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Abstract: Growing interest in extracellular vesicles (EVs) has prompted the advancements of proto-
cols for improved EV characterization. As a high-throughput, multi-parameter, and single particle
technique, flow cytometry is widely used for EV characterization. The comparison of data on EV
concentration, however, is hindered by the lack of standardization between different protocols and
instruments. Here, we quantified EV counts of platelet-derived EVs, using two flow cytometers
(Gallios and CytoFLEX LX) and nanoparticle tracking analysis (NTA). Phosphatidylserine-exposing
EVs were identified by labelling with lactadherin (LA). Calibration with silica-based fluorescent
beads showed detection limits of 300 nm and 150 nm for Gallios and CytoFLEX LX, respectively.
Accordingly, CytoFLEX LX yielded 40-fold higher EV counts and 13-fold higher counts of LA+CD41+

EVs compared to Gallios. NTA in fluorescence mode (F-NTA) demonstrated that only 9.5% of all
vesicles detected in scatter mode exposed phosphatidylserine, resulting in good agreement of LA+

EVs for CytoFLEX LX and F-NTA. Since certain functional characteristics, such as the exposure of
pro-coagulant phosphatidylserine, are not equally displayed across the entire EV size range, our
study highlights the necessity of indicating the size range of EVs detected with a given approach
along with the EV concentration to support the comparability between different studies.

Keywords: extracellular vesicles; flow cytometry; nanoparticle tracking analysis; phosphatidylser-
ine; platelets

1. Introduction

EVs are subcellular fragments that originate from the endosomal compartment or
are shed from the plasma membrane of virtually all cell types of the human body under
both, physiological and pathological conditions [1–3]. They have been recognized as major
players in intercellular communication and can exhibit variable functions, depending on
their cellular origin, their membrane composition, and surface-associated proteins, as well
as their cargo [4,5].

The generic term “extracellular vesicles” encompasses individual vesicle subpop-
ulations, which display overlapping features, despite their heterogeneity [6,7]. Small
EVs (exosomes; 40–100 nm) originate from endosomal multivesicular bodies, whereas
the release of large EVs (microvesicles; 100–1000 nm) involves cytoskeletal contraction as
well as a rearrangement of plasma membrane phospholipids, leading to the exposure of
phosphatidylserine on the vesicle surface (Figure 1) [1,8].
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rearrangement of plasma membrane phospholipids, leading to the exposure of phospha-
tidylserine on the vesicle surface (Figure 1) [1,8]. 

 
Figure 1. Characterization of EVs by flow cytometry and NTA. (A,B) Size-dependent resolution 
limits of the devices and approximate size range of EV subpopulations (exosomes, microvesicles, 
and apoptotic bodies). (C) Enrichment and characterization of platelet-derived EVs. Platelet-derived 
EVs were enriched from medical grade platelet concentrates by differential centrifugation as de-
scribed in the Methods section and characterized by flow cytometry using lactadherin as a marker 
of phosphatidylserine expressing EVs and CD41 as platelet marker. Further analysis was performed 
by NTA in scatter mode and in fluorescence mode after staining of EVs with CellMask™ Orange 
(CMO) and lactadherin-Alexa Fluor™ 555 (LA-AF555). The protein-to-lipid ratio was assessed by 
Fourier-transformed infrared spectroscopy. (D) Representative images of EV gating and scatter 
plots for the CytoFLEX LX vs. Gallios flow cytometers. Phosphatidylserine exposing platelet-de-
rived EVs were identified as lactadherin+ and CD41+ events in the EV gate. Figure 1A–C was created 
with BioRender.com (accessed date: 05.04.2021). 

Isolation and characterization of individual EV populations require a combination of 
different methods [6] and still remain challenging due to the submicrometer size of EVs 
and the heterogeneity of EV populations. Moreover, when it comes to the analysis of EVs 
in complex fluids, such as human whole blood or plasma, EV size and density overlap 
with other biological structures. Low density and high density lipoproteins, in particular, 
are often co-isolated with EVs [9]. 

