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A broad autism phenotype expressed in facial

morphology
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Abstract

Autism spectrum disorder is a heritable neurodevelopmental condition diagnosed based on social and
communication differences. There is strong evidence that cognitive and behavioural changes associated with clinical
autism aggregate with biological relatives but in milder form, commonly referred to as the ‘broad autism phenotype’.
The present study builds on our previous findings of increased facial masculinity in autistic children (Sci. Rep., 7:9348,
2017) by examining whether facial masculinity represents as a broad autism phenotype in 55 non-autistic siblings (25
girls) of autistic children. Using 3D facial photogrammetry and age-matched control groups of children without a
family history of ASD, we found that facial features of male siblings were more masculine than those of male controls
(n=69; p <0.001,d=0.81[0.36, 1.26]). Facial features of female siblings were also more masculine than the features of
female controls (n = 60; p = 0.005, d = 0.63 [0.16, 1.10]). Overall, we demonstrated for males and females that facial
masculinity in non-autistic siblings is increased compared to same-sex comparison groups. These data provide the first
evidence for a broad autism phenotype expressed in a physical characteristic, which has wider implications for our

understanding of the interplay between physical and cognitive development in humans.

Introduction

Among the neurodevelopmental conditions, autism
spectrum disorder (ASD) is considered to be the most
heritable’, with an increasing probability of diagnosis as a
function of genetic relatedness. While ASD is diagnosed
in approximately 1% of the population®, the probability of
a second diagnosis in a family increases to around 13% in
full siblings and dizygotic twins, and to around 59% in
monozygotic twins®. Among non-autistic first-degree
relatives of autistic children, subclinical autistic-like
characteristics, often referred to as the ‘broad autism
phenotype’, are also commonly reported. For instance,
compared to individuals with no known family history of
ASD, non-autistic parents and siblings of autistic indivi-
duals have exhibited higher levels of autistic-like traits®,
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poorer language abilities’, social-
communication difficulties®.

ASD is three times more frequently diagnosed in males
than in females’. The ‘extreme male brain’ theory hypo-
thesises that the male preponderance in ASD may be
associated with heightened exposure to testosterone in
utero®. Testosterone is a sex steroid that is critical for
male virilisation, hence its production is more pro-
nounced in pregnancies with a male fetus than those with
a female®. Testosterone crosses the blood-brain barrier
and can influence fetal brain development during preg-
nancy. Prior studies investigating the association between
prenatal testosterone exposure and autistic-like char-
acteristics have typically focused on neurotypical indivi-
duals from the general population, in part, due to the
challenge of collecting biological specimens for the ana-
lyses of prenatal testosterone. Several studies have
reported higher levels of prenatal testosterone derived
from amniotic fluid associated with higher levels of
autistic traits'®’' and poorer language outcomes'’.

and greater
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However, other studies of either prenatal or perinatal
testosterone have not observed this type of associa-
tion"*'%, To date, only one study has investigated levels of
prenatal testosterone in relation to ASD outcome in boys
by linking national health and psychiatric records in
Denmark'®. A group of sex steroids involved in the bio-
synthesis of androgen was collectively elevated in the
amniotic fluid samples of boys who were later diagnosed
with ASD compared to boys of typical development.
Overall, existing evidence for the association between
prenatal testosterone and autistic-like characteristics is
mixed in the general population and shows some promise
in the clinical population.

During the earliest stage of fetal development, the brain
and the face unfold from the neural crest in close coor-
dination'®. This has led to another line of research
focusing on the relationship between testosterone expo-
sure during pregnancy and its effects on facial morphol-
ogy. Whitehouse et al.'” found that more masculinised
facial structures in young men and women were related to
increased levels of testosterone measured from their
umbilical cords collected at birth. Given the possible links
between prenatal testosterone and the masculinisation of
the brain and face during fetal development, investiga-
tions motivated by the extreme male brain theory have
been extended to studying facial masculinisation in chil-
dren with ASD. Although facial structures are known to
be most sexually dimorphic after the onset of puberty'®,
recent advances in three-dimensional (3D) photo-
grammetry have allowed for facial masculinity to be
defined in prepubescent infants and children'®~2*,

