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Abstract

The slime mold Dictyostelium discoideum is one of the model systems of biological pattern formation. One of the most
successful answers to the challenge of establishing a spiral wave pattern in a colony of homogeneously distributed D.
discoideum cells has been the suggestion of a developmental path the cells follow (Lauzeral and coworkers). This is a well-
defined change in properties each cell undergoes on a longer time scale than the typical dynamics of the cell. Here we show
that this concept leads to an inhomogeneous and systematic spatial distribution of spiral waves, which can be predicted
from the distribution of cells on the developmental path. We propose specific experiments for checking whether such
systematics are also found in data and thus, indirectly, provide evidence of a developmental path.
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Introduction

The slime mold Dictyostelium discoideum is a model organism for

the study of pattern formation and excitable media dynamics in

biological systems [1]. Several stages of its life cycle exhibit self-

organized formation of structures successively building up on one

another. Here we are exclusively concerned with the starvation-

induced passage from a colony of chemotactically quiescent single

cells to the cAMP signaling stage prior to the onset of aggregation

and slug formation. Starting from the spontaneous emissions of a

few starving cells, the whole colony enters a regime of excitable

media dynamics [2–4], where a local supra-threshold concentra-

tion of cAMP causes cells to produce and release more cAMP,

which then diffuses to neighboring cells. The behavior of the single

cells gives rise to a macroscopic dynamics exhibiting typical

excitable media attractor states, namely circular radially growing

‘target waves’ caused by periodic oscillation of a central

pacemaker element and self-sustained spiral waves. There are

several mathematical models describing this transition [5–7],

making different assumptions about the exact nature of the

underlying biological processes.

Single D. discoideum cells have recently been shown experimen-

tally to have distinct and persistent reactions to external stimuli

[8]. In particular, the response to repeated stimuli varied

substantially less for an individual cell under repeated stimuli,

compared to the ensemble variation, indicating that the average

response is indeed a cell property, varying across the cell

population but rather fixed in time.

As an analogy to physical systems, we like to interpret the

arising situation as a ‘jagged potential landscape’; a hypothetical

basic process corresponds to a smooth potential, where an injected

particle will almost certainly come to rest in some sink of the

landscape, and, in the case of several stable conformations

emerging under variation of some control parameter and

separated by unstable equilibrium positions (the typical scenario

for a second-order phase transition), random temporal fluctuations

such as thermal noise decide the result (see, e.g. [9] for the relation

between phase transitions and self-organized processes). However,

the biological variability of a real system combined with the finite

number of constituents adds a layer of static roughness to the

potential landscape, so that the influence of small ‘bumps’ may

well outrank thermal noise, leaving a distinct fingerprint of the cell

configuration in an ensemble of experiments and thus systemat-

ically biasing the asymptotic configuration of the system.

We believe that in principle the result of the self-organized

signaling, namely the spatial layout of the spiral wave pattern, can

be predicted from the location and the properties of some cells

playing key roles in triggering certain phases of cAMP commu-

nication. We recently succeeded in demonstrating this in a rather

detailed fashion [10] for the model developed in [6,11], which was

also used to draw a connection between the macroscopic spiral

wave density and the genetic feedback strength of the cAMP

dynamics [12]. A key finding of [10] is the pronounced

anticorrelation between the location of pacemaker cells (which

are explicitly included in that model) and spiral occupancy, which

enabled us to identify (and model geometrically) the most relevant

microscopic mechanism of spiral formation, leading to a

quantitatively successful prediction scheme for the spiral tip

probability based only on pacemaker cell locations.

If for several mathematical models of one real system the

mechanisms and rules can be identified that map single element

properties to emerging patterns, one can check these for
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agreements and differences which may open a route to

experimental testing of macroscopic predictions, thus testing the

assumptions regarding microscopic processes that are not easily

accessible to direct observation.

Therefore we here explore the deep link between cell properties

and pattern features in a realistic mathematical model of

Dictyostelium signaling behavior, namely the developmental path

model [5], which is motivated by experimental evidence for a slow

variation of the cells’ kinetic properties [13–15].

The Methods section describes the model we analyze here, as

well as giving a brief overview over the methods we used to detect

significant events in the spatio-temporal evolution of the system

and the analysis of point processes, which we used to relate our

numerical findings to experimental data. Using these we were able

to identify effective pacemaker cells and spiral creation statistics, as

described in the results section, enabling us to find qualitative

differences in the mapping of pacemaker positions to macroscopic

spiral probabilities in two models of D. discoideum.

Results

Analysis of target and spiral wave formation
Although the model used here does not explicitly contain

pacemaker cells like some other models of D. discoideum ([6,12]), we

can expect that, since signal transduction is enabled rather

suddenly, when almost all cells have crossed into the excitable

regime, only the cells that are in the oscillatory regime at that exact

moment in time can be the ones to initiate the first generation of

target waves. These cells effectively assume the role of pacemakers

in the early shaping of the emerging patterns.

Figure 1 shows target wave events detected with the algorithm

summarized in the Methods section over a density plot of cells that

are in the oscillatory regime when signaling begins at t&160. Two

regimes are discernible: early locally repeating target waves

growing in ‘stems’ mostly from clusters of oscillatory cells (dark

areas) and a regime where several target wave centers drift apart

slowly in branch-like structures, starting at about t&200, when

most cells have entered the autonomously oscillatory phase of the

developmental path.

