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The present study deals with the estimation of the anti-HIV activity (log 1/C) of a large set of 107 HEPT analogues using molecular
descriptors which are responsible for the anti-HIV activity. The study has been undertaken by three techniques MLR, ANN, and
SVM.TheMLRmodel fits the train set with𝑅2 = 0.856while inANNand SVMwith higher values of𝑅2 = 0.850, 0.874, respectively.
SVMmodel shows improvement to estimate the anti-HIV activity of trained data, while in test set ANN have higher 𝑅2 value than
those of MLR and SVM techniques. 𝑅2

𝑚
= metrics and ridge regression analysis indicated that the proposed four-variable model

MATS5e, RDF080u, T(O⋅ ⋅ ⋅O), and MATS5m as correlating descriptors is the best for estimating the anti-HIV activity (log 1/C)
present set of compounds.

1. Introduction

Undoubtedly Human immunodeficiency virus (HIV) infec-
tion is considered to be a deadly disease by the interna-
tional community including the World Health Organization
(WHO), UNAIDS. The WHO in its reports has said that
AIDS has killedmore than 25million people since 1981 which
is most the destructive pandemics in the history.

It is also a well-known fact that a lentivirus (a member
of the retrovirus family) causes acquired immunodeficiency
syndrome (AIDS) [1, 2], damaging immune system and
leading to life-threatening infections. A report published in
2007 reveals that approximately 36 million people suffered
due to HIV infection. An estimated 2.1 million people were
even killed that year including 330,000 children. Another
study also reveals that 2.5 million people developed new
infections [3–6]. Unfortunately the number of deaths is still
rising due to this deadly disease.

Just to overcome the problem scientists are working
day and night and a number of RT inhibitors including
various nonnucleoside RT inhibitors (NNRTIs) have been
discovered as new anti-HIV agents.They have better blocking

potential and have been proved to be effective [7–9]. These
compounds 1-[2-Hydroxyethoxy) methyl]-6-(phenylthio)-
thymine (HEPT) are known for targeting enzyme allosteric
site which are less toxic and found to have more stable than
nucleoside RT inhibitors.

Many efforts have been made to model the anti-HIV
activity of HEPT derivatives in the past using 2D, 3D, and
holographic (HQSAR) methods [10–13]. Quantitative struc-
ture activity relationship studies were carried out in order to
build models for the estimation of binding affinities (Δ𝐺

𝑏
) of

HEPT and nevirapine analogues with reverse transcriptase
[14]. Similarly, Agrawal et al. [15, 16] have successfully
reported use of physicochemical as well as topological indices
for modeling anti-HIV activities of HEPT analogues.

In continuation to these studies we now report mod-
eling of anti-HIV activity of 1-[2-Hydroxyethoxy) methyl]-
6-(phenylthio)-thymine (HEPT) derivatives (Figure 1) using
graph theoretical descriptors in which distances and con-
nectivity have been considered. The general structure of
HEPT compounds used in the present study is demonstrated
in Figure 1. The structural details are presented in Table 1.
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Figure 1:General structure ofHEPT compounds used in the present
study.

This Table also shows the experimental anti-HIV activity of
compounds.

A close look of Figure 1 and the activity data presented in
Table 1 indicates that the anti-HIV activity mainly dependent
upon the type and number of substituent 𝑅

1
in the benzene

moiety.

2. Materials and Methods

2.1. Experimental Data. The structural details as well as anti-
HIV activity (log 1/𝐶) of 107 HEPT analogues are reported
in Table 1. The RT inhibition data in terms of log 1/𝐶
have been taken from the literature [12]. All the chemical
structures were drawnwith the helpACD labs softwarewhich
helps in the calculation of topological descriptors. These
descriptors were calculated using Dragon software using mol
file generated by Chem sketch software.

2.2. Selection Molecular Descriptors and Training/Test Set
for External Validation. In the present study for estimat-
ing the anti-HIV activity of 107 HEPT analogues we have
used a pool of descriptors classified into 20 different
groups. The descriptor selection is carried out by step-
wise regression analysis (forward selection method using
NCSS ver. 8 [17]. These selected descriptors are recorded
in Table S1 (see Supplementary Material available online
at http://dx.doi.org/10.1155/2013/795621). The data set was
divided into training and test sets using random sampling
technique in which 80% (84 compounds) of the data is taken
as training set and the remaining 20% (23 compounds) as test
set for the MLR, ANN, and SVM analyses.

