ξ2
3 +

1
2

ξ2
4 +

1
2

ξ2
5. (45)

It can be obtained by the time derivative of V0:

.
V0 = ξ1

.
ξ1 + ξ2

.
ξ2 + ξ3

.
ξ3 + ξ4

.
ξ4 + ξ5

.
ξ5

= −k1ξ2
1 − k2ξ2

2 − k3ξ2
3 − k4ξ2

4 − k5ξ2
5 + ξ1ξ2 + ξ2ξ3 + ξ3ξ4 + ξ4ξ5

+ξ1(x2,c − α1) + ξ2(x3,c − α2) + ξ3(x4,c − α3) + ξ4(x51,c − α41 + x52,c − α42).
(46)

According to the Lemma 3, we know that |x2,c − α1| ≤ β1, |x3,c − α2| ≤ β2, |x4,c − α3| ≤ β3
and |x51,c − α41 + x52,c − α42| ≤ β4.

Therefore, we have:
.

V0 ≤ −(k1 − 1)ξ2
1 − (k2 − 3

2 )ξ
2
2 − (k3 − 3

2 )ξ
2
3 − (k4 − 3

2 )ξ
2
4 − (k5 − 1

2 )ξ
2
5+

1
2 β2

1 +
1
2 β2

2 +
1
2 β2

3 +
1
2 β2

4
≤ −n0V0 + m0,

(47)

where n0 = min{2(k1 − 1), 2k2 − 3, 2k3 − 3, 2k4 − 3, 2k5 − 1}, m0 = 1
2 β2

1 +
1
2 β2

2 +
1
2 β2

3 +
1
2 β2

4, β1, β2, β3, β4 are positive parameters.
According to (47), when t→ ∞ , we have:

|ξi| ≤
√

2m0/n0. (48)

From the error systems designed, we can obtain |z1| ≤ |v1|+ |ξ1| ≤ kb1

√
1− e−2p0/q0 +√

2m0/n0 by combining (44) and (48). It denotes that the tracking error tends to a small
neighborhood of the origin if the control parameters are selected properly. In the actual
applications of the dual-motor servo system, there exists a positive constant Y, making
|yd| < Y < kc1 , so |x1| ≤ |z1| + |yd| ≤ kb1 +

√
2m0/n0 + Y ≤ kc1 . We know the vir-

tual control signal α1 is bounded, satisfying |α1| < σ1. In addition, |x2,c − α1| ≤ β1, so
|x2,c| ≤ σ1 + β1 ≤ τ1. Ultimately, we have |x2| ≤ |z2|+ |x2,c| < kb2 +

√
2m0/n0 + τ1 < kc2 .

Similarly, we also get |xi| ≤ kci , i = 3, 4, 5. �

5. Simulation

In this section, the simulation results show better control performance of adaptive
NNs based on CFB considering full-state constraints. The application of this method can
achieve good control performance for tracking the desired reference signal and reducing
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the synchronization error in dual-motor servo systems with partial asymmetric dead-zone.
The parameters of motors are given as follows

Jm1 = 4× 10−3kg×m2

Ke1 = 0.76V/rad
Kt1 = 1.1N ·m/A
R1 = 2.5Ω
L1 = 5× 10−2H,


Jm2 = 8× 10−3kg×m2

Ke2 = 0.51V/rad
Kt2 = 0.9N ·m/A
R2 = 3Ω
L2 = 4× 10−2H.

The inertia of the load is defined as JL = 2(Jm1 + Jm2). The control parameters are
chosen in the desired range to guarantee the boundedness of signals, constraints of the
state, and the stability of the closed-loop system. Thus, the selected filter parameters
and control parameters are: ωn = 11, 000, ζ = 1, k1 = 1000, k2 = 80, k3 = 20, k4 = 10,
k5 = 10, kS = 9000, kT = 1. The designed parameters in adaptive laws are as follows:

m2 = 1× 10−3, m41 = 1× 10−3, m42 = 1× 10−3,
Γ2 = diag[8× 102, 8× 102, 8× 102, 8× 102, 8× 102],
Γ41 = diag[6× 106, 6× 106, 6× 106, 6× 106, 6× 106],
Γ42 = diag[6× 106, 6× 106, 6× 106, 6× 106, 6× 106].