Figure 1. Characterization of EVs by flow cytometry and NTA. (A,B) Size-dependent resolution limits of the devices
and approximate size range of EV subpopulations (exosomes, microvesicles, and apoptotic bodies). (C) Enrichment and
characterization of platelet-derived EVs. Platelet-derived EVs were enriched from medical grade platelet concentrates by
differential centrifugation as described in the Methods section and characterized by flow cytometry using lactadherin as a
marker of phosphatidylserine expressing EVs and CD41 as platelet marker. Further analysis was performed by NTA in
scatter mode and in fluorescence mode after staining of EVs with CellMask™ Orange (CMO) and lactadherin-Alexa Fluor™
555 (LA-AF555). The protein-to-lipid ratio was assessed by Fourier-transformed infrared spectroscopy. (D) Representative
images of EV gating and scatter plots for the CytoFLEX LX vs. Gallios flow cytometers. Phosphatidylserine exposing
platelet-derived EVs were identified as lactadherin+ and CD41+ events in the EV gate. Figure 1A–C was created with
BioRender.com (accessed on 5 April 2021).

Isolation and characterization of individual EV populations require a combination of
different methods [6] and still remain challenging due to the submicrometer size of EVs
and the heterogeneity of EV populations. Moreover, when it comes to the analysis of EVs
in complex fluids, such as human whole blood or plasma, EV size and density overlap
with other biological structures. Low density and high density lipoproteins, in particular,
are often co-isolated with EVs [9].

Flow cytometry is well-established for the characterization of EVs directly in body
fluids because of its high throughput and its ability to label and discriminate EVs of different
cellular origin. Still, current flow cytometers are not capable of fully resolving individual
EVs on the basis of light scatter [10], as cryo-electron microscopy demonstrates that over
75% of EVs are less than 500 nm in diameter. Moreover, swarm detection may lead to
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erroneous data interpretation in flow cytometry. Swarming occurs when the concentration
of particles in a sample is so high that light scatter or fluorescent signals generated by
individual events can no longer be separated from each other [11].

Despite these limitations, EV detection using flow cytometry is according to the
current estimates used in 90% of all studies in the field of EV research [12,13], particularly
as the resolution of conventional flow cytometers has steadily improved due to technical
advancements. With this widespread use of flow cytometry, it has become apparent
that the diversity in instrumentation and instrument settings has a large impact on the
comparability of EV data between different flow cytometers.

NTA is suited for the rapid assessment of size and concentration of nanoparticles
ranging from 40–1000 nm in diameter [14,15]. It combines laser light scattering with a
charge-coupled device camera to trace the Brownian motion of particles in solution and
calculates particle size according to the Stokes-Einstein Equation [16]. While NTA in
scatter mode (S-NTA) is not able to discriminate EVs from other light-scattering entities,
such as lipoproteins or protein aggregates, F-NTA can identify EVs after labelling with
membrane dyes or with antibody-fluorochrome conjugates against specific EV surface
proteins. Differential S-NTA/F-NTA can thus support the identification of EVs within
heterogeneous samples [15,17].

Here, we employed flow cytometry and differential S-NTA/F-NTA for the charac-
terization of different batches of platelet-derived EVs. Using two different flow cytome-
ters (Gallios and CytoFLEX LX), we compared total EV counts as well as the amount of
phosphatidylserine-exposing EVs and related these data to results obtained with differ-
ential S-NTA/F-NTA, revealing vast differences in EV counts for the different techniques
and instruments.

2. Results
2.1. Characterization of EVs by Flow Cytometry

Eight batches of platelet-derived EVs from different donors were analysed on both,
the Gallios and CytoFLEX LX flow cytometers. Flow cytometric analysis showed improved
resolution of silica reference beads for CytoFLEX LX in comparison to the Gallios flow
cytometer, with a detection limit of 150 nm and 300 nm, respectively (Figure 1D). Due
to its ability to detect EVs down to the size range of exosomes, CytoFLEX LX yielded
40-fold higher EV counts (events/µL) and 13-fold higher counts of LA+CD41+ EVs/µL
as compared to the Gallios flow cytometer (Figure 2A). LA+ events, i.e., EVs expressing
phosphatidylserine, comprised 93% and 64% of all events in the EV gate for Gallios and
CytoFLEX LX, respectively (Figure 2B). The vast majority of the LA+ events were also
CD41+, confirming their platelet origin (Figure 2C).