In the early stage, clusters of oscillatory cells have a high chance

of creating a repeating target wave center before being entrained

by target waves emanating from single pacemakers in the

neighborhood, since any of them can initially trigger the

surrounding excitable cells; the reduced expected ‘time to next

excitation’ offers a selection advantage compared to solitary

oscillatory cells. The slower pacemakers of the cluster are in this

case enslaved by the surrounding pattern, quickly leading to their

synchronization with the initially triggering pacemaker.

The behavior of predominantly oscillatory cells in the latter

stage (t&200 . . . 260) is a collective oscillatory dynamics, as

opposed to the excitable behavior observed in the early and late

stages of the developmental path employed here. The dynamical

behavior of single cells changes qualitatively when the bulk of cells

in the system crosses over into the oscillatory regime: Cells no

longer react to their neighbors activating them, but oscillate

autonomously. The target wave pattern established in the early

phase (tv190) remains imprinted on the system and persists for a

while, but is no longer a completely stable attractor of the

collective system. The diffusive term in the extracellular cAMP

concentration coupled with the degradation term act as a phase

damper, favoring synchronous bulk oscillations. We believe this

amplifies the irregularization of the amplitudes along the

circumference of a target wave (cf. Figures 2 and 3), simplifying

the breakup of waves and finally spiral formation, as described

below.

Depending on the desynchronization parameter D, a varying

number Np of cells is eligible to produce target waves. Since signal

transduction (at the parameter setting used here) is enabled at

t&160 and the oscillatory regime starts at t&190 and ends at

t&270 (cf. Figure 2), we can find this number by interpreting Eq.

(7) as a function of D,

Np Dð Þ~N160 190,270,Dð Þ, ð1Þ

which is a monotonically rising function for 0vD 72. So, for D

large enough to produce signaling patterns at all, and growing

within reasonable bounds, one expects a growing number of

potential pacemaker cells and hence a decreasing correlation

Figure 1. Detected target wave events (red +) over density plot
of ‘pacemaker’ cells that are in the oscillatory regime when
signaling begins at t&160. The tree-like structure of fracturing target
wave emitters is clearly visible. The shown density of pacemaker cells is
a Gaussian smoothing (width 2.0 grid points) of the binary distribution,
color runs from white (0.0) to black (1.0).
doi:10.1371/journal.pcbi.1000422.g001

Author Summary

Spatio-temporal pattern formation is a core discipline of
theoretical biology. Formation of large-scale patterns from
local interactions can very prominently be observed in the
swarming behavior of fish and birds, in animal markings or
bacterial growth patterns. It also plays a critical role in the
life cycle of the social amoeba Dictyostelium discoideum. A
homogeneous colony of amoebae is partitioned into
subgroups that will form migrating slugs by a collective
phase of chemotactic signaling, exhibiting typical and
well-known patterns for this sort of excitable dynamics
(circular and spiral waves). The mechanism of spatial
localization of aggregation centers (that is, the centers of
periodic circular and spiral waves) is unclear, despite its
crucial role to the organism’s procreation. Here we
demonstrate for an established computational model of
D. discoideum that the initial properties of potentially very
few cells have a driving influence on the resulting
asymptotic collective state of the colony. Analogous
processes take place in diverse situations such as, e.g.,
heart cells (where spiral waves occur in potentially fatal
ventricular fibrillation), so that a deeper understanding of
this additional layer of self-organized pattern formation
would be beneficial to a wide range of applications.

Predicting Spirals from Cellular Properties
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between the (binary) spatial distribution of these cells and the time-

averaged plane of detected target wave events because of the rising

number of pacemaker cells that are entrained without leaving a

strong fingerprint. Numerical experiments qualitatively confirmed

this expectation: For D~15 min, the correlation coefficient

reaches about 40% and then decays rapidly with growing D (data

not shown).

Combining the results for the detection of spiral- and target

waves, we arrive at a fairly detailed picture of the behavior of the

system (Figures 4 and 5). A typical repeatedly pulsing target wave

(t) fractures (f ) into several small active centers that drift apart in

the oscillatory regime (see also Figure 1) and result in pairs of

counter-rotating spirals (c) in an apparently typical distance from

the original target wave center. The spirals in a pair repel each

other (the target wave shrinks at both open wave ends, cf. [16]),

drifting apart primarily transversally relative to the original target

wave emitter and either annihilate with opposite-handedness

spirals from an adjacent pair (a, the wave segment vanishes) or

come to rest and persist indefinitely in a dynamic steady state (s).

After spiral annihilation events, oscillatory cells in the vicinity can

easily ‘hijack’ the location, since it has last experienced a very

target-wave-like cAMP pulse, and initialize a new train of target

Figure 2. Reproduction of the results from Figure 6 in [5], using our own simulations. Top row: snapshots of the extracellular cAMP
concentration c. Bottom row: snapshots of the distribution of the cells on the developmental path, every circle corresponds to 4% of the cells. There
is an initial quiescent period while the cells mature to become excitable. When almost all cells have become excitable, they act as a switch that
activates the medium, enabling it to transmit cAMP pulses from the cells already in the oscillatory regime (leftmost column). When most cells have
entered the oscillatory regime, these initially stable target waves start to fracture into smaller synchronized active centers (second column) that
interact with each other and can lead to open wave ends in a typical radial distance from the original target wave center. Note that in this regime,
one mainly observes dynamical synchronization, as opposed to excitable behavior. As more and more cells leave the oscillatory regime, excitable
behavior visibly starts to dominate the appearance of the system again (emergence of crisp wave fronts, third and fourth column), turning the open-
ended wave fronts established in the oscillatory regime into true self-sustained spiral waves. The developmental program ends with all cells back in
the excitable regime, and, in the absence of cell aggregation in the model, the established spiral waves persist indefinitely (rightmost column;
remnants of target waves triggered by some of the last cells to leave the oscillatory regime can still be seen).
doi:10.1371/journal.pcbi.1000422.g002

