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Abstract: Near-infrared (800–2500 nm; NIR) spectroscopy coupled to hyperspectral imaging (NIR-
HSI) has greatly enhanced its capability and thus widened its application and use across various
industries. This non-destructive technique that is sensitive to both physical and chemical attributes
of virtually any material can be used for both qualitative and quantitative analyses. This review
describes the advancement of NIR to NIR-HSI in agricultural applications with a focus on seed quality
features for agronomically important seeds. NIR-HSI seed phenotyping, describing sample sizes
used for building high-accuracy calibration and prediction models for full or selected wavelengths
of the NIR region, is explored. The molecular interpretation of absorbance bands in the NIR region
is difficult; hence, this review offers important NIR absorbance band assignments that have been
reported in literature. Opportunities for NIR-HSI seed phenotyping in forage grass seed are described
and a step-by-step data-acquisition and analysis pipeline for the determination of seed quality in
perennial ryegrass seeds is also presented.

Keywords: multispectral imaging; NIR-HSI; quality evaluation; chemometrics; seed quality; perennial
ryegrass; tall fescue; Lolium spp.

1. Introduction

Near-infrared spectroscopy (NIRS) is a widely used technique for performing quality
control in laboratories that are associated with pharmaceutical [1], petroleum [2] and agri-
culture. Now commonly used for various applications, NIR, which absorbs at wavelengths
of 800–2500 nm (12,500–4000 cm−1) of the electromagnetic spectrum, was developed by
Karl Norris, United States Department of Agriculture (USDA), in the 1960s for the pur-
poses of quality assessment of agricultural products [3,4]. In 1962, Norris was already
ahead of his time, using NIR data to build calibration models using advanced statistical
methods [5–7]. The use of NIR has since been extended to applications such as quality
assurance of agricultural products. For example, the dairy industry uses NIRS to perform
measurements of lactose, protein and fat in milk [8–10]. There are also numerous reports
of NIRS used in the grains industry, for example the discrimination among cultivars of
wheat kernels [11], detection of fungal infestation [12] and prohibited additives [13,14].
Plant stress [15] and nutritive value [16] can also be measured using portable NIR spec-
trometers in the field for plant breeding programs. The high-throughput nature of these
phenotyping imaging tools has allowed large-scale implementation in breeding by genomic
selection [17] in agriculture. NIRS is also widely used in the meat industry for applications
such as classification of poultry carcasses infected with disease in real time [18,19] and
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determination of sensory and texture characteristics of beef [20], as well as meat properties
and chemical composition [20]. Applications in plant-based industries include fruit, grain
and seed quality, particularly pathogen infestation and varietal purity, as well as chemical
composition. The list of applications continues to grow rapidly [21–37].

The main advantage of NIRS is that the methodology is non-destructive and high
throughput. NIRS platforms provide spectral information, usually an average of a few
selected points or the mean spectrum of a larger area. However, this is not so useful when
objects are non-uniform and the features of interest are restricted to a relatively small but
unknown part of the object [38]. When NIRS is coupled to imaging techniques, such as
multispectral and hyperspectral techniques, both spatial and spectral information can be
obtained. NIRS-multispectral imaging captures images within a small number of spectral
bands, usually a maximum of 10 [39]. NIR-hyperspectral imaging (NIR-HSI), an extension
of NIRS-multispectral imaging, captures hundreds of contiguous wavelength bands in the
NIR region for each pixel. Coupling NIRS with an imaging technique was first introduced
in the late 1990s [40] and the technology has advanced such that it is now routinely applied
in fields such as military surveillance [41], astronomy [42], environmental monitoring [43]
and agriculture.

The non-destructive nature of NIRS imaging allows quality control in agriculturally
important fruit (e.g., apples, peaches and apricots) to be obtained, [44–48] particularly
for detecting external defects. Typically, fresh fruits are graded into categories based on
parameters that affect quality, such as external defects, size, shape and colour, to comply
with the Organisation for Economic Co-operation and Development (OECD) standards [49].
External defects are the most difficult to distinguish in automated systems; however, with
the advent of NIRS imaging and, more recently, hyperspectral imaging, applications for
detecting surface defects in fruit have been rapidly increasing. For example, NIRS and
hyperspectral models for detecting surface defects originating from fungal infestation,
insect damage on oranges [50], mangoes [51] and peaches [46], as well as damaged almond
nut [52], have been reported. More recently, fruit ripening and maturity are also being
assessed using NIRS imaging such as ripeness in grapes and firmness and maturity in lime
and mango by determination of the total soluble solid and titratable acidity [53]. NIRS for
sorting fruit based on sweetness is in use in more than 1000 packing houses in Japan using
single-point measurements [54] and conceivably superseded with developments driven in
NIR imaging as a visualization technique for sugar content and distribution [54–57].

