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Introduction

Endometriosis (EMs), characterized by the subsist-
ence of endometrial-like tissue (including stroma 
and glands) growing outside the uterine cavity, is a 
common benign gynaecological disorder.1 EMs 
approximately affects 6% to 10% of women world-
wide, mainly during the reproductive age.1 It would 
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Abstract
The current study intended to explore the interaction of the long non-coding RNA (lncRNA), microRNA (miRNA), and 
messenger RNA (mRNA) under the background of competitive endogenous RNA (ceRNA) network in endometriosis 
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expressed genes (DEGs) between EMs ectopic (EC) and eutopic (EU) endometrium based on three RNA-sequencing 
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network. Then, DEGs in the ceRNA network were performed with Gene Ontology (GO), Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway, and protein-protein interaction (PPI) analysis. Besides, the DEmiRs in the ceRNA 
network were validated in GSE124010. And the target DELs and DEGs of verified DEmiRs were validated in GSE86534. 
The correlation of verified DEmiRs, DEGs, and DELs was explored. Moreover, gene set enrichment analysis (GSEA) 
was applied to investigate the function of verified DEmiRs, DEGs, and DELs. Overall, 1352 DEGs and 595 DELs from 
GSE105764, along with 27 overlapped DEmiRs between GSE105765 and GSE121406, were obtained. Subsequently, a 
ceRNA network, including 11 upregulated and 16 downregulated DEmiRs, 7 upregulated and 13 downregulated DELs, 
48 upregulated and 46 downregulated DEGs, was constructed. The GO and KEGG pathway analysis showed that this 
ceRNA network probably was associated with inflammation-related pathways. Furthermore, hsa-miR-182-5p and its 
target DELs (LINC01018 and SMIM25) and DEGs (BNC2, CHL1, HMCN1, PRDM16) were successfully verified in the 
validation analysis. Besides, hsa-miR-182-5p was significantly negatively correlated with these target DELs and DEGs. The 
GSEA analysis implied that high expression of LINC01018, SMIM25, and CHL1, and low expression of hsa-miR-182-5p 
would activate inflammation-related pathways in endometriosis EU samples.

LINC01018 and SMIM25 might sponge hsa-miR-182-5p to upregulate downstream genes such as CHL1 to promote 
the development of endometriosis.
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induce infertility and various pain, such as pelvic 
pain, dysmenorrhea, and dyspareunia,2 also a risk of 
cancerization.3 Of note, there is still no individual 
theory that can thoroughly explain all the aspects of 
EMs, even the classic “retrograde menstruation” 
hypothesis, suggesting viable endometrial debris 
refluxed through the fallopian tubes into the pelvic 
cavity to implant.4 Not only such complexity of the 
disease itself but also the absence of sensitive and 
specific biomarkers challenged the diagnosis and 
treatment of EMs. Hence, it is essential to explore 
the potential molecular mechanisms underlying 
EMs to deepen our understanding of EMs.

The non-coding RNAs (ncRNAs), transcribed 
from the DNA-genome but unable to code proteins, 
function as universal regulators in cellular processes, 
which could be generally sorted into two types 
according to their scale: the small long non-coding 
RNAs (<200 nucleotides in length) and the long non-
coding RNAs (⩾200 nucleotides in length).5 The 
miRNA, one of the most concerned small ncRNAs, 
has been proved to be dysregulated in EMs, but the 
specific mechanism remained to clarify,6 particularly 
in multi-cohorts integrated analysis. The lncRNA, a 
new star with the advancement of the RNA-
sequencing technology, has invoked a research 
upsurge in recent years, with no exception in Ems.7 
Notably, the emerging competing endogenous RNAs 
(ceRNAs) hypothesis manifested that lncRNAs could 
serve as a miRNA sponge to regulate the target 
mRNAs.8 And this hypothesis had been attested in 
EMs: the first reported lncRNA H19 in EMs sponged 
miRNA let-7 to regulate its downstream gene IGF1R 
to impact the proliferation of endometrial stromal 
cells.9 However, few comprehensive analyses of 
EMs-associated miRNAs and lncRNAs in the ceRNA 
network’s milieu have been conducted.