Figure 3. Close-up snapshots of the lower right hand corner of Figure 2, following a typical series of events leading to spiral
formation. When most cells have passed into the excitable regime, target waves are initiated by the few advanced cells already in the oscillatory
regime. Once more cells have crossed into the autonomously oscillatory regime, the target waves start becoming unstable and fracture into smaller
active centers that synchronize dynamically, leading to open wave ends which are transformed into self-sustaining spiral waves once the cells cross
back into the excitable regime. Spirals detected with the phase singularity algorithm have been superimposed (green (light gray)+for right handed
and blue (dark gray)6for left handed spirals).
doi:10.1371/journal.pcbi.1000422.g003

Predicting Spirals from Cellular Properties

PLoS Computational Biology | www.ploscompbiol.org 3 July 2009 | Volume 5 | Issue 7 | e1000422



waves (left a, corresponding to the target wave visible in the lower

left of Figure 3 at t~264); these persist at most until the last cells

have left the oscillatory regime.

It is noteworthy that, comparing the raw system data with the

phase data in Figure 3, phase singularities are often recognized by

the algorithm long before the corresponding spirals in the raw data

seem to come into existence; one could hence question the validity

of this identification. However, the very continuous nature of

subsequently identified phase singularities as shown in Figure 4, that

in later stages also coincides perfectly with spirals apparent in the

raw data, leads us to conclude that a creation of a pair of opposite-

handedness phase singularities indeed constitutes the ‘birth’ of a

counter-rotating spiral pair, even though it might not yet be

discernible as such, looking only at the raw system data.

Do the sites of spiral pair creation events differ systematically

from the rest of the cell population? We detected the sites of spiral

pair creation events in many differently initialized runs of the model

presented here, in search of another specific fraction of cells that is

responsible for the breaking of target waves and hence for the

creation of spiral wave pairs. To our astonishment, these events

seem not be related with the position of a cell on the developmental

path: The cell age offset values at the sites of spiral creation events

exactly mimic the offset distribution, Eq. (5), of the whole population

(data not shown). It thus seems that the locations of spiral pair

creation are at least not directly influenced by cell properties, as we

expected from looking into the previous works [3,17].

Is there a typical radius for spiral creation events, i.e. a typical

distance from the target wave events around which the spiral

waves organize themselves? We tested this hypothesis by running

several hundred simulations in which the cell age distribution was

randomized, but we placed 363 clusters of pacemaker cells (offset

60.0) at fixed positions before running the model. We chose

completely synchronized clusters of pacemakers for simplicity,

preempting their dynamical synchronization to the fastest

pacemaker of the cluster, and at the same time allowing complete

control over the relative phase of several pacemaker clusters. In

fact, ring-like structures centered on the manually placed

pacemaker clusters are visible in the average spiral wave

occupancy (Figure 6), but their radius and crispness (i.e., the

visual clarity) depend on the distance between the pacemaker

clusters. For small distances up to 20 grid points, no separate rings

are discernible and the localization of the ring is very poor,

indicating a wide spread in spiral creation radii. For medium

distances (30–60) there are clearly separated halos that are much

more localized. For larger distances the appearance seems to

revert to two separate instances of the weakly localized rings

observed for very small distances.

These effects can be explained in an artificially created minimal

situation. In order to reduce the observed average patterns to

contributions of the manually placed pacemaker clusters, we

changed the cell age offset distribution, Eq. (5), to not contain

random pacemaker cells. To achieve this, when creating the

concrete cell age offset distribution for a given run, cells with an

age offset between 20 and 110 minutes (corresponding to

pacemaker candidates when the medium becomes active at about

t&160, plus a head start of ten minutes for manually placed

pacemakers to dominate the system) had their values re-

randomized according to Eq. (5) until they ended up outside of

this interval. In Figure 7 we demonstrate that this modified cell age

distribution does not qualitatively change the temporal evolution

of the system (apart from removing ‘noise’), and that the few

manually placed pacemaker clusters are sufficient to generate the

initial stage target waves as well as spiral waves later on.

The resulting spiral formation and -occupancy statistics of this

modified cell age distribution, however, are vastly clearer than

before (Figure 8). It is now readily discernible that the formation of

spiral wave pairs (omitting boundary effects) happens almost

Figure 4. Space-time plot of the chain of events shown in
Figure 3. This 3D representation reduces spiral waves tips and target
wave origins to points, allowing one to see the whole temporal
evolution at a glance. As before, target wave events are shown as red +,
spirals as green (light gray)6(right handed) and blue (dark gray) * (left
handed). Note that this picture represents only a single (but
representative) realization of the system dynamics.
doi:10.1371/journal.pcbi.1000422.g004

Figure 5. Space-time plot of the whole 1006100 grid shown in
Figure 2 viewed from above. The predominantly transversal
meandering of spiral tips around the pacemaker areas that created
them is discernible. Target wave events are shown as red +, spirals as
green6(right handed) and blue * (left handed), the dotted box indicates
the area shown in Figures 3 and 4. The target wave events are the same
as in Figure 1, viewed from above.
doi:10.1371/journal.pcbi.1000422.g005

Predicting Spirals from Cellular Properties
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exclusively on lines parallel to and in a fixed distance from the

Voronoi diagram of the pacemaker clusters (i.e. the partition of the

plane into areas that have the nearest pacemaker in common).