In the dead-zone model and time-varying bounded functions, kbi
, the parameters

selected were:

r = 10, k = 4, ∂r = 0.0001, ∂l = 0.0002,
ι1 = 0.2, ι2 = 0.3, ι3 = 0.25, ι4 = 0.2, ι5 = 0.24,
ψ1 = 0.002, ψ2 = 0.001, ψ3 = 0.002, ψ4 = 0.001, ψ5 = 0.002,
γ1 = 20, γ2 = 25, γ3 = 20, γ4 = 25, γ5 = 20.

The membership functions were designed as:

s1(xi) = exp(−(xi − 8)T(xi − 8)/6),
s2(xi) = exp(−(xi − 4)T(xi − 4)/6),
s3(xi) = exp(−(xi − 0)T(xi − 0)/6),
s4(xi) = exp(−(xi + 4)T(xi + 4)/6),
s5(xi) = exp(−(xi + 8)T(xi + 8)/6).

The expected tracking signal was a sinusoidal signal, yd = π
3 sin(π

2 t). To show
the effectiveness of the proposed algorithm, NNs based on CFB without considering
state constraints were applied to compare control performances with it. We can see the
advantages of the CFB with state constraints in Figures 3–10.

Figure 3 shows the position of the tracking performance of the dual-motor servo sys-
tem under the sinusoidal reference signal that contains CFB with and without constraints.
From it, a fairly good tracking performance was obtained, and the effectiveness of our
proposed method was proved.

The tracking error and synchronization error of the system are shown by Figures 4
and 5. Apparently, it is easy to see that the tracking performance was superior when we
reflect on the state constraints of the dual-motor system as well as the synchronization
error. Therefore, it is necessary to consider this situation in a closed-loop system according
to practical applications.



Sensors 2021, 21, 4261 14 of 18
Sensors 2021, 21, x FOR PEER REVIEW 15 of 19 
 

 

  

(a) (b) 

Figure 3. Position tracking performance: (a) with constraints; (b) without constraints. 

 

Figure 4. Tracking error. 

 

Figure 5. Speed error. 

Remark 7. Since the position and speed curves of motor 2 differ only one error from that of motor 

1, and we have known that the error between them was very small from Figure 5, at this point, only 

the curves of motor 1 are presented and that of motor 2 are omitted.  

Figures 6 and 7 show the position and speed of motor 1 separately under CFB with 

and without constraints. A better performance can be seen in the figures with state con-

straints. The trajectories of load speed and the current, 1i , are illustrated respectively in 

Figures 8 and 9. 

Figure 3. Position tracking performance: (a) with constraints; (b) without constraints.

Sensors 2021, 21, x FOR PEER REVIEW 15 of 19 
 

 

  

(a) (b) 

Figure 3. Position tracking performance: (a) with constraints; (b) without constraints. 

 

Figure 4. Tracking error. 

 

Figure 5. Speed error. 

Remark 7. Since the position and speed curves of motor 2 differ only one error from that of motor 

1, and we have known that the error between them was very small from Figure 5, at this point, only 

the curves of motor 1 are presented and that of motor 2 are omitted.  

Figures 6 and 7 show the position and speed of motor 1 separately under CFB with 

and without constraints. A better performance can be seen in the figures with state con-

straints. The trajectories of load speed and the current, 1i , are illustrated respectively in 

Figures 8 and 9. 

Figure 4. Tracking error.

Sensors 2021, 21, x FOR PEER REVIEW 15 of 19 
 

 

  

(a) (b) 

Figure 3. Position tracking performance: (a) with constraints; (b) without constraints. 

 

Figure 4. Tracking error. 

 

Figure 5. Speed error. 

Remark 7. Since the position and speed curves of motor 2 differ only one error from that of motor 

1, and we have known that the error between them was very small from Figure 5, at this point, only 

the curves of motor 1 are presented and that of motor 2 are omitted.  

Figures 6 and 7 show the position and speed of motor 1 separately under CFB with 

and without constraints. A better performance can be seen in the figures with state con-

straints. The trajectories of load speed and the current, 1i , are illustrated respectively in 

Figures 8 and 9. 