3. Results and Discussion

The data (Table 2) was subjected to regression analysis which
subsequently gave a correlation matrix showing intercor-
relation among the selected descriptors and also with the
anti-HIV (log 1/𝐶) activity. The same has been presented
in Table S2. The variable selection for multiple regression
analysis has indicated the possibility of using only tenmodels
for modeling the anti-HIV activity (log 1/𝐶). These models
are reported in Table S3. All these models are generated
as a result of successive addition of one to ten descriptors.
However, correlation of number of descriptors present in the
model with 𝑅2 (Figure 2) indicated that at the most we can
use only four to five descriptors for obtaining statistically
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Figure 2: Correlation of variable count against 𝑅2.

most significant model. The statistically significant models
obtained fromMLR analysis are reported below.

3.1. MLR Results

3.1.1. One-Variable Model. Successive regression analysis
indicated that in one-variable model Moran autocorrela-
tion—lag 5/weighted by atomic Sanderson electronegativites
(MATS5e) as correlating descriptor is the best model for
modelling the log 1/𝐶. This model is as follows:

log 1
𝐶
= −10.9800 (±0.9083)MATS5e + 4.6503

𝑁 = 84, Se = 0.8423, 𝑅2 = 0.6406,

𝐹-ratio = 146.132, 𝑄 = 0.9501.

(1)

Here and hereafter𝑁 is number of compounds, Se is standard
error, 𝑅2 is squared correlation coefficient, 𝑅2

𝐴
is adjusted 𝑅2,

𝐹-ratio is Fishers ratio, and 𝑄 is Pogliani quality factor [18–
20].

The negative coefficient of MATS5e indicates that the
decrease in its magnitude will enhance the activity (log 1/𝐶).

3.1.2. Two-VariableModel. When (RDF080u) the unweighted
radial distribution function 8.0 is added to the above model
the model shows significant improvement in all the param-
eters. The 𝑅2 value changes from 0.6406 to 0.7402. Similarly
improvement in adjusted 𝑅2 also shows that the addition of
(RDF080u) parameter is justified. The improved model is as
follows:

log 1
𝐶
= −9.5891 (±0.8161)MATS5e

+ 0.0899 (±0.0161)RDF080u + 3.5920,

𝑁 = 84, Se = 0.7205, 𝑅2 = 0.7402,

𝑅
2

𝐴
= 0.7337, 𝐹-ratio = 115.364, 𝑄 = 1.1940.

(2)
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Table 1: Structural details of the compounds with their anti-HIV activity (log1/𝐶) values used in the present study.
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Comp. No R
1