Using 3D facial scans, we reported the first evidence of a
masculinised facial structure in autistic children, based on
a two-phase investigation®'. In the first phase, a gender
classification algorithm was developed to select and
combine a set of facial distances measured between
landmarks that optimally classified male and female faces
in a sample of typically developing prepubescent children.
This algorithm was used in the second phase whereby a
‘gender score’ was computed for 3D facial scans of 74
autistic children (20 girls) and 114 non-autistic children
(60 girls; a detailed description is provided in Tan et al.*").
We found that relative to non-autistic children, autistic
children included in this study presented substantially
more masculine gender scores and facial distances.

Facial features are highly heritable. Employing a
monozygotic-dizygotic twin design, Djordjevic et al.*>
reported that genetic factors accounted for more than
70% of the overall variation in facial features. In another
study, Lee and colleagues® examined whether facial
masculinity was influenced by genetic factors amongst
pairs of monozygotic and dizygotic twin adolescents. For
each subject, a facial masculinity score was established
from facial features measured from 18 landmarks placed
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on two-dimensional facial photographs, which had con-
tributed to the overall gender classification using dis-
criminant function analysis. The authors reported that
genetic factors explained 46 and 48% of the variability in
facial masculinity in males and females, respectively.
Therefore, it was concluded that facial masculinity is a
heritable trait with strong genetic influences.

While there is strong evidence for the heritability of
facial masculinity as well as ASD, it is unknown whether
the masculinised facial structures previously observed in
autistic children®" are also present in non-autistic full
siblings of autistic children. At present, only two studies
have examined the facial morphology of typically devel-
oping siblings. Hammond et al.** examined facial asym-
metry as a potential index of brain dysmorphogenesis in
children with ASD, using their non-autistic siblings and
unrelated children without a family history of ASD as
comparison groups. Children with ASD presented with
the most pronounced facial asymmetry while their sib-
lings and the unrelated comparison group were equivalent
in asymmetry. Hammond et al.’s findings were replicated
by Boutrus et al.>> who also observed more asymmetric
facial morphology among autistic children compared to
non-autistic siblings and unrelated children. As in the
Hammond et al. study, facial asymmetry in the sibling and
control groups did not differ. By including non-autistic
sibling samples, the authors were able to conclude that
facial asymmetry may be specifically associated with an
etiological mechanism specific to ASD, rather than a
genetic liability within the family.

The current study investigated facial masculinity in
non-autistic siblings of autistic children and in children
without a family history of ASD. There were two aims in
this study. First, we examined the generalisation of the
Tan et al. gender classification algorithm by using 3D
facial scans of a new sample of neurotypical children
drawn from the general population. Second, the degree of
facial masculinity was compared between non-autistic
siblings of autistic children and neurotypical children with
no known family history of ASD. Given previous evidence
of (i) facial masculinisation in children with ASD, (ii) the
presence of a broad autism phenotype among non-autistic
relatives of autistic individuals, and (iii) the heritability of
facial masculinity, we hypothesised that facial masculinity
would be more pronounced for the male and female
sibling groups compared to their same-sex comparison
groups.

Method
Participants

A total of 209 children (109 boys: mean age="7.56
years, SD = 2.44, range = 2.68-12.56; 100 girls: mean age
=744 vyears, SD =242, range=2.95-12.29) with no
known family history of ASD were recruited from the
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general population at community events in Perth, Wes-
tern Australia. Samples were restricted to those of Cau-
casian descent to minimise effects of ethnic variability. Of
these, 40 boys (mean age = 7.85 years, SD = 2.30, range =
3.17-12.11) and 40 girls (mean age =7.51 years, SD =
2.40, range =2.95-12.29) were selected based on their
ages to evaluate the generalisation of the gender classifi-
cation algorithm reported in Tan et al.*'. These boys and
girls were matched on age (p = 0.52); ages were also not
significantly different from the ages of children included
in the algorithm training phase in Tan et al.>' (p = 0.99 for
boys and p = 0.45 for girls).