It has become increasingly evident that hyperspectral imaging can be applied to
the non-destructive qualitative and quantitative determination of the desired features of
selected samples, without contact [58]. Thus, it is very much suited for routine diagnostics
such as food quality assessments and safety analyses [59]. A further advantage is that the
NIR-HSI spectrum is collected at each pixel in the image, providing both the distribution
and chemical composition of individual components [58], whereas NIRS only acquires a
single spectrum for the sample [40]. This makes NIR-HSI suitable for heterogenous samples
or for exploratory analyses, where the composition of the sample is largely unknown [38].
Despite the time and financial investment required for method development and the large
data sets obtained, once a method is developed, it is inexpensive and routine with the
benefits of reduced labour, turnaround and cost, compared to traditional methods used for
inspecting and testing agricultural food products [60,61].

Recently, there have been numerous studies reporting on use of NIR-HSI for grain
and seed quality [62], varietal purity [63], pathogen detection, seed constituents [64] and
viability [65]. While there are various reviews on seed applications, there are currently no
detailed data-acquisition and data-analysis pipelines provided for hyperspectral imaging
for pasture seeds. For example, perennial ryegrass seeds possess a complex morphology
that is naturally colonized by endophytic fungus which forms a mutualistic association.
This review explores similar applications of hyperspectral imaging in agriculture with
a focus on seed quality applications. Here, we provide a detailed summarization of the
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challenges and requirements of acquiring Lolium species, such as perennial ryegrass seed
hyperspectral data for determining key seed quality attributes.

2. Hyperspectral Imaging Instruments

The components, configuration and design of a hyperspectral system are essential
in the acquiring of reliable and high-quality images and data. A typical hyperspectral
imaging system consists of a light source, wavelength dispersion device and an area
detector (camera).

HSI systems are generally either active or passive systems. Active HSI systems are
equipped with an active light source, such as those described in Table 1. A passive HSI
system relies on ambient radiation, e.g., sunlight [66]. The light source is an important
aspect in the excitation of the target sample and the quality of the images strongly depends
on a well-balanced light intensity. Light sources include halogen lamps, light emitting
diodes (LED), lasers and tuneable light sources. Fluorescent lamps are not recommended
as there are inconsistencies in energy levels for different wavelengths [67].

Broadband light sources, including the halogen lamp, LED and tuneable light, are used
with a wavelength dispersion device, such as a prism, grating, or filter, a key component
in hyperspectral instruments [68]. It is placed between the detector and sample and
it is used to disperse broadband light into different wavelengths. A filter is generally
used for multispectral imaging systems whereas a prism and grating are widely used in
hyperspectral systems. The final component of the system is the camera which has the
role of quantifying the intensity of the light generated by the light source by converting
photons into electrons. Charge-couple devices (CCDs) and complementary metal-oxide-
semiconductors (CMOSs) are the two major cameras [68,69]. The CCD image sensor is
superior to the CMOS device and generates high-quality image data.

The typical hyperspectral components utilised in the development of seed quality
applications, include a halogen lamp light source, imaging spectrographs that covers VNIR,
SW-NIR and NIR spectral ranges and, mostly, CCD-type image sensors.

Table 1. Advantages and disadvantages of using various light sources in hyperspectral imaging systems.

Light Source Application Advantages Disadvantages Example
References

Halogen lamps

VIS
NIR

SW-NIR
Broadband white light

Delivers smooth and continuous
spectrum in the spectral range

High light intensity

Short lifetime
High heat

Unstable 1 (operating
voltage fluctuations)
Sensitive to vibration

[70]

LED

From UV to SW-NIR,
while some LEDs emit

light from LW-NIR to MIR
Broadband white light

Excitation mode
(fluorescence)

Small size
Low cost

Fast switching
Long lifetime

Minimal bulb replacement
Low heat generation

Low energy consumption
Robust

Low spectral resolution
Sensitive to wide

voltage fluctuations
High junction temperature

Low light intensity

[66]

Laser excitation
Emission of fluorescence

and Raman
Narrowband pulsed light

Composition detection at pixel level
High intensity light

Narrower bandwidth than LED
Signals are not interfered by carbon or

water absorption

Detection of weak Raman
signals is challenging due to

high-fluorescence background
[71]

Tuneable light source
(Quartz–Tungsten

Halogen lamp)

Near UV
VIS
NIR

Area scanning
Weak illumination (using wavelength

dispersion) reduces heat damage
of samples

No point or line scanning [72]

1 Low heat–load illumination is also available and provides an evenly distributed illumination line while emitting
very low heat compared with the typical halogen lamp.
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3. Image Acquisition Methods