2.2. Characterization of EVs by Nanoparticle Tracking Analysis in Scatter Mode

The same EV batches that were characterized by flow cytometry were analyzed by
S-NTA to determine their size distribution and concentration (Figure 2D–F), yielding an
average concentration of 4.0 ± 1.7 × 108 particles per µL. Since NTA is not specific for EVs
and detects any structure that scatters light, we refer to “particles” rather than “vesicles”
in this context. The majority of particles measured in S-NTA were 150 nm in diameter,
confirming that most EVs were in a size range below the detection limit of flow cytometry
(Figure 2D).

2.3. Characterization of EVs by Nanoparticle Tracking Analysis in Fluorescence Mode

To differentiate particles containing a lipid membrane from non-lipid particles, we
performed NTA in fluorescent mode after staining with the membrane dye CMO. In addi-
tion, samples were stained with LA-AF555 to label vesicles exposing phosphatidylserine,
allowing for a direct comparison with flow cytometry. The majority of CMO+ and LA+

particles according to F-NTA were 250 and 370 nm in diameter, respectively (Figure 2D). Of
all particles detected in S-NTA, 36% were CMO+, whereas only 9.5% were LA+ (Figure 2F).
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Comparing the results of lactadherin staining across the three instruments, both F-NTA
and CytoFLEX LX detected an average of 3.3 × 107 LA+ EVs/µL, while the counts of LA+

EVs/µL obtained with the Gallios flow cytometer were more than an order of magnitude
lower (1.4 × 106 LA+ EVs/µL, Figure 2A,E). Data on the characterization of identical
samples by flow cytometry and differential S-NTA/F-NTA analysis are summarized in
Table 1.
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Figure 2. Comparative analysis of platelet-derived EVs using flow cytometry and NTA. (A) number of events detected by
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percentage of CMO+ and LA+ particles detected by F-NTA. Data are presented as mean ± SD (n = 8, same batches used for
all measurements; * p < 0.05; ** p < 0.01; *** p < 0.001).

Table 1. EV counts obtained for platelet-derived EVs by flow cytometry (Gallios vs. CytoFLEX LX) and by NTA (scatter
mode vs. fluorescence mode after staining with CMO or LA-AF555).

Flow Cytometry

Device Events/µL LA+ EVs/µL
LA+ EVs

[% of All Events in
the EV Gate]

LA+CD41+ EVs/µL
LA+CD41+ EVs

[% of All Events in
the EV Gate]

Gallios 1.5 ± 0.5 × 106 1.4 ± 0.6 × 106 93 ± 4 1.3 ± 0.5 × 106 87 ± 6

CytoFLEX LX 6.0 ± 5.5 × 107 3.3 ± 2.5 × 107 64 ± 13 1.7 ± 0.9 × 107 40 ± 20

Nanoparticle Tracking Analysis

ZetaView PMX-110
Particles/µL

[Scatter Mode]
LA+ Particles/µL

[Fluorescent Mode]

LA+

[% of All Particles in
Scatter]

CMO+ Particles/µL
[Fluorescent Mode]

CMO+

[% of All Particles in
Scatter]

4.0 ± 1.7 × 108 3.3 ± 1.7 × 107 9.5 ± 4 1.8 ± 0.9 × 108 36 ± 7

n = 8; same EV batches used for all measurements.
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2.4. Characterization of EVs by Fourier-Transform Infrared Spectroscopy (FT-IR)