Therefore, we intended to establish an EMs-
related ceRNA network to investigate the regula-
tory role of the lncRNA-miRNA-mRNA axis in 
EMs (Figure 1). As far as we know, this report rep-
resents the first endeavour to construct a lncRNA-
associated ceRNA network based on multiple 
RNA-sequencing datasets in EMs.

Materials and methods

Training datasets resources

Two miRNA expression datasets: GSE105765 
(eight paired EC and EU endometrium tissue sam-
ples),10 and GSE121406 (four paired EC and EU 

endometrial stromal cells),11 as well as the lncRNA 
and mRNA expression profile GSE105764 (same 
eight paired EC and EU endometrium tissue sam-
ples in GSE105765),10 were obtained from the 
GEO database (http://www.ncbi.nlm.nih.gov/geo). 
All these datasets were measured by high-through-
put RNA-sequencing: GSE105765 was based on 
platform GPL11154 (Illumina HiSeq 2000), 
GSE121406 on platform GPL18573 (Illumina 
NextSeq 500), and GSE105764 on platform 
GPL20301 (Illumina HiSeq 4000). There was no 
need for ethical approval or informed consent in 
this study because the data was publicly available.

Identification of DEmiRs, DEGs, and DELs

The “DESeq2” R package12 was applied to analyze 
the differentially expressed microRNAs (DEmiRs) 
with a threshold of |log2 fold change (FC)| ⩾ 2 and 
adjust P-value < 0.01; the differentially expressed 
genes (DEGs) and differentially expressed lncR-
NAs (DELs) with a threshold of |log2 FC| ⩾ 3 and 
adjust P-value < 0.01. Moreover, intersection 
analysis was conducted to detect the shared 
DEmiRs between GSE105765 and GSE121406.

CeRNA network construction

In the light of the ceRNA hypothesis, screened 
DEGs, DELs, and overlapped DEmiRs were applied 
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Figure 1. The flowchart of endometriosis-associated ceRNA 
network analysis.
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to build the lncRNA–miRNA–mRNA regulatory 
network. The predicted lncRNAs interacted with 
overlapped DEmiRs were mined in downloaded 
databases StarBase v2.013 and DIANA-LncBase 
v2.0,14 both of which provided the experimentally 
validated miRNA-lncRNA interactive information. 
Next, these predicted lncRNAs were further inter-
sected with the identified DELs in GSE105764. 
Additionally, the overlapped DEmiRs-targeted 
mRNAs were predicted from the miRTarBase15 and 
StarBase v2.013 databases and later were intersected 
with the identified DEGs in GSE105764. Finally, 
the filtered DEmiR-DEL and DEmiR-DEG interac-
tive pairs were employed to build a ceRNA regula-
tory network, which was visualized in software 
Cytoscape 3.6.1.16

GO and KEGG pathway enrichment analysis

The DEGs included in the established ceRNA net-
work were performed with GO and KEGG path-
way enrichment analysis by Enrichr (http://amp.
pharm.mssm.edu/Enrichr/), a useful online tool for 
querying functional annotation and biological 
information of genes. Retrieved GO terms and 
KEGG pathways with a P-value < 0.05 were sup-
posed to be significantly enriched.

PPI network establishment

To further explore the potential interplay of DEGs in 
the ceRNA network, the Search Tool for the Retrieval 
of Interacting Genes database (STRING-Version 
10.0, http://stringdb.org) was adopted to create a PPI 
network with the interaction score > 0.4. Then, the 
PPI network was carried into Cytoscape 3.6.116 for 
visualization, and the degree score of nodes was 
analyzed by the plugin NetworkAnalyzer. Moreover, 
10 hub genes were determined by the “Degree” 
method in the plugin CytoHubba.