Spiral pairs are formed in front of areas where waves collide and

annihilate, probably based on a prolonged refractory time (or

oscillation period) in these areas, due to the large peak amount of

extracellular cAMP deposited there. In contrast to common

expectation, we could not observe this process as a sudden

breaking of target waves, it rather seems to be a gradual build-up

of phase lag during the time when most cells are oscillatory (cf.

200vtv250 in Figure 3). The very exact localization near a

specific distance from the Voronoi lines is due to the synchroni-

zation of our manually placed pacemakers – since their age offset is

exactly identical, they fire in phase and hence the target waves

emanating from pairs of adjacent pacemakers always meet exactly

at half their distance to each other. Also, consistent with the reason

for spiral formation stated above, the probability of spiral pair

formation is higher near vertices of the Voronoi diagram,

representing points where target waves from three or more

pacemakers meet and annihilate, and on direct connections

between adjacent pacemakers, where target waves collide head-on.

Removing the artificial constraint that all manually placed

pacemaker clusters oscillate in phase does not qualitatively change

this result. Since the pacemakers already are in the oscillatory

regime when signaling is enabled, their phase difference can at

most be 2p, corresponding to one oscillation period T . We

selected the starting time offset of all pacemaker clusters uniformly

from 60 to 66 minutes (T&6 min). The phase difference

distribution of adjacent pacemaker clusters is then triangular,

peaking at zero and stretching to very unlikely maximum

differences of +2p. Hence, the positions of target wave collisions

are still strongly centered on half the corresponding pacemaker

cluster distances and the resulting distributions corresponding to

Figure 8 are slightly washed out but qualitatively unchanged; the

Voronoi diagram of the pacemaker clusters is still clearly

discernible as the entity governing the statistics of spiral pair

formation and consequently spiral occupation.

We hence conclude that the locations of spiral pair creation do

not directly depend on the cellular properties at these sites, but on

geometrical constraints which are an indirect consequence of the

heterogeneity of cell properties given by their positions on the

developmental path.

Note that the Voronoi diagram of the pacemaker cells arises

here by the dynamical exploration of the ensemble of possible

points for spiral formation over many numerical runs. It is not

connected to the fact that in D. discoideum cell streaming

experiments, the initially homogeneous plane is separated into

several basins of attraction, which very nearly correspond to the

Voronoi cells of the spiral cores (again, subject to phase

differences). The Voronoi pattern in Figure 8 is a summary of

the geometrical constraints arising implicitly from the distribution

of cells on the developmental path, while the explicit partitioning

into Voronoi cells during aggregation is simply a consequence of

each D. discoideum cell moving to the nearest spiral core under the

influence of the chemotactic signal.

The mechanism of spiral formation outlined above was not

discernible in similar clarity, employing the unmodified cell age

distribution, because of interference from randomly emerging

pacemakers. The varying crispness in halo appearance in Figure 6

can also be explained in these terms. For very small distances, the two

clusters effectively act as one pacemaker, since no fully formed waves

are established between them, and spiral pairs are formed only by

interactions with random pacemakers, which emerge at different

positions, radii and relative phases in every numerical run, leading to

a very fuzzy average image. Once the distance between the two

manually placed clusters is large enough so that fully developed target

waves are created emerging from each of them, this pair constitutes

the most predominant (and consistent) cause of spiral formation,

giving rise to fairly clear halos, especially directly between them. The

further these clusters are separated, the higher is the probability of

interference from random pacemakers, until at the maximum

considered distance one effectively has two instances of a single

consistent pacemaker cluster, interacting only with their respective

varying neighborhoods of randomly emerging pacemakers.

Figure 6. Temporal average of the spiral occupancy (disregarding handedness) for a pair of 363 pacemaker clusters (red +) in
varying distances. Averages are over 500 minutes and 400 runs for each configuration. The cell positions on the developmental path were
randomized in each run, except for the manually placed pacemaker clusters. The pattern revealed in these pictures cannot be extrapolated from
single-run information as in Figures 4 and 5 (although the latter hints at it); it fully emerges only after an ensemble average is considered.
doi:10.1371/journal.pcbi.1000422.g006

Figure 7. System snapshots of the extracellular cAMP concentration ª using a depleted cell age distribution with no randomly
occurring pacemakers apart from those placed manually. Comparing this figure with Figure 2, the system’s evolution is not qualitatively
changed apart from the removal of ‘noise’ coming from random pacemaker candidates.
doi:10.1371/journal.pcbi.1000422.g007

Predicting Spirals from Cellular Properties
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Translating these insights back to the original setup of the model

is straightforward in principle, but tricky in detail. Since for a

desynchronization D~25 min a large fraction (<29%) of all cells

has the potential to act as pacemaker cells, but few actually emerge

because of the system’s limited carrying capacity for sustained

target waves per area, one needs a good scheme to predict the

formation sites of initial target waves. The spatial density of

pacemaker candidates is a promising start, but not quite sufficient,

as Figure 1 shows. This difficulty can be reduced by choosing D
smaller, just large enough to give the randomly emerging

pacemakers time to establish target waves before all cells enter

the oscillatory regime, but the number of pacemaker candidates

(e.g. <1350 for D~15 min and a 1006100 grid, cf. Eq. (1)) is still

substantially larger than the number of persistent target waves the

system can sustain (few tens).