We employed FT-IR spectroscopy as additional label-free measurement mode to
characterize EVs. Figure 3 shows a representative FT-IR spectrum for platelet-derived EVs.
Individual spectra of eight EV batches are included in Figure S3. All FT-IR spectra were
essentially identical. Minor variations in the ester peak (≈1740 cm−1) are likely due to
donor-dependent variations in the concentration of blood lipids, e.g., levels of cholesterol
and/or triglycerides. The FT-IR spectra for platelet-derived EVs were similar to previously
published patterns for monocytic EVs [18] or red blood cell-derived EVs [19]. The strongest
signals corresponded to peptide (–CO–NH–) backbone vibrations, i.e., amide A (3287 cm−1),
amide I (1652 cm−1), and amide II (1546 cm−1). Peaks at 2923 and 2852 cm−1 corresponded
to asymmetric and symmetric methylene (C–H) stretching. FT-IR spectroscopic protein-
to-lipid ratios were calculated from the data according to Mihaly et al. [20] and yielded a
mean protein-to-lipid ratio of 1.96 ± 0.54 (n = 8). Description of the most prominent FT-IR
absorption bands of platelet-derived EV are summarized in Table S2.
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Figure 3. Characterization of platelet-derived EVs by FT-IR. Representative ATR/FT-IR spectra
of EVs enriched from platelet concentrate. C–H (2700–3000 cm−1) and amide I (1600–1700 cm−1)
stretching regions are highlighted in grey. AU, arbitrary units.

3. Discussion

In our current study, we compared the ability of two conventional flow cytometers
and of nanoparticle tracking analysis to quantify platelet-derived EVs. NTA detects EVs
down to a size of about 50 nm, whereas the flow cytometers used in our study, Gallios
and CytoFLEX LX, have a detection limit of about 300 and 150 nm, respectively [3,8,21].
The lower detection limit of the CytoFLEX LX instrument is achieved by 405 nm (violet)
instead of conventional 488 nm (blue) wavelength side scatter detection of EVs, since
triggering on violet side scatter generates signals of significantly higher intensity. This
increases the signal-to-noise ratio and consequently improves the resolution of smaller
EVs over instrument noise [16,22]. For both devices, we used fluorescent silica particles as
reference material, as their refractive index is closer to EVs as compared to polystyrene-
based calibration beads (1.46 vs. 1.40 for platelet-derived EVs) [23].

In flow cytometry, we evaluated both, total EV counts (events/µL) and counts of
EVs exposing phosphatidylserine, which were identified by staining with lactadherin-
FITC. In agreement with its enhanced ability to detect smaller EVs, CytoFLEX LX yielded
40-fold higher total EV counts as compared to the Gallios instrument. Our study also
revealed differences in the percentage of LA+ EVs between the two instruments. While
more than 90% of all events detected in the EV gate with the Gallios instrument were LA+

and thus exposed phosphatidylserine on their surface, CyoFLEX LX identified only 64%
of LA+ events in the EV gate. This is most likely explained by the fact that the detection
of EVs using Gallios is limited to larger EV populations, which are preferentially derived
from the plasma membrane and, in contrast to smaller EVs derived from the endosomal
compartment, expose phosphatidylserine on their outer membrane leaflet. Our findings



Int. J. Mol. Sci. 2021, 22, 3839 6 of 10

underline that reported EV concentrations should always be accompanied by information
on the minimal detectable EV size for a given instrument. This is crucial to estimate the
percentage of certain EV subpopulations, and is particularly essential wherever a functional
trait (e.g., the exposure of pro-coagulant phosphatidylserine) is not uniformly distributed
in a population, but is preferentially associated with vesicles of a particular size range (e.g.,
larger vesicles).

Comparing flow cytometry and NTA, the total events detected with NTA in scatter
mode exceeded flow cytometric EV counts by more than one (CytoFLEX LX) or two
(Gallios) orders of magnitude, respectively. This is in good agreement with previous data
reported by van der Pol et al. who found 15 times lower EV counts with flow cytometry
as compared to NTA [24], which was most probably due to (i) the different minimum
detectable vesicle sizes for NTA vs. flow cytometry and (ii) the detection of non-EV light
scattering structures, such as protein aggregates or lipoproteins, by NTA. To refine NTA
analysis, we additionally used NTA in fluorescent mode after staining of EVs either with
the unspecific intercalating membrane dye CMO or with fluorescently labelled lactadherin
to detect EVs exposing phosphatidylserine. The latter approach allowed us to link NTA
and flow cytometry data, and revealed a good agreement of LA+ EV counts for CytoFLEX
LX (lactadherin-FITC) and NTA (lactadherin-AF555).