Validation analysis of DEmiRs, DEGs, and DELs 
in the ceRNA network

The validation analysis of all DEmiRs in the 
ceRNA network was performed in GSE124010 
(based on platform GPL25134).17 This dataset con-
tained 3 normal endometria (NM) from healthy 
candidates and 3 EU samples from EMs patients. It 
would be interesting to know whether the candi-
date DEmiRs in EU vs. EC in training datasets 
were also changed in the EU versus NM in the 

validation dataset. After the positively verified 
DEmiRs were acquired, their target DEGs and 
DELs were further chosen to validate in GSE86534, 
which profiled the mRNA and lncRNA expression 
in four paired EU and EC tissue samples from EMs 
patients grounded on platform GPL20115.18 The 
p-value < 0.05 was considered significant.

Correlation analysis of the verified DEmiRs, 
DEGs, and DELs

To explore the correlation between verified 
DEmiRs, and their target DEGs and DELs, the 
miRNA profile in GSE105765 and mRNA-lncRNA 
profile in GSE105764 examined on the same sam-
ples were combined to perform the Spearman cor-
relation analysis. Due to the lack of validation 
datasets detecting the miRNA and mRNA-lncRNA 
profile in the same samples, we only validated the 
correlation between target DEGs and DELs in 
GSE86534. The P-value < 0.05 was considered 
significant.

Gene set enrichment analysis (GSEA) of the 
verified DEmiRs, DEGs, and DELs

GSEA is a computational method to evaluate 
whether a defined gene set exerts a significant dif-
ference between two biological phenotypes.19 
Since the EU samples might play a fundamental 
role in the pathogenesis of Ems,20 we investigated 
the function of the verified DEmiRs, DEGs, and 
DELs in EU samples by GSEA analysis. According 
to the median expression of the verified DEmiRs, 
DEGs and DELs, the EU samples were respec-
tively divided into two groups: the high- and low-
expression groups, and the file “h.all.v7.0.symbols.
gmt” in GSEA websites (https://www.gsea-msigdb.
org/gsea/index.jsp) was used as the reference gene 
set. The analysis was performed in GSEA software, 
and the statistical threshold was FDR q-value < 
0.25. Then, top-ranking results were visualized in 
R software.

Results

Differentially expressed DEGs, DELs, and 
DEmiRs

With the criteria of |log2 FC| ⩾ 2 and adjust P-value 
< 0.01, 116 DEmiRs (47 upregulated and 69 
downregulated) were obtained from GSE105765, 

http://amp.pharm.mssm.edu/Enrichr/
http://amp.pharm.mssm.edu/Enrichr/
http://stringdb.org
https://www.gsea-msigdb.org/gsea/index.jsp
https://www.gsea-msigdb.org/gsea/index.jsp
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along with 70 DEmiRs (40 upregulated and 30 
downregulated) from GSE121406 (Figure 2a and 
b). The intersection analysis showed 27 common 
DEmiRs (11 upregulated and 16 downregulated) 
between GSE105765 and GSE121406 (Figure 2c). 
Additionally, with the criteria of |log2 FC| ⩾ 3 and 
adjust P-value < 0.01, 1352 DEGs (693 upregu-
lated and 659 downregulated) and 595 DELs (278 
upregulated and 317 downregulated) were identi-
fied from GSE105764 (Figure 2d and e).

CeRNA network construction

Based on the filtered DEmiR-DEL and DEmiR-
DEG interactive pairs, the EMs-related ceRNA 
network was established, including 11 upregulated 
and 16 downregulated DEmiRs, 7 upregulated and 
13 downregulated DELs, 48 upregulated and 46 
downregulated DEGs (Figure 3).