Hyperspectral imaging collects information as images using well-defined spectral
bands. The images are combined to form a three-dimensional (x, y, λ) hyperspectral data
cube for processing and analysis, where x and y represent the two spatial dimensions of
the scene and λ represents the spectral dimension (wavelengths) [64,73]. The resolution is
characterized by the number of spectral bands of a range in the electromagnetic spectrum.
Thus, multispectral images have low spectral resolution, given they have a maximum
of 10 spectral bands, whereas HSI sensors have high resolution. A hyperspectral image
comprises thousands or even millions of pixels. An ordinary image with 320 × 320 pixels
contains 102,400 pixels. However, a hyperspectral image with 200 spectral bands has
20,480,000 pixels [74]. Spatial resolution, defined as the smallest distinguishable detail in an
image [58], is also a factor; the size of the pixel or spatial point influences the signal-to-noise
ratio [64,73].

Acquisition methods of a hyperspectral data cube include the following: (1) whisk-
broom—one spectrum of a single point at a time; (2) push-broom—spectra of points of
one spatial line at a time [75]; (3) tuneable filter—one waveband image at a time, much
similar to a 2D photographic image (x, y); and (4) snapshot—full-waveband image at a
time, much similar to capturing a photographic image with a third spectral dimension
(x, y, λ). Push-broom is the most commonly used acquisition mode for applications in the
food and agricultural industry. Push-broom imaging works either by the movement of
the sample, for example, on a conveyer belt, or by directing the beam and detector to the
region of interest [76].

Hyperspectral image acquisition is carried out in various sensing modes, including
fluorescence [77], or one of four spectral modes typically utilized in the visible (400–700 nm)
and NIR region—reflectance, absorbance, transmittance and interactance. These various
imaging modes may be selected depending on the nature of the sample and the parameters
being assessed. The light source for each optical mode is positioned differently to best
capture the image based on the mode with minimal interference.

Hyperspectral Fluorescence Imaging (HSFI) detects chemical components that pro-
duce a fluorescence emission in the visible region (400–700 nm) when excited with short
wavelengths (e.g., ultraviolet (UV) radiation or monochromatic laser light) [77]. These
include components such as chlorophyll and some pigments in seed samples [78]. There
are many examples of fluorescence imaging used in assessing physical and chemical quality
parameters in food products [79], as well as faecal contamination in apples [80]. How-
ever, HSFI is unable to measure many of the food quality attributes that are detected by
the optical modes (e.g., reflectance), such as soluble solid content, fruit pH and maturity
discrimination [80].

Reflectance is the most common hyperspectral mode used in agriculture due to the
ease in obtaining responses from higher light levels. Quality parameters such as size, shape,
colour and surface defects are generally detected in reflectance mode [76,81].

Some applications show better calibration models and prediction outcomes in interac-
tance and transmittance modes [82,83]. In transmittance mode, light is transmitted through
the sample, with a detector opposite to the light source to capture the light that has passed
through the sample; the strength is often weak and sample dependent but is considered
to be a more valuable response in relation to internal components and defects [84]. In
interactance mode, the light source and detector are located on the same side; however, the
received light is sealed from the environment to prevent interference [85]. This particular
mode is thought to be a combination of reflectance and transmittance as it can penetrate
the sample, extracting more information than reflectance mode. The conformation of the
light and detector is important to avoid refraction, specular reflectance and scattering in all
three optical modes.

Another technique used in hyperspectral image acquisition is absorbance. Although
there are limited reports of its use in agriculture, it is a preferred method for the quantitation
of chemical constituents, for example, protein and oil contents of wheat grain [86].
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4. Data Analysis Steps for Assessing Seed Quality

Given the enormous size of the image data acquired, effective pre- and post-processing
methods are necessary to reduce data dimensionality by eliminating spurious signals and
improving the classification models [74]. Spurious signals can include background and
specular reflection regions, non-homogeneous illumination and abnormal pixels. Hyper-
spectral image processing typically involves three phases, (1) pre-processing; (2) analysis—
calibration and prediction; (3) image processing.

There are many hyperspectral image processing tools that support the image process-
ing of large data volumes (Table 2). The following describes the fundamental steps for
processing any hyperspectral image:

(1) The raw spectral image acquired using hyperspectral imaging is initially corrected
with a black and white reference image collected with the camera sensor. The image
quality is subsequently processed to improve and enhance certain characteristics.
These can include the more typical magnification, colouring, cropping and sharpening,
as well as more complex noise reduction and image enhancements using the Fourier
transform (FT) and wavelet transforms (WTs) under various methods [87]. The
WT and FT can also be used as compression tools for the reduction in spatial and
spectral information.