Figure 5. Speed error.

Remark 7. Since the position and speed curves of motor 2 differ only one error from that of motor
1, and we have known that the error between them was very small from Figure 5, at this point, only
the curves of motor 1 are presented and that of motor 2 are omitted.

Figures 6 and 7 show the position and speed of motor 1 separately under CFB with
and without constraints. A better performance can be seen in the figures with state
constraints. The trajectories of load speed and the current, i1, are illustrated respectively in
Figures 8 and 9.
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Remark 8. The current of motor 1 was similar to that of motor 2, so the latter is not presented here.

The compensated tracking errors are shown in Figure 10. Evidently, when considering
the state constraints, the system showed superior dynamic performance, and all the com-
pensated tracking errors did not go beyond the boundaries. However, when this case was
not considered in the system, the second and fourth compensated tracking errors exceed
the time-varying boundaries as shown in Figure 10d,e, which caused the violation of the
state constraints in the system.

Sensors 2021, 21, x FOR PEER REVIEW 17 of 19 
 

 

Remark 8. The current of motor 1 was similar to that of motor 2, so the latter is not presented 

here. 

The compensated tracking errors are shown in Figure 10. Evidently, when consider-

ing the state constraints, the system showed superior dynamic performance, and all the 

compensated tracking errors did not go beyond the boundaries. However, when this case 

was not considered in the system, the second and fourth compensated tracking errors ex-

ceed the time-varying boundaries as shown in Figure 10d,e, which caused the violation of 

the state constraints in the system. 

   

(a) (b) (c) 

  

(d) (e) 

Figure 10. Compensated tracking errors: (a) for the first subsystem; (b) for the third subsystem; (c) for the fifth subsystem; 

(d) for the second subsystem; (e) for the fourth subsystem. 

Remark 9. In practical applications, if this situation is not taken into consideration, it is probable 

that instability and even greater losses are caused in the entire system. Thus, it makes sense to do 

that. In brief, the CFB with full-state constraints via T-BLF in this paper can ensure that the con-

straints are not transgressed. 

6. Conclusions 

In this paper, the CFB considering full-state constraints for the dual-motor servo sys-

tem with partial asymmetric dead-zone was investigated via T-BLF. The proposed T-BLF 

satisfied the requirement of time-varying constraints in practice occasions compared with 

other existing constrained schemes. The CFB was applied to the dual-motor system, 

avoiding the complex computational explosion problems. In addition, an error compen-

sation mechanism was introduced that could effectively reduce the filtering errors of the 

system. Based on CFB, the adaptive NNs could well approximate the nonlinear parts of 

the dead-zone model and reduce the adverse effects of this part on the system. Through 

use of the control schemes, all signals were uniformly ultimately bounded, and the state 

Figure 10. Compensated tracking errors: (a) for the first subsystem; (b) for the third subsystem; (c) for the fifth subsystem;
(d) for the second subsystem; (e) for the fourth subsystem.

Remark 9. In practical applications, if this situation is not taken into consideration, it is probable
that instability and even greater losses are caused in the entire system. Thus, it makes sense to
do that. In brief, the CFB with full-state constraints via T-BLF in this paper can ensure that the
constraints are not transgressed.

6. Conclusions

In this paper, the CFB considering full-state constraints for the dual-motor servo sys-
tem with partial asymmetric dead-zone was investigated via T-BLF. The proposed T-BLF
satisfied the requirement of time-varying constraints in practice occasions compared with
other existing constrained schemes. The CFB was applied to the dual-motor system, avoid-
ing the complex computational explosion problems. In addition, an error compensation
mechanism was introduced that could effectively reduce the filtering errors of the system.
Based on CFB, the adaptive NNs could well approximate the nonlinear parts of the dead-
zone model and reduce the adverse effects of this part on the system. Through use of the
control schemes, all signals were uniformly ultimately bounded, and the state constraints
were not violated in the closed-loop system. The tracking error and synchronization error
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converged to a small neighborhood of the origin in arbitrary precision. To a great extent,
the control performance of the dual-motor servo system improved.
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