GO and KEGG pathway enrichment analysis

A total of 94 DEGs in the ceRNA network were 
processed with functional enrichment analysis by 
website Enrichr. The GO analysis revealed that the 
top five significantly enriched biological processes 
(BPs) were Circulatory system development, 
Positive regulation of stem cell differentiation, 
Male gonad development, Development of pri-
mary male sexual characteristics and Positive reg-
ulation of transcription (Figure 4a); the top five 
molecular functions (MFs) were Transcriptional 
activator activity, RNA polymerase II transcription 
regulatory region sequence-specific binding, 
Cytokine activity, Transforming growth factor-
beta receptor binding, Oxidoreductase activity, 
Acting on the CH-NH2 group of donors and RNA 
polymerase II transcription factor binding (Figure 
4b); the top five cellular components (CCs) were 
Bicellular tight junction, Cytoplasmic vesicle, 
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Figure 2. Identification of DEmiRs, DELs, and DEGs in endometriosis. (a) Volcano plots for DEmiRs between ectopic (EC) and 
eutopic (EU) endometrium in GSE105764. (b) Volcano plots for DEmiRs between EC and EU endometrium in GSE121406. (c) 
Venn diagram for the overlapping DEmiRs between GSE105764 and GSE121406. (d) Volcano plots for DELs between EC and EU 
endometrium in GSE105765. (e) Volcano plots for DEGs between EC and EU endometrium in GSE105765. DEmiRs, differentially 
expressed microRNAs; DEGs, differentially expressed genes; DELs: differentially expressed long non-coding RNAs; EC, ectopic 
endometrium; EU, eutopic endometrium.
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Actomyosin, Zonula adherens and Paranode region 
of axon (Figure 4c). Moreover, KEGG pathway 
analysis indicated that these DEGs were primarily 
concentrated in Transcriptional misregulation in 
cancer, Cytokine-cytokine receptor interaction, 
Retinol metabolism, Tight junction and TNF sign-
aling pathway (Figure 4d).

PPI network establishment

By searching those 94 DEGs in the ceRNA network 
in the STRING database, with the interaction score 
> 0.4, a PPI network consisting of 41 nodes and 74 
edges was constructed (Figure 4e). Furthermore, 
according to the degree scores, 10 hub DEGs in the 
PPI network were selected out: GATA4, BDNF, 
RUNX2, SOX9, GATA6, CXCL8, CEBPA, 
EPCAM, NTF3, CHL1 (Figure 4f).

Validation analysis of DEmiRs, DEGs, and DELs 
in the ceRNA network

All DEmiRs in the ceRNA network were validated 
in GSE124010. Probably due to the limited sample 
size, we only found hsa-miR-182-5p were signifi-
cantly low-expressed in EU samples when compared 
to NM samples in GSE124010 (Figure 5a). Since 
hsa-miR-182-5p was down-regulated in EC vs. EU 
in training datasets and EU vs. NM in the validation 
dataset, it might be a constant dysregulated miRNA 

in EMs development. Hence, the target DEGs and 
DELs of hsa-miR-182-5p were chosen to validated 
in GSE86534 (Figure 5b). The results showed that 
two lncRNAs LINC01018 and SMIM25 along with 
four genes BNC2, CHL1, HMCN1, and PRDM16 
were significantly upregulated in EC compared to 
EU samples in GSE86534 (Figure 5c).

The relationship between hsa-miR-182-5p and 
its target DEGs and DELs

The correlation analysis in combined data of training 
datasets GSE105764 and GSE105765 indicated that 
hsa-miR-182-5p was significantly negatively associ-
ated with its target DELs (LINC01018 and SMIM25) 
and DEGs (BNC2, CHL1, HMCN1, PRDM16). 
Moreover, those target DELs (LINC01018 and 
SMIM25) were significantly positively associated 
with the target DEGs (BNC2, CHL1, HMCN1, 
PRDM16) (Figure 6a). In the validation dataset 
GSE86534, LINC01018 and SMIM25 were also 
proved to be positively correlated with BNC2, 
CHL1, HMCN1, and PRDM16, respectively, 
although the P-value was not always lower than 0.05 
probably due to the small sample size (Figure 6b). 
Noticeably, LINC01018 and CHL1 were respec-
tively the most up-regulated DEL and DEG both in 
the training and validation datasets (supplement 
Tables S1 and S2). Moreover, CHL1 was also identi-
fied as the hub nodes in the PPI network. Hence, we 
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selected CHL1 as the representative DEG in subse-
quent GSEA analysis.