(2) Spectral pre-processing entails algorithms that correct noise and artifacts generated
from light scattering, specular reflectance (mirror-like reflectance) and variation in
surface morphology. This step is important in developing a robust model with reliable
predictability. The most popular pre-processing algorithms include the following:

a. Smoothing can contribute to the removal of instrumental noise without reduc-
ing spectral resolution. The most common technique is the Savitzky–Golay
approach; other methods include moving average, median filter, Gaussian filter,
WT and principal component analysis (PCA) for outlier identification [69,87,88].

b. Light-scatter correction/minimisation can be achieved with multiplicative scat-
ter correction (MSC), extended multiplicative scatter correction/signal correc-
tion (EMSC). Standard normal variate (SNV) is a row-oriented transformation
which centres and scales individual spectra. These techniques are competent to
reduce the spectral variability and baseline drifts across samples [89].

c. Derivatives (mainly first and second derivatives) are methods used to remove
additive and/or multiplicative effects in spectral data [89]. The first derivative
removes baseline drifts and the second derivative has the function of resolving
linear trends and sharpening spectral features.

d. Orthogonal signal correction (OSC) achieves the removal of excessive back-
ground by filtering from the spectral matrix X, the component that is orthogonal
to Y, i.e., it removes the uninformative component from the response variable
Y [90]. This technique is used in conjunction with multivariate analyses such
as constrained principal component analysis (CPCA) or partial least square
regression (PLSR).

(3) Image segmentation is the ability to detect or discriminate objects or regions of
interest (ROIs) from the image background. The most used and simplest segmentation
algorithm is thresholding (e.g., PCA or wavelength channels) when a high contrast
background material is used. This method works well when the background is
uniform and contrasts the object or ROI. Images can be further processed using
common morphological operations such as dilation and erosion. Dilation improves
object visibility by adding pixels and erosion removes small pixels that are not part
of the substantiative image. More advanced techniques such as deep-learning-based
semantic segmentation methods (e.g., region-based segmentation) can be applied,
providing pixel level recognition for the selection of ROIs [91].

(4) Subsequently, the huge magnitudes of pre-processed data are further analysed using
multivariate analyses to identify the desired relationships of the acquired sample
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images based on the hyperspectral imaging data. Unsupervised methods: PCA, k-
means clustering and hierarchical clustering. Supervised methods (predefined known
classes): Typical supervised multivariate classification algorithms for the analysis of
hyperspectral imaging data include linear discrimination analysis (LDA), partial least
square–discriminant analysis (PLS-DA), support vector machines (SVM), k-nearest
neighbour (kNN) and deep learning approaches based on artificial neural networks
(ANNs) such as convolutional neural networks (CNNs) [92].

(5) Multivariate regression can be used to establish predictability by forming a relation-
ship between the target features of the spectrum and their quantitative or qualitative
response in the sample. Multivariate linear regression methods in quantitative analy-
ses of spectral data mainly include multiple linear regression (MLR), principal com-
ponent regression (PCR) and PLSR [93,94]. Non-linear regression techniques include
ANNs [95] and support vector regression (SVR) [96,97]. ANNs simulate the behaviour
of biological neural networks for learning and prediction purposes. LS-SVM, an
optimized version of the standard SVM, is commonly used for spectral analyses.

(6) Effective wavelength (EW) selection: Hyperspectral imaging can also be classified as
an exploratory analysis. Once the EWs are determined, data reduction and analysis
speed can be achieved. For example, popular methods include partial least squares re-
gression (PLSR) and stepwise regression (SWR). More sophisticated methods include
the successive projections algorithm (SPA), genetic algorithm–partial least squares
(GAPLS) [94] and interval partial least squares (iPLS) [98]. SPA and uninformative
variable elimination (UVE) are two relatively sophisticated methods. UVE eliminates
uninformative variables but its selected variables might have a problem of multi-
collinearity and SPA selects variables with minimal multicollinearity, but its selected
variables might contain variables less related to the quality attribute. Thus, UVE-SPA
was proposed by Ye, S. et al., 2008 [99], to complement the advantages of both methods
and has been applied to the spectral analysis of food quality [100,101]. In addition,
once the wavelengths of interest are known, multispectral imaging systems can be
used to reduce costs, data storage and analysis requirements. Calibration models
based on unique regions of the NIR spectrum that are informative are very important,
because, as many other spectroscopic techniques, NIRS is also subject to interference
signals from other components. To avoid significant loss of analytical precision and
accuracy, effective wavelength selection methods coupled to full spectrum calibration
techniques are paramount for the performance of calibration methods [102].