The remaining 69 boys (mean age =7.39 years, SD =
2.51, range = 2.95-12.56) and 60 girls (mean age =7.40
years, SD =2.42, range = 3.04—12.28) formed same-sex
comparison group for 30 non-autistic male siblings (mean
age = 7.54 years, SD =2.65, range = 2.91-12.59) and 25
non-autistic female siblings (mean age = 7.39 years, SD =
248, range =2.83-11.91) of autistic children recruited
from the Telethon Kids Institute, Perth, Western Aus-
tralia. We conducted a power analysis using G*Power”.
Based on effect sizes reported in Tan et al.*!, Cohen’s f of
042 and 0.82 were used to determine the minimum
sample size required to detect effects of ASD diagnosis on
facial masculinity in boys and girls respectively. Analyses
suggest that the minimum sample size required to achieve
90% power was 62 for boys and 18 for girls. Hence, the
current sample size is deemed as adequate. None of these
participants are siblings of the autistic probands included
in Tan et al.*' and all siblings in the present study were
unrelated to one another. Parents reported no history of
facial trauma or known syndromic disorders for all of the
participants. Parents also provided written informed
consent and ethics approval was sought and granted by
the Human Research Ethics Committee in the University
of Western Australia (RA/4/1/5657).

Facial photography

3D facial images were obtained using a 3dMDface sys-
tem (3dMD, Atlanta, GA, USA). From two stereo camera
viewpoints placed on either side of each child, the
3dMDface system projects random infrared lights on the
child’s face to establish correspondence between images
taken from either viewpoint, thus creating a 3D facial
model with high precision (error less than 2 mm) and high
reliability®”. During the imaging process, each child sat in
front of the 3dMDface system, attempted a neutral facial
expression, and kept their lips closed.

Gender classification and scoring algorithms

In the present study, we examined the generalisation of
the gender classification algorithm trained and established
in Tan et al.*!. The steps involved in the algorithm
are summarised in the Supplementary Material (see
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Figure S1). For the current study, 13 landmarks were
manually placed on each 3D facial image, and the three
linear and eight geodesic distances used in the classifica-
tion algorithm were derived (see Fig. 1 for landmark
locations and definitions). These 11 distances were then
entered into the Linear Discriminant Analysis (LDA)
classifier to determine how well the algorithm could
classify the new groups of 40 boys and 40 girls according
to their sex, respectively.

Following this, a three-step gender scoring algorithm
described in Tan et al.** was employed to compute an
overall facial masculinity score for each of the children in
the sibling and comparison groups. First, 13 landmarks
were annotated on the 3D facial scan of each child
(hereafter the ‘test face’) and the 11 distances described in
Fig. 1 were measured. Next, these facial distances were
projected in the LDA space established in the Tan et al.
study for representing the two gender classes. Finally, the
deviation between the test face and the means of the male
and female classes was used in the calculation of a gender
score. For the gender score in this study, a score of 0
represents extreme femininity and 20 represents extreme
masculinity. The gender score will be referred to as the
‘facial masculinity score’ from here on. In addition, as
variations in body mass index and head size may influence
measurements of facial distances, facial areas were cal-
culated by adding the triangular areas connected between
the points in the 3D space.

Statistical analyses

All statistical analyses were conducted using RStu-
dio®®?°. Welch’s ¢ tests were conducted to compare the
facial areas and each of the 11 facial distances (previously
found to optimally contribute to the gender classification
accuracy in Tan et al.”') between the 40 boys and 40 girls
included in the validation of the gender classification
algorithm. Welch’s ¢ tests were also employed to compare
the sibling and comparison groups on their facial areas,
facial masculinity scores, and facial distances that have been
found to be sexually dimorphic. For any variable that vio-
lated the assumptions of parametric tests, Wilcoxon
signed-rank test was used. An alpha level of .05 and effect
sizes were considered in determining statistical significance.

Results
Generalisation of the gender classification algorithm
reported in Tan et al.”’