R
2

R
3

X Obs. log 1/𝐶 Est. log 1/𝐶 (MLR) Residual (MLR)
1 2-Me Me CH2OCH2CH2OH O 4.150 4.685 −0.535
2 2-NO2 Me CH2OCH2CH2OH O 3.850 4.495 −0.645
3 2-OMe Me CH2OCH2CH2OH O 4.720 4.831 −0.111
4 3-Me Me CH2OCH2CH2OH O 5.590 5.520 0.070
5 3-Et Me CH2OCH2CH2OH O 5.570 5.612 −0.042
6 3-t-Bu Me CH2OCH2CH2OH O 4.920 4.891 0.029
7 3-CF3 Me CH2OCH2CH2OH O 4.350 5.011 −0.661
8 3-F Me CH2OCH2CH2OH O 5.480 5.132 0.348
9 3-Cl Me CH2OCH2CH2OH O 4.890 5.544 −0.654
10 3-Br Me CH2OCH2CH2OH O 5.240 4.821 0.419
11 3-I Me CH2OCH2CH2OH O 5.000 5.037 −0.037
12 3-NO2 Me CH2OCH2CH2OH O 4.470 3.976 0.494
13 3-OH Me CH2OCH2CH2OH O 4.090 4.882 −0.792
14 3-OMe Me CH2OCH2CH2OH O 4.660 4.507 0.153
15 3,5-Me2 Me CH2OCH2CH2OH O 6.590 6.792 −0.202
16 3,5-Cl2 Me CH2OCH2CH2OH O 5.890 5.372 0.518
18 3-COOMe Me CH2OCH2CH2OH O 5.100 4.033 1.067
19 3-COMe Me CH2OCH2CH2OH O 5.140 4.296 0.844
20 3-CN Me CH2OCH2CH2OH O 5.000 4.952 0.048
21 H CH2CH=CH2 CH2OCH2CH2OH O 5.600 5.849 −0.249
22 H Et CH2OCH2CH2OH S 6.960 6.793 0.167
24 H i-Pr CH2OCH2CH2OH S 7.230 7.380 −0.150
25 3,5-Me2 Et CH2OCH2CH2OH S 8.110 7.691 0.419
27 3,5-Cl2 Et CH2OCH2CH2OH S 7.370 6.996 0.374
28 H Et CH2OCH2CH2OH O 6.920 6.595 0.325
30 H i-Pr CH2OCH2CH2OH O 7.200 7.982 −0.782
31 3,5-Me2 Et CH2OCH2CH2OH O 7.890 7.794 0.096
32 3,5-Me2 i-Pr CH2OCH2CH2OH O 8.570 8.727 −0.157
33 3,5-Cl2 Et CH2OCH2CH2OH O 7.850 6.822 1.028
35 H Me CH2OCH2CH2OH O 5.150 5.015 0.135
36 H Me CH2OCH2CH2OH S 6.010 5.218 0.792
37 H I CH2OCH2CH2OH O 5.440 5.443 −0.003
41 H CH=CPh2 CH2OCH2CH2OH O 6.070 6.118 −0.048
42 H Me CH2OCH2CH2OMe O 5.060 5.329 −0.269
44 H Me CH2OCH2CH2OCOPh O 5.120 5.058 0.062
45 H Me CH2OCH2Me O 6.480 5.020 1.460
46 H Me CH2OCH2CH2Cl O 5.820 5.247 0.573
47 H Me CH2OCH2CH2N3 O 5.240 5.397 −0.157
48 H Me CH2OCH2CH2F O 5.960 4.919 1.041
49 H Me CH2OCH2CH2Me O 5.480 5.522 −0.042
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Table 1: Continued.

50 H Me CH2OCH2Ph O 7.060 6.175 0.885
52 H Et CH2OCH2Me S 7.580 7.221 0.359
53 3,5-Me2 Et CH2OCH2Me O 8.240 8.030 0.210
54 3,5-Me2 Et CH2OCH2Me S 8.300 8.293 0.007
56 3,5-Me2 Et CH2OCH2Ph O 8.550 8.856 −0.306
59 H i-Pr CH2OCH2Me O 7.990 7.623 0.367
60 H i-Pr CH2OCH2Ph O 8.510 8.549 −0.039
61 H i-Pr CH2OCH2Me S 7.890 7.718 0.172
62 H i-Pr CH2OCH2Ph S 8.140 8.479 −0.339
63 H Me CH2OMe O 5.680 5.341 0.339
64 H Me CH2OBu O 5.330 5.405 −0.075
65 H Me Et O 5.660 6.443 −0.783
66 H Me Bu O 5.920 6.171 −0.251
67 3,5-Cl2 Et CH2OCH2Me S 7.890 6.913 0.977
68 H Et CH2O–i-Pr S 6.660 6.841 −0.181
69 H Et CH2O–c-Hex S 5.790 6.395 −0.605
70 H Et CH2OCH2–c-Hex S 6.450 7.042 −0.592
71 H Et CH2OCH2C6H4(4-Me) S 7.110 7.152 −0.042
72 H Et CH2OCH2C6H4(4-Cl) S 7.920 7.182 0.738
73 H Et CH2OCH2CH2Ph S 7.040 6.522 0.518
75 H Et CH2O–i-Pr O 6.470 6.478 −0.008
76 H Et CH2O–c-Hex O 5.400 6.208 −0.808
77 H Et CH2OCH2–c-Hex O 6.350 7.016 −0.666
78 H Et CH2OCH2CH2Ph O 7.020 6.354 0.666
79 H c-Pr CH2OCH2Me S 7.020 7.115 −0.095
80 H c-Pr CH2OCH2Me O 7.000 6.865 0.135
84 4-F Me CH2OCH2CH2OH O 3.600 4.192 −0.592
85 4-Cl Me CH2OCH2CH2OH O 3.600 4.002 −0.402
88 4-OH Me CH2OCH2CH2OH O 3.560 3.526 0.034
92 3-CONH2 Me CH2OCH2CH2OH O 3.510 4.475 −0.965
93 H COOMe CH2OCH2CH2OH O 5.180 4.652 0.528
94 H CONHPh CH2OCH2CH2OH O 4.740 5.393 −0.653
95 H SPh CH2OCH2CH2OH O 4.680 5.176 −0.496
96 H CCH CH2OCH2CH2OH O 4.740 5.408 −0.668
97 H CCPh CH2OCH2CH2OH O 5.470 5.015 0.455
99 H COCHMe2 CH2OCH2CH2OH O 4.920 5.579 −0.659
100 H COPh CH2OCH2CH2OH O 4.890 5.085 −0.195
101 H CCMe CH2OCH2CH2OH O 4.720 5.130 −0.410
102 H F CH2OCH2CH2OH O 4.000 3.886 0.114
103 H Cl CH2OCH2CH2OH O 4.520 4.214 0.306
104 H Br CH2OCH2CH2OH O 4.700 4.460 0.240
105 H Me CH2OCH2CH2OCH2Ph O 4.700 5.157 −0.457
106 H Me H O 3.600 4.575 −0.975
107 H Me Me O 3.820 4.535 −0.715
Test
17 3,5-Me2 Me CH2OCH2CH2OH S 6.660 7.005 −0.345
23 H Pr CH2OCH2CH2OH S 5.000 6.644 −1.644
26 3,5-Me2 i-Pr CH2OCH2CH2OH S 8.300 8.499 −0.199
29 H Pr CH2OCH2CH2OH O 5.470 6.532 −1.062