(7) Model evaluation outputs: Various cross validation techniques can be applied, in-
cluding leave-one-out cross validation. Within the processes of calibration, validation
and prediction, the performance of a calibration model is usually evaluated in the
following terms: classification error cross validation (CV), root-mean-square error of
calibration (RMSEC) and coefficients of determination (R2) of calibration (R2 Cal) in
the calibration process; root-mean-square error of cross-validation (RMSECV) and
coefficients of determination of cross validation (R2 CV) in the validation process; and
classification error of prediction (CEP), root-mean-square error of prediction (RMSEP)
and coefficients of determination of prediction (R2 Pred) in the prediction process.
Generally, a good model should have higher values of R2 Cal, R2 CV and R2 Pred
(>0.7), lower values of CV (<0.3), CEP (<0.3), RMSEC, RMSECV and RMSEP and a
small difference between CV and CEP. The calibration models’ accuracy and reliability
depend on the training data set. Increasing the replication or data in the training set
increases the accuracy; however, reducing the variance and bias in the training set can
improve overall predictability.

(8) Samples that are inherently non-homogenous, such as fruit and food products, can be
accurately depicted using visualisation techniques of their hyperspectral images. The
NIR-HSI not only provides morphological information such as other conventional
cameras but also a high resolution spectral chemical fingerprint for each pixel in the
image data acquired. Images of individual wavelengths can be displayed (e.g., videos
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can be generated in MATLAB’s image processing toolbox). This is usually beneficial
when the intensities correlate to a wavelength that reflects an important property of
the sample.

Table 2. Examples of image processing tools reported for NIR-HSI seed quality.

Image Processing Tools Characteristics Reference

MATLAB (The Math-Works Inc., Natick, MA, USA),
e.g., image processing toolbox (IP); statistics and

machine learning toolbox (STSMS);
Pls_Toolbox/multivariate image analysis toolbox

(MIA_Toolbox)

Development of algorithms and models
Data analysis

More flexible image visualisation and analysis than
Environment for Visualising Images (ENVI)

Built-in math functions
Faster data analysis exploration time than traditional

programming languages

[103,104]

Unscambler (CAMO, Norway) Multivariate data analysis
Data mining and calibration of spectral data [105]

ENVI software (Research Systems Inc.,
Boulder, CO, USA),

Image processing, analysis and display using
tailored algorithms

Wizard-based approaches and automated workflows for
user-friendly image processing

[61]

To achieve high accuracy for the classification of samples in NIRS, the sample size
is higher than that needed for other analytical techniques. This is primarily because
absorption in the NIR region is relatively weak and is typically used in reflectance mode.
The higher the sample size, the greater the performance of the calibration and prediction
models. Sample sizes for seed applications can be well over 1500 samples.

5. NIRS-Based Imaging Applications for the Detection of Chemical Components in Seeds

NIR-HSI has gained a lot of momentum in the last decade and there is an emphasis
on developing deep statistical models for various applications. However, molecular in-
terpretation is challenging and this is mostly due to the broad and overlapping signals
represented in NIR spectra compared to its MIR spectroscopic counterpart. Mid-infrared
(MIR) spectroscopy reveals characteristic frequencies that enable ease of band assignment
and interpretation. There are also many databases for the interpretation of these bands,
making MIR spectroscopy very useful for the qualitative analysis and interpretation of
chemical components. NIR spectra are weak and dominated by overtone and combination
bands of C-H, O-H and N-H functionalities. Intense absorptions of C=O and C-O are
normally found in the MIR region and are rarely represented in NIR [106]. However, NIRS
is unique as it relies on the chemical fingerprints of matrices as opposed to the structural
compound interpretations used in MIR spectroscopy. The fingerprint regions of the NIR
make it useful for classification using powerful computerized data processing techniques
for the quantitative interpretation of the complicated NIR spectra. The technique is also
known as chemical imaging, as it provides information at the molecular level. Absorbance
at the NIR frequency bandwidth reflects overtones of C-H, C-O, O-H and N-H stretching
vibrations [106–117].