The GSEA analysis of hsa-miR-182-5p and its 
targets in EU samples

To investigated the function of hsa-miR-182-5p and 
its targets in EU samples, the GSEA analysis was per-
formed. The EU samples in training datasets were 
divided into high- and low-expression groups accord-
ing to the median expression of hsa-miR-182-5p, 

LINC01018, SMIM25, and CHL1, respectively. The 
results showed that the pathway “INFLAMMATORY_
RESPONSE” was activated in high-expressed 
LINC01018 and low-expressed hsa-miR-182-5p EU 
samples compared to respective control samples. 
Besides, the pathway “INTERFERON_GAMMA_
RESPONSE” and “TNFA_SIGNALING_VIA_
NFKB” were also respectively triggered in high- 
expressed SMIM25 and CHL1 EU samples com-
pared to low-expression controls. Interestingly, high 
expression of LINC01018 and low expression of 
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hsa-miR-182-5p were also associated with activation 
of the pathway “EPITHELIAL_MESENCHYMAL_
TRANSITION,” a well-described pathological pro-
cess in EMs (Figure 7).

Discussion

Endometriosis (EMs) is a heterogeneous disorder 
because of the diverse implanting locations with 
different depth of infiltration and non-specific 
clinical symptoms.1 The pathological mechanism 
of EMs remains enigmatic. Progressively accu-
mulating evidence declared that the dysregulation 
of lncRNA affected miRNA activity, such as the 
ceRNA hypothesis, which was probably involved 
in the pathology of Ems.5,6 However, the lncRNA-
associated ceRNA network based on multiple 
RNA-sequencing datasets remains unexplored in 
EMs.

To address this challenge, we established an 
EMs-associated ceRNA network comprised of 11 
upregulated and 16 downregulated DEmiRs, 7 
upregulated and 13 downregulated DELs, 48 
upregulated and 46 downregulated DEGs. The GO 
and KEGG pathway analysis indicated that this 

ceRNA network was related to inflammation-
related pathways, such as “Cytokine-cytokine 
receptor interaction” and “TNF signalling path-
way.” And the inflammatory response is the central 
link of the genesis of Ems.21 The validation analy-
sis revealed that hsa-miR-182-5p was not only 
downregulated in EC vs. EU samples but also 
downregulated in the EU versus NM samples. 
Besides, the target DELs (LINC01018 and 
SMIM25) and DEGs (BNC2, CHL1, HMCN1, 
PRDM16) of hsa-miR-182-5p were proved to be 
upregulated in EC versus EU samples. The nega-
tive correlation of hsa-miR-182-5p and these target 
DELs and DEGs was proved in training datasets. 
LINC01018 and SMIM25 were found positively 
correlated with BNC2, CHL1, HMCN1, PRDM16 
in training and validation datasets. The GSEA 
analysis showed that high expression of 
LINC01018, SMIM25, and CHL1 (the DEG with 
the maximum log2FC) and low expression of hsa-
miR-182-5p would activate inflammation-related 
pathways in EU samples in EMs. Hence, we sup-
posed that LINC01018 and SMIM25 might sponge 
hsa-miR-182-5p to upregulate downstream genes 
such as CHL1 to promote the development of EMs.

Figure 5. Validation analysis of DEmiRs, DEGs, and DELs in the ceRNA network. (a) All DEmiRs in the ceRNA network were 
validated in GSE124010. (b) The target DEGs and DELs of hsa-miR-182-5p in the ceRNA network. (c) The target DEGs and DELs 
of hsa-miR-182-5p were validated in GSE86534. DEmiRs, differentially expressed microRNAs; DELs, differentially expressed long 
noncoding RNAs; DEGs, differentially expressed genes. *P-value < 0.05.
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To the best of our knowledge, the lncRNA 
LINC01018 and SMIM25 in our established ceRNA 
network are firstly reported in EMs. Wang et al. 
reported that LINC01018 was downregulated in 
hepatocellular carcinoma (HCC) tissues, and the 
over-expression of LINC01018 inhibited prolifera-
tion and promoted apoptosis of HCC cells via the up-
regulation of FOXO1 by sponging hsa-miR-182-5p.22 
Notably, a certain degree of proliferation and reduced 
apoptosis were the key features of Ems.21 However, 
the expression trend of LINC01018 in HCC in Wang 
et al.’s study22 was contrary to our findings in EMs. 
We supposed that LINC01018 might have tissue-
specific expression and affect cell proliferation and 
apoptosis in EMs via specific mechanisms different 