International Journal of Medicinal Chemistry 5

Table 1: Continued.

34 4-Me Me CH2OCH2CH2OH O 3.660 4.382 −0.722
38 H CH=CH2 CH2OCH2CH2OH O 5.690 6.366 −0.676
39 H CH=CHPh CH2OCH2CH2OH O 5.220 5.726 −0.506
40 H CH2Ph CH2OCH2CH2OH O 4.370 5.183 −0.813
43 H Me CH2OCH2CH2OAc O 5.170 4.385 0.785
51 H Et CH2OCH2Me O 7.720 7.080 0.640
55 H Et CH2OCH2Ph O 8.230 7.271 0.959
57 H Et CH2OCH2Ph S 8.090 7.184 0.906
58 3,5-Me2 Et CH2OCH2Ph S 8.140 8.940 −0.800
74 3,5-Cl2 Et CH2OCH2Me O 8.130 6.881 1.249
81 H Me CH2OCH2CH2OC5H11 O 4.460 4.538 −0.078
82 2-Cl Me CH2OCH2CH2OH O 3.890 4.738 −0.848
83 3-CH2OH Me CH2OCH2CH2OH O 3.530 4.726 −1.196
86 4-NO2 Me CH2OCH2CH2OH O 3.720 3.835 −0.115
87 4-CN Me CH2OCH2CH2OH O 3.600 4.794 −1.194
89 4-OMe Me CH2OCH2CH2OH O 3.600 3.588 0.012
90 4-COMe Me CH2OCH2CH2OH O 3.960 4.208 −0.248
91 4-COOH Me CH2OCH2CH2OH O 3.450 3.765 −0.315
98 3-NH2 Me CH2OCH2CH2OH O 3.600 5.115 −1.515

Table 2: Brief description of the descriptors used in the present study.

S. number Symbol Descriptor type Meaning

1 MATS5e 2D autocorrelation Moran autocorrelation—lag 5/weighted by atomic
Sanderson’s electronegativities

2 RDF080u RDF descriptors Radial distribution function 8.0/unweighted
3 T(O⋅ ⋅ ⋅O) Topological descriptors The sum of topological distance between (O⋅ ⋅ ⋅O)
4 MATS5m 2D autocorrelation Moran autocorrelation—lag 5/weighted by atomic masses

The above model indicates that decrease in MATS5e and
increase in RDF080u will improve the log 1/𝐶 values.