Alternatively and more realistically, regarding a possible

application to experimental data, one can start from an ignorance

of detailed cell properties and predict the spiral positions only from

observed target wave positions. Since one cannot expect single

experiments to yield statistically significant agreement with an

ensemble average of many idealized repetitions we performed in

silico, it might be most instructive to only compare observed spiral

tip density per unit area in two categories, namely ‘high’ and ‘low’

expected spiral density, computed from the distribution of early

target wave emitters. An experimental setup with a high degree of

similarity to our manipulated cell age distribution might be

attainable by placing a few (possibly fluorescence-marked) cells

from an older population already in the target wave phase into a

younger colony where target wave signaling has not yet been

established. The geometrical spatial systematics may very well

serve as an experimentally accessible evidence for such a

developmental path in the real system.

Comparison with experimental data
Other researchers have strived to explore the spatial correla-

tions between target and spiral waves in experimental data [14],

but so far the analyses proved difficult. We here for the first time

apply methods from point process statistics [18] to the analysis of

Dictyostelium signaling patterns. As outlined in the Methods section,

this allows a quantification of the over- or underrepresentation of

pairs of events at specific distances, resulting in typical ‘correlation

profiles’ between target waves and spiral cores over distance. This

method can at most very indirectly capture more detailed

geometric correlation patterns (such as demonstrated in the

previous Section), but allows the quantification of pair correlations

in data sets that appear unordered to the naked eye. In addition,

this method allows in principle to perform a cumulative analysis of

many experimental runs, even despite their larger diversity when

compared to numerical simulations.

We digitalized the data points in Figure 2a of [14] and

compared the resulting curves to curves extracted from the model

from [6] (‘Levine model’), the developmental path model analzyed

here (with d~25 min, corresponding to 29% pacemaker candi-

dates) and additional experimental data sets kindly provided by

Christiane Hilgardt (University of Magdeburg) and Satoshi Sawai

(University of Tokyo, [19]). We show here only one curve per

(experimental) source, where the quality of target and spiral wave

detection was highest. Apart from detection artifacts, all

experimental curves exhibited the same qualitative behavior.

Figures 9–11 show the reduced partial pair correlation functions

(see Methods) for target-spiral, spiral-spiral and target-target

comparison, respectively.

The interplay between target and spiral waves (Figure 9) is

dominated by an underrepresentation (suppression) of these pairs

for short distances, which is the qualitative anticorrelation we

found in [10] as well as in our present work. Note that all

experimental curves we analyzed also exhibit this feature

qualitatively. In some cases it can be somewhat obscured by

crosstalk between target and spiral wave recognition, which is

problematic mainly for experimental data sets (dark blue curve).

Figure 10 shows a strong suppression of spiral-spiral pairs below

a minimum distance. This suppression typically has a much longer

range than the minimum distance we manually imposed to

prevent the double recognition of a single spiral signal as two

points (the typical diameter of a spiral peak). Following this

suppression there is a regime of overrepresentation that has its

main root in the existence of stable pairs of counterrotating spirals.

Note that this peak is apparently shifted towards higher distances

Figure 8. Comparison of the statistics of significant events using
the original cell age offset distribution (left column) and the
distribution depleted of random pacemakers described in the
text. The top row shows the detected target waves clearly centered on
the manually placed pacemaker clusters (as indicated in the bottom row)
in both distributions. The center row shows the occurrence of spiral pair
creation events; using the original cell age distribution, nothing much
can be discerned, except for an artefactual bunching at the pacemaker
locations. Using the depleted distribution on the right side reveals the
close correspondence to the Voronoi diagram of the pacemaker clusters
(red lines), showing increased amplitude near vertices and on direct
connecting lines. The bottom row shows spiral occupancy, representing
mainly the final steady state with fixed spirals. The contrast is drastically
sharper using the depleted distribution (right column) due to the
absence of ‘randomly’ emerging target waves. If the aspect ratio of a
Voronoi cell is far from one, multiple halos can be formed, indicating that
spirals in fact predominantly meander transversally to the pacemaker
that created them.
doi:10.1371/journal.pcbi.1000422.g008

Predicting Spirals from Cellular Properties
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for the model from [6], but this is mainly due to the smaller length

scale this model is simulated at.

The most robust feature of Figure 11 is a significant

overrepresentation of pairs of target waves in very short distances,

indicating clustering. In the Levine model, this effect is much less

distinct than in the developmental path model, due to the much

smaller number of repeated firing events before a spiral pattern is

established. The longer spatial scale in the developmental path

model stems from the fracturing of target waves, resulting in large

target wave clusters. One possible interpretation of this clustering

is a correlation between the locations of specific ‘pacemaker’ cells

and target waves (per construction, for the mathematical models).

On the other hand, a clustering of target waves can also occur in

scenarios where every quiescent cell has the potential to fire

spontaneously (the original setup of [6]); the higher firing

probability near the source of the previous target wave center is

then based only on the longer time since the last firing event. The

expected degree of clustering in such a setup depends on the

typical time scale until newly quiescent cells fire, compared to the

wave speed.