Based on the 11 facial distances, the gender classifica-
tion algorithm correctly classified the sex of the 40 boys
and 40 girls with an accuracy of 95.4% for boys and 96.0%
for girls. Facial areas were not statistically significantly
different between boys and girls (p=0.12, d=0.35).
Seven of the 11 features were significantly different
between boys and girls (see Table 1). Of these, six features
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Ft-Ft Forehead width Geodesic
Ex-Ex Outer-canthal width Geodesic
Sbal-Sbal Alar-base width Linear
Ex-Ch (right) Upper cheek height (right) Geodesic
Tr-G Forehead height Geodesic
N-Prn Nasal bridge length Geodesic
N-Sn Nose height Linear
N-Sn Nose height Geodesic
Sn-Prn Nasal tip protrusion Geodesic
Sn-Sto Upper lip height Linear
Sn-Sto Upper lip height Geodesic
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Fig. 1 A composite facial image annotated with 13 facial landmarks and a summary of the landmark names, distances, and distance types
measured in the current study. Facial landmarks were based on the definitions described in Farkas®”.

(linear alar-base width, linear upper lip height, geodesic
outer-canthal width, geodesic forehead width, geodesic
nose height, and geodesic upper lip height) were larger in
boys than in girls (largest p = 0.01, d = 0.56). Consistent
with Tan et al.”, geodesic forehead height was larger in
girls than in boys (p < 0.001, d = 1.17). The high accuracy
of gender classification and replication of sex differences
on individual features supports the generalisation of the
Tan et al. gender classification algorithm.

Comparison between sibling and control groups

For each sex, we compared the sibling and control groups
on their facial areas, overall facial masculinity scores, as well
as on the eight facial distances that were statistically

significantly different between typically developing boys and
girls either in Tan et al.*' or in the current study (i.e., fea-
tures denoted by b and/or c in Table 1).

Descriptive and test statistics for boys are presented in
Table 2 and those for girls are in Table 3. For both sexes,
facial areas did not differ between the sibling group and
their same-sex counterparts (boys: p=0.34, d=0.22;
girls: p=0.36, d=0.24). For boys, we found a strong
masculinised shift in the sibling group relative to their
male counterparts in their overall facial masculinity
scores. In terms of their facial distances, there were strong
masculinised effects across all distances (smallest d =
0.63) except linear nose height and geodesic forehead
width. For girls, there was also a moderately strong
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Table 1 Descriptive and null hypothesis testing statistics for facial distances of typically developing boys and girls.

Boys (n = 40) Girls (n = 40)
Facial variables Model Weight M SD M sD Test statistics
Facial area (mm?)? - 28 373 5 580 26 674 4 903 W=961, p=0.12, d =035 [-0.09, 0.79]
Linear distances (mm)
Alar-base width™ 038 150 152 139 173 t(76.6) = 2.88, p =0.005, d =064 [0.19, 1.10]
Nose heightb 1.54 38.7 3.28 379 4.00 t(75.1) =096, p =034, d=0.21 [-0.23, 0.66]
Upper lip height®™ 092 228 241 204 235 1(78.0) = 437, p < 0,001, d = 0.98 [051, 145]
Geodesic distances (mm)
Outer-canthal width® 039 100.6 8.07 94.6 7.1 t(76.8) =3.52, p=0.0007, d = 0.79 [0.33, 1.25]
Forehead heigh‘[bC 1.55 504 6.71 576 5.39 t(74.5) =5.24, p <0.001, d=1.17 [0.69, 1.65]
Forehead width® 0.52 147.6 9.38 141.6 121 t(735)=251,p=001,d=056 [0.11, 1.01]
Right upper cheek height 113 66.4 5.10 65.2 4.14 t(748) =1.17, p=025, d=0.26 [-0.19, 0.71]
Nasal tip protrusion? 131 14.8 235 14.3 272 W =954, p=0.14, d=0.38 [-0.12, 0.76]
Nose heightbC 542 494 3.93 457 492 t(74.3) = 3.66, p = 0.0005, d = 0.82 [0.35, 1.28]
Upper lip height® 0.54 255 333 224 3.34 (78.0) =4.05, p =0.0001, d =0.90 [0.44, 1.37]
Nasal bright length 3.59 336 328 325 433 t(726)=1.24, p=022, d=0.28 [-0.17, 0.73]

M and SD replaced with median and interquartile range, respectively
Bstatistically significantly different between boys and girls in Tan et al.'