NIRS chemical band interpretation in NIR-HSI applications for the quantitative analy-
sis of moisture, protein, starch, lipid and fibre content in grain and other seeds is routinely
performed to support wavelength selection and calibration models (Table 3). In machine
learning models, interpretation can often be difficult, leading to uninterpretable “black
box” calibration algorithms. There are numerous NIR-HSI calibration models that do not
corroborate the model with interpretation data [104,118,119], which could lead to real-time
application errors. In recent years, heatmap-based visualization methods that unravel the
internal mechanisms of deep learning models have been developed. Although there are a
number of proposed methodologies, the class activation mapping (CAM) methods (e.g.,
GRAD-CAM) are becoming increasingly popular [120].
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There are subtle differences in the overtone and combination bands associated with the
same chemical components in different sample types for, e.g., the C-H and O-H stretches
in oils [112] plant material [121] and in seeds [122] (Table 3) are intrinsically different.
Chemical bands, particularly for oil and fatty acids, also vary within seed types, as NIR-
HSI instruments are sensitive to analyte morphology and composition. The variation is
attributed to the vibrations within inherent molecules rather than changes in the C-H vibra-
tions, such as the C-H stretches in carbohydrates differ from those in fatty acids (Table 3).
Overall, characteristic wavelengths indicate that the fundamental shifts are consistent in
both oil [112] and plant material [121], despite their overall chemical composition, although
discrepancies may occur due to overlapping signals from other chemical components.

The major components responsible for the absorbance bands in the NIR region are
primarily due to C-H bonds, mainly from fats and oils; O-H bonds, mostly associated
with water; and N-H bonds, primarily found in protein. NIRS information of fatty acids
is distributed in several regions along the NIRS spectrum. The 1710 nm band has been
assigned as the first overtone of the asymmetric C-H stretch in methyl or methylene groups
and associated with fatty acids [81,107,115,123,124]. The 1985 nm band is most likely known
for protein absorption at 1980 nm related to the asymmetric combination of N-H [125,126].
Interferences from water absorptions could cause variations mostly due to shifts associated
with hydrogen bonding [81].

These unique spectral bands have been utilized in NIRS and proven to be effective as
a quantitative technique, as demonstrated by the numerous reports that indicate successful
calibration methods for the quantitative analysis of fatty acids, oils, carbohydrates, proteins
and many chemical components (Table 1) [106–117,122,127–130]. There are also measure-
ments of chlorophyll, erucic acid (carcinogen) and glucosinolate (toxin) in canola [109].
However, NIRS is reliable in estimating oil and fatty acid content in processed seed such as
oil and powder [116,128]. Intact seeds are generally found to be less accurate than processed
seeds; however, it may still be used [116,128]. Other examples in NIR technology have been
used to detect plant leaf water stress in the region 950–970 nm [131,132]. In addition to
the wavelength 970 nm for leaf water stress, wavelengths of 870 nm, 910 nm, 936 nm and
950 nm exhibited different water absorbance patterns for virus induced hypersensitivity
water stress [131,132], which was used to confirm soybean mosaic infection. The response
at wavelength 936 nm influences NIR spectra though the hydrogen-bonded O-H stretch
that occurs in protein–starch complexes [131,133].

These fundamental quantitative applications in NIRS have also been effective in
NIR-HSI techniques. For example, calibration models were established to quantitate mois-
ture [134], oil [135], anthocyanins [136] and fungal contamination in fruit using quantitative
visualization methods [137].

Table 3. Visible and NIR band assignments associated with seed composition and viability, as well as
bacterial and insect infestation in selected examples.

Seed Sample Wavelengths (nm) Vibration Chemical
Component Characterisation Reference

Corn 1210 and 1460; 1724
and 1760; 2058

C-H second overtone;
first overtone vibration

-CH2 and -CH;
N-H combination band

Carbohydrate
Carbohydrate

protein
Viability [138]

Watermelon seed

479 (blue), 517 and
565 (green), 717 (red);

832;
913 and 985 nm

Blue, green and
red bands;

C-H combination
band; -OH

Visible/colour
differences; fat; bacterial

effect on composition
associated with

water stress

Bacterial infestation [103]
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Table 3. Cont.

Seed Sample Wavelengths (nm) Vibration Chemical
Component Characterisation Reference

Norway spruce
(Picea abies)

1710;
1985; 1450 and 1940;

2090;

First overtone of
asymmetric C-H stretch;
asymmetric combination

of N-H broad
first overtone;

first overtone and
combination bands of

-OH;
C-H stretch

Fatty acid;
protein;

water/starch/cellulose;
carbohydrate from starch

and cellulose

Viability
Bacterial infestation

Empty seeds [139]

Basil seed (Ocimum
basilicum L.) origin

1449–1457; 1242–1254;
1380 and 1696

First overtone of -OH;
C-H second overtone;

-OH stretch;
first overtone of

asymmetric C-H stretch

Water;
crude lipid;

total phenolics;
fatty acids

Seed origin [118]

6. Hyperspectral Imaging in Agriculturally Important Seeds

The discrimination among seed varieties and checking seed purity play a key role
in plant breeding programs, seed production, gene-bank management and in the general
trading of seeds. Testing seed purity involves checking for the presence of plant debris,
foreign materials, weed seeds, contaminating species and broken and damaged seeds.
Separating varieties and determining their critical properties in terms of DUS (distinctness,
uniformity and stability) are significant for variety registration and intellectual property
rights of plant breeders, as well as for developing new varieties in the market place [140].