There is a possible objection to the anticorrelation hypothesis

between spiral and target waves: One can argue that for the curves

corresponding to spiral-spiral and spiral-target pairs there is a

competition which trivially blocks these events from occuring in

close proximity , whereas for the target-target curve there is no

such competition since they occur sequentially instead of at the

same time. This is absolutely true for the spiral-spiral case, we in

fact assume that the length of the repulsive plateau is an indicator

for the shortest length scale at which stable spiral pairs can coexist.

However, if one accepts that spiral waves in some form or other

result from target waves, which are the fundamentally simpler

patterns that can easily arise from spontaneous firing events of few

cells, one has to accept that target waves first occur prior to spiral

waves, when there is no coexistence and hence competition. This

is rather clearly the case for both mathematical models considered

Figure 9. Reduced partial correlation function for target and
spiral waves over distance in fraction of sample image
diagonal. The curves shown are from the developmental path model
(bold red +), the Levine model (bold light green 6) and experimental
data scanned from LCG96 ([14], light blue *) as well as further
experimental data kindly provided by Christiane Hilgardt (University of
Magdeburg, dark blue squares) and Satoshi Sawai (University of Tokyo,
dark green filled squares, [19]). All curves show a reduced probability to
find pairs of spiral and target waves at very short distances, which
corresponds to the anticorrelation we found numerically for the
mathematical models. The Levine model shows this anticorrelation on
a shorter spatial scale (recall that the grid constants differ by almost a
factor 2 between the Levine and developmental path models, see
Methods).
doi:10.1371/journal.pcbi.1000422.g009

Figure 10. Reduced partial correlation function for pairs of
spiral wave tips over distance in fraction of sample image
diagonal. Colors as in Figure 9. All curves show a strong repulsion of
spiral pairs for very short distances, followed by a range of
overrepresentation in almost all curves, which we found to be mostly
due to pairs of counterrotating spirals.
doi:10.1371/journal.pcbi.1000422.g010

Figure 11. Reduced partial correlation function for pairs of
target waves over distance in fraction of sample image
diagonal. Colors as in Figure 9. All curves show an overrepresentation
at very short distances, but the amplitude differs quite strongly
between the mathematical models (the red curve for the developmen-
tal path model peaks at a value of above 20). The experimental data
exhibit strongly varying degrees of local target wave repetitions.
doi:10.1371/journal.pcbi.1000422.g011
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here, were we observe a relatively sharp transition from target to

spiral waves. The aforementioned objection hence only holds for

target-spiral pairs in the late stage of signaling when spirals have

been established. Furthermore, since both mathematical models

considered so far qualitatively predict a target-spiral anticorrela-

tion for short distances, this point does not contribute to the

ultimate question of which model better captures the experimental

evidence.

It should be noted that, ideally, one would analyze correlations

between cell properties and pattern features. At the moment,

however, to our knowledge such data do not exist for Dictyostelium.

Exact length scales for experimental data would also be valuable in

comparing several curves over real-space distances.

Discussion

In this report we employed a technique for the identification of

spatio-temporal target waves and used it in conjunction with spiral

tip recognition, based on the established phase singularity

technique, to identify typical temporal motifs of events in a

developmental path model for the social amoeba Dictyostelium

discoideum. This analysis follows up on our earlier investigation into

the predictability of spiral patterns from the knowledge of cell

properties conducted in a more schematic model of D. discoideum

[10]. Not surprisingly, the more complex and more closely

biologically motivated model examined here exhibits a more

complex statistical dependence of the resulting spiral patterns on

the cell properties. Nevertheless, we were able to identify a specific

fraction of cells that function as effective pacemakers, as well as the

dominant mechanism of spiral formation, and employ this

knowledge to engineer the spatial statistics of target wave and spiral

creation by manipulation of the pair correlations of these cells.

Similarly to our findings in [10], one observes an anti-

correlation between (now dynamically generated, effective)

pacemaker cell locations and the locations of spiral formation

and asymptotic spiral position. However, the structure of spiral

creation and meandering in the region between pacemaker

locations is more complex; spiral tips are formed at a specific

distance from lines of the Voronoi diagram of the pacemakers, and

meander on roughly circular orbits around pacemakers, without

intruding into the halos of adjacent pacemakers. Also, in strong

contrast to the ‘simple’ anticorrelation we found in [10], the area

near the lines of the Voronoi diagram (the area right between

pacemakers) is expected to hold a strongly reduced amount of

spiral tips.

The results presented here provide further evidence supporting

our general hypothesis that single element properties are

systematically mapped onto patterns and thus conserved through

processes of self-organization (as opposed to enslaved and deleted

by the collective), as outlined in [10] and the introduction of this

paper. Furthermore, we have now presented mapping schemes for

two numeric models of D. discoideum, yielding different predictions

regarding the relationship between pacemaker positions and spiral

wave tip statistics.

We compared both of these models to experimental data from

[14], introducing the statistical tool of point processes to the

Dictyostelium signaling debate. We were able to demonstrate that

the spiral and target waves in the data from [14] are not

uncorrelated, as claimed there, but that they follow qualitatively

identical systematics as other experimental data as well as both

considered mathematical models, including the anticorrelation

between target wave centers and asymptotic spiral core positions.

We have so far not been able to conclusively distinguish which

mathematical model better captures the real system, mainly due to

the increased noise level and the large variation one typically

observes from run to run in experiments.