“Statistically significantly different in the present study

Table 2 Descriptive and null hypothesis testing statistics for the facial masculinity score and distances for male siblings

and age-matched male controls.

Siblings (n = 30)

Controls (n = 69)

Facial variables M sD M SD Test statistics

Facial area (mm?) 27 446 4 331 26 578 3720 t(48.5) = 0.95, p =034, d =022 [-0.66, 0.21]
Masculinity score™ 14.0 2.81 116 3.19 (62.3) =3.89, p =10.0002, d =0.81 [0.36, 1.26]
Linear distances (mm)

Alar-base width?® 156 207 14.2 2.06 W =570, p=0.0004, d =0.77 [0.33, 1.21]
Nose height® 380 3.60 36.9 4.68 t(71.0)=1.22, p=1023, d=0.24 [-0.20, 0.68]
Upper lip height® 24.2 264 212 228 t(48.8) =5.32, p <0.001, d=1.23 [0.76, 1.70]
Geodesic distances (mm)

Outer canthal width® 100.7 7.19 95.0 8.03 t(61.3) =3.50, p =10.0009, d =0.73 [0.29, 1.18]
Forehead height® 516 9.03 57.0 859 t(52.8) =2.82, p=0.007, d =063 [0.19, 1.07]
Forehead width® 1479 109 1427 12.1 t(61.1) =2.10, p = 0.04, d = 044 [0.002, 0.88]
Nose heightab 493 4.68 439 5.78 t(67.6) =4.83, p <0.001, d =097 [0.52, 143]
Upper lip height® 267 321 235 328 1(56.3) = 441, p <0001, d =096 [0.50, 141]

3statistically significantly different between autistic and non-autistic boys in Tan et al.?'

BStatistically significantly different in the present study

“M and SD replaced with median and interquartile range, respectively
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Table 3 Descriptive and null hypothesis testing statistics for the facial masculinity score and distances for female

siblings and age-matched female controls.

Facial variables Siblings (n = 25)

Controls (n = 60)

M SD M sD Test statistics
Facial area (mm?) 26 865 4053 26 029 3273 t(37.7) =091, p =036, d=0.24 [-0.24, 0.71]
Masculinity score®™ 517 327 3.67 263 W =459, p=0.005, d =063 [0.15, 1.10]
Linear distances (mm)
Alar-base width® 140 1.75 12.7 157 t(40.8) = 3.30, p=0.002, d =0.82 [0.33, 1.31]
Nose heightbc 376 3.56 356 3.85 t(48.4) =2.24, p =0.03, d = 0.54 [0.04, 1.00]
Upper lip height® 216 217 210 221 W =560, p=007, d =041 [-0.06, 0.88]
Geodesic distances (mm)
Outer canthal width® 954 6.59 936 7.59 t(51.5)=1.12, p=027,d=0.25 [-0.72, 0.22]
Forehead height 538 7.86 558 6.57 t(38.7)=1.10, p=028, d=0.28 [-0.19, 0.76]
Forehead width® 143.5 9.01 137.2 9.81 t(48.7) = 2.86, p = 0.006, d = 0.66 [0.17, 1.14]
Nose height® 452 3.82 44.1 4.66 t(54.5)=1.14, p =026, d = —025 [-0.73, 0.22]
Upper lip height™ 25.1 440 228 247 W =351, p=0.0001, d =093 [044, 141]

M and SD replaced with median and interquartile range, respectively

bStatistically significantly different between autistic and non-autistic girls in Tan et al.'