Seed quality is traditionally defined by seed health, as well as varietal purity and
physiological or nutritional characteristics. Pathogen-infected seeds can be evaluated in
numerous ways, depending on the organism being tested, but, generally, all methods
are time consuming or expensive, such as visual examination of seeds, polymerase chain
reaction (PCR) tests and immunoassays [141,142]. The most sensitive tests, such as PCR,
are not only complicated and expensive but destructive; therefore, an evaluation of the
batch can only be performed in a random subset of seeds from each batch.

Seed physiology is evaluated by germination tests alongside seed vigour evalua-
tion [143], as germination tests may not provide a true picture of seed potential [140];
seed vigour is typically an indicator of the performance of the seed outside the optimal
conditions. There are automated systems available to make measurements of the growth
of the seedlings to determine the seed potential. However, assessing seed quality using
destructive sampling is not ideal, particularly when seeds are limited or valuable. Seed
quality assessments are also labour intensive and time consuming. The improvement of
seed quality analyses has been recognized by organisations that develop standardised
methods for seed quality analysis, such as International Seed Testing Association (ISTA)
and Association of Official Seed Analysts (AOSA) [144].

The use of sophisticated imaging technologies in agriculture has transformed the
quality control process with minimal human intervention. Initial applications of image
processing to the food and agricultural products were the use of RGB (Red–Green–Blue)
colour vision systems for grading and identifying defects [145]. Although useful for surface
defects, RGB is incapable of detecting contaminants and trace constituents. The use of hy-
perspectral cameras is increasing in phenotyping applications, as they allow physiological
responses, pathologies, or pests to be identified in a non-invasive way. Although there
is an increase in phenomic setups using multispectral and hyperspectral cameras, signif-
icant investments would be required to develop and deploy systems with the necessary
computing infrastructure, power and storage.

The NIR-HSI is an opportune technological advancement, with demonstrated success
in seed quality assessment, now viewed as a necessary alternative to measuring individual
seed quality, cultivar purity and viability in a non-destructive, high-throughput manner.
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7. Opportunities for Lolium Species—Establishing a Pipeline for Seed Phenomics

Given the various agricultural applications, we investigated the potential of using
this technology for Lolium spp. Here, we describe a generic imaging pipeline for assess-
ing seed quality characteristics in perennial ryegrass (Lolium perenne) that could also be
applied to other Lolium species, such as tall fescue (Lolium arundinaceum). The established
pipeline also provides a basis for exploring more exhaustive chemometric and acquisition
optimization parameters.

7.1. Perennial Ryegrass Seeds

Perennial ryegrass is a commonly sown temperate grass used for pasture and turf
throughout the world, with high economic importance as a forage in Australia and New
Zealand [146]. Asexual endophytic Epichloë spp. (henceforth referred to as endophytes)
establish a symbiotic relationship with perennial ryegrass [146]. These interactions are
beneficial to the pastoral agriculture industry, as the endophyte confers resistance to biotic
and abiotic stresses [146]. The beneficial endophyte, therefore, plays a major role in the
marketing of perennial ryegrass seeds [146]. Asexual endophytes are characterised by
vertical transmission, inherited via the seed, of the fungal hyphae. However, the vertical
transmission of endophytes to seed is not a perfect process, in that the endophyte is not
necessarily transmitted to all seed and sometimes with poor viability. There are several
seed quality attributes that are typically tested in perennial ryegrass seeds. These include
seed viability (germination), endophyte presence and strain identity, as well as endophyte
viability. The current techniques of germination and PCR-based assays for viability or
endophyte detection are expensive and destructive, as large numbers of seeds are tested
for better representation of seed quality of a batch.

7.2. Spectral Acquisition Parameters

In reflectance mode, a line scanning (push-broom method) is selected to acquire HSI
images (Figure 1). An NIR spectrum is averaged for each pixel and captured across each
spatial line. A complete spectral image is obtained by movement of the sensor across
the sample. The spatial resolution can be adjusted by parameters such as frame rate
and camera height (field of view). Obtaining high spatial resolution data can lead to
difficulties in data processing. Thus, data acquisition parameters need to complement data
processing capabilities.