Methods

Computational model
The D. discoideum model considered here has been formulated in

[20] and extended to include a developmental path in [5], with

some additional discussion in [17]. It is given by three coupled

differential equations for the total fraction of active cAMP receptor

(rT ) and the normalized concentrations of intracellular (b) and

extracellular (c) cAMP, respectively,

drT

dt
~{f1 cð ÞrTzf2 cð Þ 1{rTð Þ,

db

dt
~qsW rT ,c,að Þ{ kizktð Þb,

Lc

Lt
~ ktb=hð Þ{keczDc+2c,

ð2Þ

with

f1 cð Þ~ k1zk2c

1zc
, f2 cð Þ~ k1L1zk2L2cc

1zcc

W rT ,c,að Þ~
a lhzeY 2
� �

1zazeY 2 1zað Þ ,Y~
rT c

1zc
:

ð3Þ

The biological meaning of the main terms in these equations are

the following: The cAMP receptors on the cell surface are de- and

resensitized depending on the extracellular cAMP concentration

and the currently active receptor fraction. Intracellular cAMP is

produced depending (among other factors) on the current activity

s of the adenylate cyclase (cf. below). Upon diffusing to the

extracellular area it is degraded by the action of phosphodiesterase

(PDE, both bound to the cell membrane and extracellular PDE)

and otherwise diffuses freely. The exact forms of the nonlinearities

stem from the reduction from nine to three dynamic variables

performed in [20].

For clarity, we use exactly the notation from [5]. This model has

been studied in great detail in terms of its dynamical regimes as a

function of the position in parameter space (cf. [20] and references

therein). Here we do not consider a wide range of parameter

constellations and instead focus on the dynamical processes

leading to target and spiral wave formation. Throughout this

paper we use the parameter setting discussed in [5], i.e.

k1~0:09 min{1, k2~1:665 min{1, L1~10, L2~0:005, c~10,

q~4000, a~3, l~0:01, h~0:01, e~1, ki~1:7 min{1,

kt~0:9 min{1, h~5, Dc~1:5:10{4 cm2 min{1. The grid spac-

ing is 100 mm, a system time unit is identified with a minute [5].

We integrated these equations using an explicit Euler scheme with

a fixed step size Dt~0:01 min, again as in [5]. The simulations

were performed in custom software in C++.

These equations and parameter settings give rise to several

dynamic regimes, including most importantly a steady-state

regime S where external cAMP stimuli do not trigger a reaction,

an excitable regime E where external stimuli are followed by a

sharp increase of cAMP production with a subsequent recovery

period, and finally an oscillatory regime O where the cells

autonomously oscillate between phases of cAMP production and

quiescence (Figure 12).

Lauzeral et al. [5] proposed that the maturation of cells has the

effect of modifying their behavior (described in this model by the
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maximum activity of adenylate cyclase s and the extracellular

phosphodiesterase rate constant ke), transporting them through

these regimes along a fixed predetermined developmental path, thus

giving rise to macroscopic cAMP patterns (cf. Figure 2) which then

give the cue for cell aggregation and finally lead to the following

stages of the cell cycle. In order to introduce the initial

heterogeneity needed for the formation of spiral waves, it is

assumed that cells have different properties at the onset of

starvation, for example different stages of their cell cycle, which

are represented as differing starting position offsets on this path.

Here we consider only the developmental path 3 of [5], given by

a combined sigmoidal variation of s and ke,

s tð Þ~savzsamp tanh
t{ts

ts

� �

ke tð Þ~kavzkamp tanh
t{tk

tk

� �
,

ð4Þ

where again we follow [5] closely, both in notation and in the

parameter values, i.e. sav~0:3, samp~0:25, ts~200 min,

ts~50 min, kav~6:5, kamp~3, tk~260 min, tk~30 min.

Figure 12 shows this developmental path in the parameter plane

of a single oscillator (after [5]). A total number of N0 cells arranged

on a regular spatial grid is placed on this path with varying starting

time offsets tS according to an exponential probability density,

P tSð Þ~
1

D
exp {

tS

D

� �
: ð5Þ

Note that we refer to each grid point as a ‘cell’ for practical

purposes, although it actually represents a cluster of about ten cells

with synchronized properties [5]. Throughout this paper we use

grids of 1006100 cells and D~25 min unless explicitly noted

otherwise. It is noteworthy that the complete dynamics of this

model depends only on the concrete choice of starting time offsets

and contains no other random elements.

The exponential distribution implies that the number of cells

with starting time in the interval t1,t2½ � is approximately

N0 t1,t2ð Þ~N0
: exp {

t1

D

� �
{exp {

t2

D

� �� �
: ð6Þ

After a time t has passed, the number of cells in the interval t1,t2½ �
is

Nt t1,t2ð Þ~ exp
t

D

� �
:N0 max t,t1ð Þ,t2ð Þ if tƒt2

0 otherwise:

8<
: ð7Þ

Detection methods for spiral and target waves
We used algorithms to detect target and spiral wave

configurations, which are well-known attractor states for excitable

media dynamics, and which play important roles in the shaping of

the self-organized cAMP communication process.