“Statistically significantly different in the present study

masculinised shift among siblings compared to female
controls in their overall facial masculinity scores. As for
their facial distances, there were moderately strong mas-
culinised effects in two of the eight distances, which were
linear alar-base width and geodesic upper lip height
(smaller d =0.82). The remaining distances show either
weak evidence of masculinisation (linear nose height and
upper lip height, and geodesic forehead width) or no
masculinisation.

Comparison between autistic probands, siblings, and
control groups

We conducted an unplanned analysis to compare facial
masculinity scores of autistic probands included in Tan
et al.”* with the sibling and control samples included in
the present study. For boys, one-way ANOVA revealed a
significant effect of group, F(2,150) =16.8, p < 0.001. Post
hoc comparisons using the Tukey HSD test indicated that
autistic boys (M =14.5, SD=2.69) and male siblings
presented higher masculinity scores than male controls
(all ps<.001). However, masculinity score did not differ
between the autistic boys and sibling boys. Similarly, there
was a significant effect of group in girls, F(2,102) = 14.0,
p<0.001, with autistic girls (M =6.81, SD=2.56) and
female siblings showing higher masculinity scores than
female controls (p<0.001 and p=0.02, respectively).
Facial masculinity scores were marginally higher in
autistic girls than in sibling girls (»p=0.08). The

distributions of the masculinity scores for the six groups
of children are presented in Fig. 2, where a rightward shift
towards extreme masculinity is evident for the sibling and
autistic samples.

Discussion

The current study provided evidence supporting the
hypothesis that facial masculinity would be more pro-
nounced in typically developing boys and girls with a
family history of ASD compared to those without. These
findings extend our previous work which reported
increased facial masculinity among children diagnosed
with ASD?!. Overall, we provide evidence for a broad
autism phenotype expressed in facial masculinity among
non-autistic siblings of autistic children.

There appears to be stronger evidence of facial mas-
culinisation among male siblings compared to female
siblings. In boys, seven of the eight facial distances dif-
fered in the masculinised direction in the sibling group
relative to their male control counterparts, with each
effect large in magnitude. Of the seven distances, five were
also found to be more masculinised in autistic children in
Tan et al.*’. On the other hand, in girls, only four of the
eight distances showed some evidence of hypermasculi-
nity in the sibling group relative to their female control
counterparts, with each effect ranging from medium to
large in magnitude. Of these four distances, two are
consistent with the previous comparisons between autistic
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Fig. 2 Probability density function depicting the distribution of facial masculinity scores for each group. Scores of autistic females, female
siblings, and female controls are represented by crosses, unfilled triangles, and unfilled circles, respectively. Scores of autistic males, male siblings, and
male controls are represented by stars, filled triangles, and filled circles, respectively.

female probands and non-autistic female controls®'.
Additionally, we examined the distributions of the facial
masculinity scores of autistic probands included in Tan
et al.”!, and scores of the siblings and control groups
included in the current study. Facial scores of the male
probands and siblings showed a similar degree of mas-
culinisation relative to male controls (i.e., male probands
=male siblings > male controls) while facial scores of
female groups were spread in a graded manner, with the
scores of female siblings expressing an intermediate
phenotype between probands and controls (ie., female
probands > female siblings > female controls).

These patterns of results directly mirror those of a
recent study which examined levels of autistic traits
measured using the child version of the Autism-spectrum
Quotient (AQ-Child*’) among three samples of children
aged 4 to 11 years—male and female autistic probands,
their non-autistic siblings, and children drawn from
families with no history of ASD (controls)*. There was no
difference in AQ-Child scores between male autistic
probands and non-autistic siblings; both groups presented
higher AQ-Child scores than male control children (ie.,
male probands = male siblings > male controls). Among
females, AQ-Child scores presented in the sibling group
fell between the scores for the autistic probands and non-
autistic controls (i.e., female probands > female siblings >
female controls). Taken together, these findings are con-
sistent with other studies which found that the broad
autism phenotype tends to aggregate in male relatives
more than in female relatives®**, Thus, while the pattern
of differences in facial masculinity reported in the present
study warrants replication with larger samples, the results
are consistent with facial masculinity signalling greater
susceptibility to ASD.