According to F-NTA analysis following labelling of EVs with CMO vs. lactadherin-
AF555, 36% of all particles detected in scatter mode were stained with CMO, a fluorescent
plasma membrane label composed of amphipathic molecules comprising a lipophilic
moiety for membrane loading and a negatively charged hydrophilic dye for anchoring
of the probe in the plasma membrane [25]. This indicates that the majority of particles
detected with NTA in scatter mode are structures lacking a lipid membrane.

The smaller size of particles obtained by S-NTA as compared to F-NTA indicates
the detection of smaller non-EV contaminants, such as protein aggregates or lipoproteins,
in scatter mode. We are currently assessing whether further purification of EV samples
by size exclusion chromatography results in the depletion of co-isolated protein com-
plexes/lipoproteins, to reveal a more accurate size distribution of the “true” EV population
in scatter mode. The increased size of LA+ particles in comparison to CMO+ particles sup-
ports the findings from flow cytometry that phosphatidylserine is predominantly present
on larger EV populations. Still, EV sizes obtained with F-NTA might also be affected by
the staining procedure itself, since antibody or dye bound to the EV surface can affect the
Brownian motion of the particles [17].

While applying the same sample dilution for both, scatter mode and fluorescent mode
would be optimal to avoid inaccuracies caused by pipetting, this approach is only applica-
ble for EV samples derived from matrices with comparatively low complexity, such as EVs
isolated from cell culture supernatants. In the case of complex sample matrices, such as
platelet concentrate, however, measurements in scatter mode require a much higher dilu-
tion than in fluorescent mode due to the background caused by plasma protein aggregates
or lipoproteins. To limit inaccuracies related to pipetting in our study, we performed all
measurements at least in triplicates (i.e., three independent dilutions per sample).

As a supplement to our study, we evaluated the suitability of FT-IR spectroscopy to
determine the protein-to-lipid ratio of platelet-derived EVs. Whereas FT-IR is not commonly
applied for EV quantification, it has been used to characterize the composition of EVs of
different cellular origin, e.g., prostate cancer cells [26], monocytic cells [18], Jurkat cells [20],
or red blood cells [19]. Based on the ratio of the peak intensities of amide I (1650 cm−1)
and C-H (2700–3000 cm−1) stretching vibrations, the spectroscopic protein-to-lipid ratio
was proposed as sample quality parameter [20]. We obtained a protein-to-lipid ratio of
1.96 for platelet-derived EVs, which was considerably higher than the protein-to-lipid ratio
reported for EVs derived from Jurkat cells (exosomes, 0.79; microvesicles, 0.60; apoptotic
cells, 1.20) [20] or from red blood cells (1.3) [19]. However, at this stage, the significance of
a direct comparison of these values is limited, as EVs were isolated from different matrices
(cell culture medium vs. human plasma) and with different protocols in these previous
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studies, potentially yielding different amounts of co-enriched proteins or lipoproteins. Still,
FT-IR spectroscopy—which requires a minimal amount of sample (8–10 µg protein) and no
additional sample processing—could provide a useful approach for the screening of EV
fractions. It could support the identification of impurities in EV samples by comparative
analysis of EV fractions before and after the depletion of co-enriched proteins, for example
by size exclusion chromatography.

It would be of interest to extend this study to other flow cytometers, particularly
to instruments from other manufacturers, and to compare different NTA devices from
ZetaView (PMX-110 vs. PMX-120 with higher sensitivity) as well as from other figureiers
(e.g., NanoSight NS300, Malvern Instruments, Worcestershire, UK). Still, taking into ac-
count that pre-analytical parameters including storage of EV samples, particularly of
platelet-derived EVs, induce additional EV release from residual platelets, we limited our
investigations to the devices available in our laboratory, to avoid bias caused by sample
storage and transportation.