from those in HCC. Moreover, the upregulation of 
LINC01018 would be induced by fasting in human-
ized livers.23 And the genome-wide association study 
(GWAS) indicated that the expression of LINC01018 
in the liver was associated with the body mass index 
(BMI).23 Interestingly, women with EMs were 
reported with lower BMI24 and dysregulated lipid 
metabolism.25 Although our GSEA analysis indi-
cated LINC01018 related to inflammatory response, 
it would be interesting to know whether LINC01018 
affects lipid metabolism in EMs in future studies.

The SMIM25, also known as LINC01272, was 
upregulated gastric cancer (GC), and the over-
expression of SMIM25 promoted the migration and 
invasion ability of GC cells by activating the 

Figure 6. The relationship between hsa-miR-182-5p and its target DEGs and DELs. (a) The Spearman correlation analysis of hsa-
miR-182-5p and its target DEGs and DELs in combined data of training datasets GSE105764 and GSE105765. (b) The Spearman 
correlation analysis of the target DEGs and DELs of hsa-miR-182-5p in the validation dataset GSE86534. DELs, differentially 
expressed long noncoding RNAs; DEGs, differentially expressed genes. *P-value < 0.05.



Jiang et al. 9

epithelial-mesenchymal transition (EMT) process.26 
The EMT defines a process by which epithelial cells 
lose their cell polarity and cell-to-cell adhesion and 
acquire the migratory and invasive properties to 
become mesenchymal cells.27 These changes are 
supposed to contribute to the establishment of endo-
metriotic lesions in Ems.27 Moreover, the upregula-
tion of SMIM25 might be an indicator of 
inflammatory bowel disease (IBD) and Crohn dis-
ease.28,29 More recently, Hung et al. reported that 
SMIM25 was upregulated in unstable plaque and 
highly monocyte- and macrophage-specific.30 And 
the knockdown of SMIM25 significantly reduced 

the phagocytosis.30 Hence, this study renamed the 
SMIM25 as PELATON (plaque enriched lncRNA in 
atherosclerotic and inflammatory bowel mac-
rophage regulation). Notably, peritoneal mac-
rophages’ impaired phagocytic ability was found in 
women with EMs, which might contribute to the 
failure to eradicate aberrant ectopic cells.31 
Additionally, aberrant SMIM25 expression might 
influence the endometrial receptivity via the inflam-
mation reaction.32 Considering the crucial role of 
inflammation and abnormal immunity in EMs, we 
speculated possible involvement of SMIM25 in the 
pathogenesis of endometriosis.
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The verified DEmiR hsa-miR-182-5p belonged 
to the miR-183/96/182 family, which might adopt 
a critical role in the process of apoptosis, DNA 
repair, lipid metabolism, and immune signalling.33 
By RNA-sequencing, microarray profiling, and 
qRT-PCR validation, the down-regulation of hsa-
miR-182-5p was observed in EC compared to EU 
samples.10,34 Meanwhile, the dysregulation of hsa-
miR-182-5p was also found in the plasma of EMs 
patients.35 Similarly, has-miR-183 was also 
reported downregulated in EC versus EU samples 
and EU versus NM samples, thus promoting inva-
sion and suppressing apoptosis of endometrial 
stromal cells by targeting ITGB1P.36,37 It has been 
reported that hsa-miR-182-5p was significantly 
decreased in atherosclerosis models, and the over-
expression of hsa-miR-182-5p inhibited the oxida-
tive stress and macrophage apoptosis by targeting 
Toll-like receptor 4 (TRL4).38 Quite a few oxida-
tive stress biomarkers had been found significantly 
higher in women with EMs than healthy controls.39 
Continued oxidative stress would contribute to 
chronic inflammation,40 which provides a favour-
able condition for the implantation and growth of 
endometriotic cells. Besides, the macrophages are 
abundant in ectopic lesions, in the peritoneal cavity 
and peritoneal fluid of women with EMs compared 
to controls.31 And two phenotypes of macrophages: 
“classically activated” macrophages and “alterna-
tively activated” macrophages, collectively con-
tributed to the mixed pro- and anti-inflammatory 
microenvironment for the establishment of ectopic 
lesions.31 Furthermore, hsa-miR-182-5p was 
decreased in metastatic non-small cell lung cancer 
(NSCLC) tissues compared to primary tumour tis-
sues.41 And it inhibited the metastasis of lung can-
cer cells via suppressing the EMT process,41 a 
well-known precondition for the initial implanta-
tion of endometriotic lesions.27