In order to detect spiral waves, we used the phase singularity

method introduced by Gray et al. and Bray et al. [21,22] in the

context of heart tissue dynamics, which was to our knowledge first

applied to D. discoideum data in [12]. We observed an influence of

the sample size entering the specific average in the underlying

embedding process (cf. [22]) on the exact recognized phase

singularity position: Using a global average over all raw values

(after the end of the quiescent period) for each grid point caused

phase singularities of apparently pinned spiral waves to circle

around an empty core on a decaying helix trajectory in space-time.

While this did mimic the experimentally observed behavior, it was

an inconvenience when trying to visually trace spiral cores. Using

a gliding time average over about three signal periods (20 minutes)

removed this meandering and yielded the spatially fixed phase

singularities shown in this paper. Figure 3 shows a time series of

raw system data contrasted with the corresponding phase data and

detected phase singularities.

In order to detect target waves we developed a 3D fitting

algorithm based on the already calculated smooth and amplitude-

insensitive phase data (article in preparation). At its core, it fits cones

(the spatio-temporal evolution of target waves, neglecting curvature

effects on wave speed) to connected voxel segments, representing

contour shells extracted from the spatio-temporal phase data and

subjected to causal consistency constraints (maximum observed

wave velocity). The tip of a successfully fitted cone corresponds to

the point in space-time where an observed target wave was created;

we call these points target wave events. An analogous spiral fitting

algorithm was also developed, but not employed because of high

computational cost and inferior performance compared to the

phase singularity technique, given the relatively low-noise environ-

ment of the computational model discussed here.

Point processes
We used the mathematical concept of point processes to quantify

correlations between temporal projections of spiral and target

wave events in the developmental path model [5] discussed here,

the more phenomenological excitability model from [6] and

experimental data from [14]. The core idea of point processes is to

take a given distribution of possibly several types of points (marked

point processes, here: locations of target wave events and asymptotic

positions of spiral waves) and calculate a variety of measures

comparing e.g. the observed frequency of point pairs in specific

Figure 12. Developmental program imposed on the cells in a
two-dimensional parameter plane given by the activities of
adenylate cyclase in the cell and the rate of extracellular cAMP
degradation caused by phosphodiesterase. Arrows with time
indices indicate approximate passage times for cells with zero starting
time offset. Cells start in the unexcitable (steady state) regime S in the
lower left area, then cross an excitable regime (E) upwards into an
autonomously oscillating regime (O), from where they move back into
E in the upper right area of phase space.
doi:10.1371/journal.pcbi.1000422.g012
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distances to the expected frequency if the points were randomly

distributed (see e.g. [18]).

We found the partial pair correlation function to be the most distinct

and at the same time straightforward quantifier of the relevant

system statistics. For the two dimensional case used here it is

defined as [18]

gij rð Þ~ 1

lilj

X
pif g

X
qjf g

k p{qk k{rð Þ
2prn Wp\Wq

� � : ð8Þ

Here pif g and qj

� �
are the sets of all points of types i and j,

respectively, li and lj are the respective intensities (expected

number of points of type i or j per unit area), k xð Þ~1 {h,h½ �
	

2h is

the box kernel function with bandwidth h and n Wp\Wq

� �
is the

area of the intersection between the sampling window W shifted to

p and q. The latter term is intended to correct for edge effects. The

bandwidth h quantifies the width of the band around r from which

one accepts point pairs contributing to the value of gij rð Þ and

should be chosen separately for each type of data set. Larger values

increase the number of point pairs taken into consideration and

thus improves the statistics but at the same time reduces the

achievable resolution in r; we increased r in steps of h. We used

h~1 for data from numerical simulations, h~0:4 for the data

from [14], h~4 for the data by Christiane Hilgardt (3006500

pixel areas from digital photographies of dark-field experiments,

downsampled to 1506250, to which the bandwidth refers) as well

as for the data by Satoshi Sawai ([19], 6406480 downsampled to

3206200).

The partial pair correlation function quantifies the probability

of simultaneously finding a point of type i and another point of

type j in infinitesimal volumes at distance r, normalized by the

expected probabilities. For complete spatial randomness one

expects a constant value of one. Values greater than one indicate

an overrepresentation of these pairs at distance r and correspond-

ingly values of less than one correspond to underrepresentation.

For large distances between points one expects an asymptotic

behavior tending towards one, where the distances become so

great that points do not influence each other significantly; by

definition, gij 0ð Þ~dij .

Since the spatial resolutions and image sizes of the data we want

to compare are different (and in some instances unknown), we

renormalized distances to the maximum diameter of the sampling

windows, i.e. the image diagonal. Length scales are then remapped

to fractions of the image diameter and the curves become more

easily comparable. One should keep in mind, though, that the

x-axis does not represent the same real-space distance for all

curves, e.g. for the simulations we used identical 1806180 grids,

but a single grid distance corresponds to 0.6 mm in the model

from [6] (as used in [12]) and to 1.0 mm in the developmental

path model analyzed in-depth here.

We found that edge effects are still visible despite the edge

correction term, so we always plot gij rð Þ{�gg rð Þ, which we call the

reduced partial pair correlation function, where �gg rð Þ is the average

gij rð Þ curve from hundred realizations of randomly distributed

points in the same sampling window, keeping the numbers of

target wave events and spirals fixed to the original amount found

in the respective source data. Values above or below zero thus

correspond to over- or underrepresentation compared to the null

model of completely random point distributions, in units of the

expected probability based on the intensities.

It should be clear that given the rather finite-sized sampling

windows and the differences between the considered data sets, our

comparisons based on this technique should be used mainly as

qualitative indicators.
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