The accurate characterization of EVs using well-defined protocols is crucial for subse-
quent functional studies, but the phenotypical characterization of the whole EV spectrum
is difficult to attain. This is especially challenging for the characterization of EVs from
highly complex matrices such as whole blood, which contain lipoproteins and protein
aggregates with overlapping characteristics (size, density) [8,16,22]. While flow cytometry
is one of the most versatile approaches for EV characterization, it faces limitations, such
as the discrimination of small EVs from the instrument noise, precluding the analysis of
EVs below 150 nm even with state-of-the-art instruments. Light scatter, on the other hand,
becomes critically limited when analysing EVs with diameters below the wavelength of the
detection light source [8,24,27]. Thus, it appears promising to combine techniques, using
different and non-overlapping principles to further improve EV-characterization.

In conclusion, our study revealed profound differences in EV concentrations obtained
with two different conventional flow cytometers and with NTA. Different vesicle concentra-
tions were primarily caused by differences between the minimal detectable EV sizes in flow
cytometry, and, additionally, by the detection of non-vesicular light scattering structures
in NTA. Since certain functional characteristics, such as the exposure of pro-coagulant
phosphatidylserine, are not equally displayed across the entire EV size range, our study
highlights the necessity of indicating the size range of EVs detected with a given approach
along with the EV concentration to support the comparability between different studies.

4. Materials and Methods
4.1. Enrichment of Platelet-Derived EVs

Medical grade platelet concentrates from healthy donors were provided by the Clinic
for Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna,
Austria, as approved by the local ethics committee (ECS2177/2015). Prior to sample
acquisition, written informed consent was obtained from all donors. Samples were collected
in a blood bank setting using a Trima Accel R automated blood collection system (Version
5.0, Terumo BCT, Lakewood, CO, USA). Platelet concentrates were stored in polyolefin
bags in storage solution for platelets (SSP+; Macopharma, Tourcoing, France) at a ratio of
80% SSP+ and 20% plasma, and were used for EV isolation within 2 days.

EVs were enriched from platelet concentrates by differential centrifugation, as previ-
ously described [3]. Platelet concentrates were centrifuged at 2500× g for 15 min, at room
temperature (RT) to deplete platelets and debris. EVs were pelleted at 20,000× g (30 min,
4 ◦C) using a Sorvall Evolution RC ultracentrifuge equipped with an SS-34 rotor (Thermo
Fisher Scientific, Waltham, MA, USA). The pellet was washed with sterile phosphate
buffered saline (PBS) without calcium and magnesium (Life Technologies, Paisley, UK),
re-centrifuged at 20,000× g (30 min, 4 ◦C), and re-suspended in 200 µL PBS. The protein
content was quantified using the DC Protein Assay (Bio-Rad, Hercules, CA, USA). Samples
were normalized to a protein concentration of 4 mg/mL, aliquoted, and stored at −80 ◦C
until further use. Eight batches from different donors were used for all measurements.
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4.2. Flow Cytometric Characterization of Platelet-Derived EVs

EV suspensions were diluted in filtered PBS (0.1 µm Minisart syringe filter, Sartorius
Stedim Biotech, Göttingen, Germany) to a protein concentration of 1 µg/mL. Aliquots of
100 µL of the diluted samples were stained for 15 min at RT in the dark with 83 ng fluores-
cein isothiocyanate-conjugated lactadherin (LA-FITC, Haematologic Technologies, Essex
Junction, VT, USA) as marker of phosphatidylserine, as well as with 100 ng phycoerythrin
cyanin 7 (PE-PC7)-conjugated anti-CD41 antibody (Beckman Coulter, Brea, CA, USA) as
platelet marker. To avoid swarm detection, the optimal sample protein concentration was de-
termined as specified in Figure S1. All antibody conjugates were centrifuged at 17,000× g for
10 min at RT prior to use to remove aggregates. Stained samples were diluted 5-fold in PBS
and analyzed on a Gallios and a CytoFLEX LX flow cytometer (both from Beckman Coulter,
Brea, CA, USA). All fluorochrome conjugates used for flow cytometry are specified in Table
S1. Fluorescent-green silica particles (1 µm, 0.5 µm, 0.3 µm, 0.1 µm; excitation/emission
485/510 nm; Kisker Biotech, Steinfurt, Germany) were used for calibration for both flow
cytometers. The triggering signal was set to forward scatter for Gallios and to violet side
scatter for CytoFLEX LX, and the EV gate was set as shown in Figure 1 [3,21]. Data were
analyzed using the Kaluza Software (Beckman Coulter, Brea, CA, USA). For both flow
cytometers, acquisition was performed for 3 min at a flow rate of 10 µL per minute, yielding
the events per 30 µL. To calculate the number of events for each sample, the dilution factor
during sample preparation and staining was taken into account.