3.1.3. Three-Variable Model. When T(O ⋅ ⋅ ⋅O), which is a
parameter which takes care of distance between O atom, is
added to the previously stated two-parametric model a three-
parametric model is yielded as below. Here the change in 𝑅2
and also 𝑄 value suggests that the model is better than the
earlier one:

log 1
𝐶
= −7.9071 (±0.7818)MATS5e

+ 0.0979 (±0.0141)RDF080u

− 0.0162 (±0.0031)T (O ⋅ ⋅ ⋅O) + 4.1554,

𝑁 = 84, Se = 0.6277, 𝑅2 = 0.8053,

𝑅
2

𝐴
= 0.7980, 𝐹-ratio = 110.273, 𝑄 = 1.4295.

(3)

Here the negative coefficient of T(O ⋅ ⋅ ⋅O) indicates that the
decrease in topological distance between (O ⋅ ⋅ ⋅O)will favour
the exhibition of the anti-HIV activity (log 1/𝐶).

3.1.4. Four-Variable Model. Addition of Moran auto
correlation—lag 5/weighted by atomic masses MATS5m to

the above three-parametric model yielded a four-parametric
model. A drastic improvement in variance is observed (𝑅2
changes from 0.8053 to 0.8566)Themodel is given as follows:

log 1
𝐶
= −5.0974 (±0.8573)MATS5e

+ 0.0862 (±0.0124)RDF080u

− 0.0150 (±0.0027)T (O ⋅ ⋅ ⋅O)

− 3.2147 (±0.6045)MATS5m + 4.2720,

𝑁 = 84, Se = 0.5420, 𝑅2 = 0.8566,

𝑅
2

𝐴
= 0.8493, 𝐹-ratio = 117.976, 𝑄 = 1.7075.

(4)

Here the coefficient of MATS5m is negative. This indicates
that lower value of MATS5m will favour the log 1/𝐶 value
for the compounds used in the present study.

A close look at (4) reveals that MATS5e (Moran
autocorrelation—lag 5/weighted by atomic Sanderson elec-
tronegativites) and MATS5m (Moran auto correlation—
lag 5/weighted by atomic masses) play dominant role in
exhibiting the activity. They belong to 2D autocorrelation
category. The brief description of the descriptors is given in
Table 2.
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The predicted log 1/𝐶 values of training set compounds
using the above four-parametric model are recorded in
Table 1 and plotted against their experimental values. Such a
correlation is demonstrated in Figure S1. The above reported
model (4) has further been used to predict the log 1/𝐶 values
of remaining 23 compounds which are in test set. Such
predicted values are also recorded in Table 1. The predicted
𝑅
2 value for the model has been obtained by plotting a

graph between observed and estimated log 1/𝐶 values for
the compounds and is demonstrated in Figure S1. The 𝑅2pred.
comes out to be 0.814 confirming that the proposed model is
meaningful.

The above findings confirm that for the estimation of anti-
HIV activity (log 1/𝐶) of present set of compounds a four-
variable model containing MATS5e, RDF080u, T(O ⋅ ⋅ ⋅O),
and MATS5m as correlating descriptors is the most appro-
priate model. The Ridge analysis (Table 3) indicates that all
the Ridge parameters are well within the allowed values
indicating that the proposed model is most suitable and
statistically significant. Ridge trace and variance inflation
factor for the four variable model were recorded in Figures
3 and 4, respectively.

These four descriptors were further used in artificial neu-
ral network (ANN) and support vector machine (SVM) tech-
niques. However the methodology, validation techniques,
and model performance evaluation by these two methods is
previously discussed by Agrawal et al. [21–23]. The observed
and predicted values of log 1/𝐶 of the training as well as the
test data using the ANN and SVM techniques are reported in
Table S4.

3.2. ANN and SVMResults. Artificial neural network (ANN)
and support vectormachine (SVM) analyses were carried out
using STATISTICA Data Miner software Ver. 10 [24]. The
initial architecture of the ANN selected was four neurons in
the input layer and three neurons in the hidden layer and
one output neuron selected by automated network search
function. The input neurons correspond to four selected
descriptors of the best MLR model. The optimization was
done with 10-fold cross-validation. When the entire training
data is trained in the network it gives 𝑅2 = 0.850, RMSE =
2.193, andMAE = 0.24. Using the trained network the test set
was used for prediction and gives 𝑅2 = 0.878, RMSE = 0.823,
and MAE = 0.171. A plot of the observed and predicted
values of log 1/𝐶 of the training as well as the test data using
the ANNmodel is shown in Figure S2.