This study has many strengths including a replication of
the previously established gender classification algorithm,
a novel extension of previous findings to non-autistic
siblings of children with ASD, and the use of highly reli-
able and precise 3D photogrammetry. Additionally,
because none of the siblings included in this study were
related to the autistic probands included in Tan et al.*,
the evidence of facial masculinisation observed in the
current sibling sample is independent of the evidence of
face masculinisation in autistic children reported by Tan
et al.”!. Nevertheless, the findings reported in the present
study are subject to three limitations. First, we restricted
our sample to children of Caucasian descent to limit the
potential influence of variance in facial morphology as a
function of ethnicity. Hence, it is unclear whether these
findings would generalise to other ethnic populations.
Second, the current study examined full siblings of
autistic probands, therefore it is difficult to determine
whether hypermasculinised facial structures in the sibling
group arose from heritable genetic liability, shared
maternal and/or paternal factors (e.g., maternal health®?),
or an interaction of these factors. Third, the current study
included samples of children with a wide age range
(2.83-12.59 years), and it is possible that the differences in
facial masculinisation observed may be driven by larger
differences among older children approaching pubertal
age'®. In the Tan et al. study, which included larger
samples of children of a similar age range (3.01-12.52
years), it was possible to include an ‘age’ factor (ie.,
‘younger’ versus ‘older’ groups) in the analyses of group
differences between autistic and non-autistic children. A
main effect of age was reported in the Tan et al. study, but
the interaction between ASD diagnosis and age group was
not statistically significantly, indicating that the
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differences in facial masculinity between autistic and non-
autistic children are uniform among younger and older
children. While the limited size of the current study
sample precluded the introduction of an age factor in the
analyses, the Tan et al. study provides evidence that age
may not exert a large effect on the differences observed.

The current study presents the first evidence for facial
masculinity to express as a broad autism phenotype. This
finding builds upon prior evidence linking prenatal tes-
tosterone exposure to postnatal facial masculinity'” and
corroborates the ‘extreme male brain theory’ that ASD
may be, in part, linked to elevated levels of testosterone
in utero. More broadly, these data suggest that facial
masculinity is a feature of ASD that is likely to be con-
nected to genetic influences. Future research may inves-
tigate mechanism(s) that underlie prenatal brain and face
developments that are associated with the developmental
cascade leading to a diagnosis of ASD. One possible
research avenue is an investigation of masculinity
expressed in the faces of the biological parents of children
with ASD. This will provide clues suggesting whether
masculinised facial structures associated with ASD are
influenced by maternal and/or paternal genetic inheri-
tance. Second, as it is hypothesised that multiplex families
(i.e., families with more than one autistic proband) pos-
sess a greater genetic liability than simplex families (i.e.,
families with one autistic proband)34, a study that com-
pares facial masculinity expressed in members of multi-
plex versus simplex families may add to the current
evidence that increased facial masculinity is associated
with higher genetic liability associated with ASD. Third,
while one study has shown that elevated levels of testos-
terone exposure during pregnancy are linked to facial
masculinisation in adulthood, future studies could con-
sider other early pregnancy factors that may influence the
elevation of prenatal testosterone and the subsequent
development of masculine features. One such factor is
increased maternal weight which has been linked to
higher levels of prenatal testosterone® and to autistic
traits®®. Future research could also consider the potential
etiological influence of nausea and vomiting during
pregnancy which has been found to be related to
increased symptom severity in ASD?’. Maternal nausea
and vomiting during pregnancy is thought to involve the
dysregulation of several hormones including estrogens™®
which may have feminising properties.

In conclusion, the present study found that both male and
female non-autistic siblings of autistic children presented
with more masculinised facial structures compared to their
age- and sex-matched counterparts. To the best of our
knowledge, these data provide the first evidence for a broad
autism phenotype expressed in a physical characteristic,
which has wider implications for our understanding of the
interplay between physical and neurocognitive development.
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Data and code availability
Data and R codes are publicly available at https://github.com/dianawtan/asd-
sibs-faces.
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