4.3. Nanoparticle Tracking Analysis of Platelet-Derived EVs

EV counts and size distribution were assessed by NTA (ZetaView, PMX-110, Particle
Metrix, Inning am Ammersee, Germany, equipped with a CCD camera, a 520 nm laser
and a 550 nm long pass manual fluorescence filter). For measurements in scatter mode,
isolated platelet-derived EVs were diluted 5000-fold (final concentration 0.8 µg protein/mL)
in 0.1 µm filtered PBS. Measurements were performed in triplicates at RT at a camera
sensitivity of 80%, counting an average of 1000 tracks with 15 frames per second. In
addition to scatter mode measurements, fluorescence-based analysis was performed after
staining with the membrane dye CMO (excitation/emission 554/567 nm, Invitrogen,
Carlsbad, CA, USA) or with LA-AF555 (Haematologic Technologies, Essex Junction, VT,
USA). All dyes and fluorochrome conjugates used for F-NTA are specified in Table S1.
Staining protocols were optimized by testing different EV-to-dye concentrations, as shown
in Figure S2. For F-NTA, EV samples containing 10 µg protein were stained with either 20 ng
CMO or with 660 ng LA-AF555 in a total volume of 22 µL PBS. Samples were incubated
for 30 min at RT in the dark, and the stained EVs were diluted 100-fold or 55-fold in PBS
for CMO staining and lactadherin staining, respectively, prior to analysis. Samples were
analyzed at a camera sensitivity of 90%. Device calibration for scatter measurements was
performed with NanoStandard (polystyrene standard 100 nm beads, Applied Micropheres,
Leusden, The Netherlands) and with OR520 standard (100 nm, Particle Metrix, Inning
am Ammersee, Germany) for fluorescence measurements. Data were analyzed using the
ZetaView software version 8.04.02 (Particle Metrix, Inning am Ammersee, Germany). A
correction factor was introduced to compare measurements recorded at different camera
sensitivities (80% for scattering mode, 90% for fluorescence mode) [2].

4.4. Fourier-Transform Infrared Spectroscopy of Platelet-Derived EVs

All measurements were performed on a Spectrum Two FT-IR Spectrometer (PerkinElmer,
Waltham, MA, USA) equipped with a LiTaO3 detector and a MIRacle™ single reflection
Zinc Selenide ATR (ZnSe) accessory (PIKE Technologies, Madison, WI, USA). For spectral
manipulations, the Spectrum 10 (PerkinElmer, Waltham, MA, USA) and OMNIC 8.1.0.10
(Thermo Fisher Scientific, Waltham, MA, USA) software versions were used. The detailed
protocol for FT-IR measurements is described in the Text S1.
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4.5. Statistical Analysis

Statistical analysis was performed using GraphPad Prism, version 8.2 (La Jolla, CA,
USA). Data are presented as mean ± standard deviation (SD). One-way repeated measures
ANOVA or two-way repeated measures ANOVA followed by Sidak’s multiple comparisons
test were used to compare three groups. Statistical significances between two groups were
determined by the paired t-test.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijms22083839/s1, Table S1: Fluorochrome conjugates and dyes used for flow cytometry
and nanoparticle tracking analysis in fluorescence mode, Figure S1: Optimization of the staining
protocol for flow cytometry, Figure S2: Optimization of the staining protocol for fluorescence-based
nanoparticle tracking analysis, Text S1: Fourier-transform infrared spectroscopy of platelet-derived
EVs, Figure S3: Characterization of platelet-derived EVs by Fourier-transform infrared spectroscopy,
Table S2: Frequencies (cm−1) of the most important FT-IR absorption bands of platelet-derived EV.
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