Our GSEA analysis revealed that high expression 
of CHL1 (cell adhesion molecule L1 Like), the tar-
get genes of has-miR-182-5p with the maximum 
log2FC, would activate the EMT process. CHL1 is a 
member of the L1 gene family of neural cell adhe-
sion molecules (L1-CAMs), which involved devel-
oping the nervous system and a series of morphogenic 
events, such as cell migration and adhesion.42 As the 
homology of CHL1, L1CAM was upregulated in 
atypical EMs compared to typical EMs, aggravating 
pain in EMs by promoting nerve growth.43 Similarly, 
CHL1 was also found over-expressed in EMs,44 

although it was reported under-expressed in cervical 
cancer,42 breast cancer,45 nasopharyngeal cancer,46 
and papillary thyroid cancer.47 The overexpression 
of CHL1 inhibited the motility of nasopharyngeal 
cancer cells by the suppression of EMT.46 And the 
silencing of has-miR-182 promoted the expression 
of CHL1, thus suppressing the growth and invasion 
of papillary thyroid carcinoma cells.47 Notably, 
enhanced invasion and proliferation and the acti-
vated EMT were the key features of EMs.21,27 Thus, 
CHL1 might act in specific ways to influence these 
processes in EMs.

Nevertheless, three other target genes of has-
miR-182 were seldom reported in EMs. BNC2 
(Basonuclin 2) is fundamental for the proliferation 
of craniofacial mesenchymal cells during embryo-
genesis.48 The polymorphisms in the BNC2 gene 
were associated with ovarian cancer but not with 
EMs, indicating EMs is mediated by BNC2 in other 
ways.49 HMCN1 (Hemicentin 1) participates in the 
architecture of adhesive and flexible epithelial cell 
junctions.50 The upregulation of HMCN1 was found 
in ovarian cancer (OC) fibroblasts, thus promoting 
the invasion of OC fibroblasts.50 PRDM16 (PR 
Domain Containing 16) was involved in adipose 
biology and also maintenance of hematopoietic and 
neuronal stem cells.51 The deletion of PRDM16 in 
mice contributed to increased apoptosis of hemat-
opoietic stem cells (HSCs).52 And a steady flow of 
HSCs would facilitate the angiogenesis and inflam-
mation in EMs ectopic lesions.53

However, our analysis has some limitations. 
Firstly, due to the scarcity of available lncRNA and 
miRNA datasets of EMs, the sample size in the avail-
able training and validation datasets is small. 
Expanding the sample size would enhance the relia-
bility of the results. Secondly, the datasets are 
expected to include normal endometrium (NM) from 
healthy women as the normal control to explore the 
molecular changes in EU samples. Besides, the 
expression of target genes of hsa-miR-182-5p was 
only analyzed in the mRNA level, which would be 
improved by validation in the protein level. Moreover, 
functional experiments need to be performed to 
explain the detailed regulatory mechanism of hsa-
miR-182-5p in a ceRNA manner in EMs.

Conclusion

In conclusion, we firstly constructed the lncRNA-
associated ceRNA network based on multiple 
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RNA-sequencing datasets in endometriosis. Our 
study revealed that the LINC01018 and SMIM25 
sponged miR-182-5p to upregulate downstream 
genes such as CHL1 to promote the development 
of endometriosis, which would provide new 
insights into the roles of non-coding RNAs in the 
pathogenesis of endometriosis.
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