The SVM regression type 1 was selected for training the
data to obtain capacity 𝐶 and Epsilon (𝜀) and gamma (𝛾)
values. In order to find the optimumvalues of two parameters
(𝛾 and 𝜀), the tenfold cross-validation based on the training
set was performed and values giving the lowest RMSE were
selected. Using the selected parameters (𝛾 = 0.14, 𝜀 =
0.20, and 𝐶 = 110) final training run was carried out on
entire training set resulting in predicted log 1/𝐶 values. The
statistical parameters of this model come out to be RMSE =
0.148, 𝑅2 = 0.874, and MAE = 0.01 for the training set. This
SVM model is used to predict log 1/𝐶 values of the test set.
The predicted statistical values of SVM model are RMSE =
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Figure 4: Variance inflation factor.

Table 3: Ridge regression parameters for (4).

Model number Parameters used VIF 𝜆
𝑖
𝑇 𝐾

(4)

MATS5e 2.1512 2.1261 0.4649 1.0000
RDF080u 1.1535 0.9763 0.8670 2.1800
T(O⋅ ⋅ ⋅O) 1.2186 0.6042 0.8206 3.5200
MATS5m 2.0363 0.2932 0.4911 7.2500

VIF: variance inflation factor; 𝜆𝑖: eigenvalue; 𝑇: tolerance; 𝐾: condition
number.

1.87, 𝑅2 = 0.867, and MAE = 0.393. A plot of the observed
and predicted values of log 1/𝐶 of the training as well as the
test set using the SVMmodel is shown in Figure S3.
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Table 4: Values of the 𝑟2
𝑚
metrics judging the quality of the model.

S. number Method Sets Average 𝑟2
𝑚
Δ 𝑟
2

𝑚

1 MLR
Train 0.799 0.114
Test 0.597 0.170

Overall 0.732 0.133

2 ANN
Train 0.825 0.079
Test 0.671 0.133

Overall 0.799 0.045

3 SVM
Train 0.817 0.102
Test 0.561 0.182

Overall 0.731 0.125

The average 𝑟2
𝑚
and Δ𝑟2

𝑚
were calculated for judging the

quality of the proposed model using 𝑟2
𝑚
metric method. It

is well established that for an acceptable QSAR model the
value of “average 𝑟2

𝑚
” should be>0.5 and “Δ𝑟2

𝑚
” should be<0.2

[25, 26]. In our study two different variants of this parameter,
𝑟
2

𝑚
and Δ𝑟2

𝑚
, were calculated for both the training (internal

validation) and test (external validation) sets in addition to
the total dataset (overall validation). The 𝑟2

𝑚
, Δ𝑟2
𝑚
values for

all the training, test, and overall data set (MLR, ANN, and
SVM) are reported in Table 4.

A close observation of this table clearly indicates that all
the values obtained from the 𝑟2

𝑚
metrics are in favour of the

four-parametric model proposed by us.
Randomization test is performed to investigate the prob-

ability of chance correlation for the best models. Generally
in randomization test the dependent variable (log 1/𝐶) is
randomly shuffled and new QSAR models are investigated
using the original descriptors. After performing the test, the
results indicate that the coefficient of determination obtained
by chance is low while the RMSE values are high.This clearly
indicates that the models obtained in this study are better
than those obtained by chance.The randomization test results
are shown in Figure S4.

3.3. ComparisonwithOtherQSAR Studies. Luco and cowork-
ers [12] proposed QSAR-based multiple regression analysis
and pls methods for anti-HIV activity of 107 HEPT ana-
logues. They developed QSAR-based models on the entire
dataset and found that the best model involves 11 correlating
descriptors with statistical quality given by 𝑅2 = 0.9044. It is
interesting to compare our results with the results of Luco and
coworkers. Our model is with four correlating parameters
having the 𝑅2 = 0.856 in training set and 𝑅2Pred = 0.814 in test
case. MLR technique is better than the previously reported
one by Luco et al.; in addition to that we have also applied
ANN (artificial neural network) and SVM (support vector
machine) techniques in which the statistical parameters are
better especially with ANNmethod.

4. Conclusions

A comparison of results from the model performance
demonstrates that the SVM model predicts the binding

affinity of the compounds more accurately than ANN and
MLR models for the train dataset. While for test set predic-
tion, ANN model was better. The proposed models could
identify and provide some important information which is
responsible for anti-HIV activity.Thesemodels could be used
for designing new HEPT derivatives.
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