The morphology of perennial ryegrass seeds varies on both sides, making it possible
that one orientation may be favoured over the other in a calibration model. However,
preliminary investigations showed that both orientations had only subtle differences in
profile across the key regions of the seed, including the embryo, endosperm and awn
(Figure 2). The ideal surface for hyperspectral imaging is one with a flat surface, as
asymmetric samples can cause variations in the spectra obtained due to scattering of
incident light. This is important to consider and may be overcome with large numbers of
sample replicates [75]. When reflectance mode is applied, there is very little penetration of
light. The penetration depth is often negligible in samples with high opacity and complexity;
thus, by no means, should a hyperspectral image be considered representative of the entire
composition of a sample [88].
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Figure 2. Image of perennial ryegrass seed (1) and NIR-HSI image (2) showing seed orientations:
embryo facing up (A) and embryo facing down (B). The two orientations showing mean absorbance
of raw normalised spectra of the embryo (A1), endosperm (A2) and awn (A3) regions of embryo
facing up and embryo (B1), endosperm (B2) and awn (B3) regions of embryo facing down. The
variables represent 288 wavelengths acquired in the SW-NIR reflectance (1000–2500 nm) region.
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7.3. Sample Preparation for Seed Classification Methods

Typically, with hyperspectral imaging techniques, many replicates are required to
build a classification model and this could range from 300 to 13,000 individual seeds
(Table 4). Seeds are generally placed on a black or dark substrate in a grid format, so
individual seeds can be tracked and assessed for properties such as viability or endophyte
infection (Figure 3). A dark substrate is chosen for zero reflectance in the NIR and SW-NIR
regions of the spectrum and it allows the background to be easily distinguished from
the seeds using class discrimination models in any imaging software (Table 2). Light or
white substrates saturate the sensor in the NIR region, making it difficult to discriminate
using class discrimination models. Once the data are acquired, seeds can be accurately
tracked throughout seed quality testing (e.g., seed and endophyte viability) using current
industry standards.
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7.4. Data Analysis Pipeline Using the MIA_Toolbox Add-On for PLS_Toolbox

The raw hyperspectral images acquired by either a visible or near-infrared imaging
camera are corrected by the white and dark reference images to obtain spectral reflectance
values [74] (Figure 4). This may be performed via image processing tools or the MATLAB
script editor. The normalised image can be processed in MIA_Toolbox as a two-dimensional
data set (Figure 5). The image manager tool is used to crop images to generate a binary
image to compute the class separation of seeds and background in the particle analysis
tool using a reverse-mask option, contrasting seeds from the background. A particle image
and particle table can be generated here and used to perform multivariate analyses. The
particle table is an average NIR reflectance spectrum from the whole sample surface. The
particle image provides reflectance spectra at each pixel (Figure 4), utilising the full spatial
distribution of molecular vibration information for each seed that increases the depth of the
data and can assist in selecting regions with greater predictability [139]. The high spatial
resolution of individual seeds may pose challenges for high-throughput screening, as well
as data processing. Here, the individual seeds can be selected and classified into respective
groups based on the classification model. The particle tables are smaller in file size and
include information on the physical attributes of the object, such as roundness and size.

The pre-processing methods for the removal of undesired effects that correct for
noise, light scattering and specular reflectance from variation in surface morphology are
used to improve the calibration model performance. The recommended pre-processing
method for NIR-HSI perennial ryegrass average absorbance data (particle table) includes
detrending to remove the mean offset from each sample (row), extended multiplicative
scatter correction/signal correction (EMSC), OSC filter, Savitzky–Golay smoothing and
derivatives and mean centre to remove mean offset from each variable. The commonly
utilised pre-processing method for high spatial resolution data (particle image) is 2nd
derivative, standard normal variate (SNV) and a mean centre to remove the mean offset
from each variable. The particle image data contain enormous numbers of data and complex
pre-processing is not recommended.



Sensors 2022, 22, 1981 13 of 22

Sensors 2022, 22, x FOR PEER REVIEW 13 of 24 
 

 
Sensors 2022, 22, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/sensors 

 
Figure 3. Seeds laid in a grid format for NIR-HSI acquisition to allow individual seed tracking to 
be conducted. 

7.4. Data Analysis Pipeline Using the MIA_Toolbox add-on for PLS_Toolbox 
The raw hyperspectral images acquired by either a visible or near-infrared imaging 

camera are corrected by the white and dark reference images to obtain spectral reflectance 
values [74] (Figure 4). This may be performed via image processing tools or the MATLAB 
script editor. The normalised image can be processed in MIA_Toolbox as a two-dimen-
sional data set (Figure 5). The image manager tool is used to crop images to generate a 
binary image to compute the class separation of seeds and background in the particle 
analysis tool using a reverse-mask option, contrasting seeds from the background. A par-
ticle image and particle table can be generated here and used to perform multivariate 
analyses. The particle table is an average NIR reflectance spectrum from the whole sample 
surface. The particle image provides reflectance spectra at each pixel (Figure 4), utilising 
the full spatial distribution of molecular vibration information for each seed that increases 
the depth of the data and can assist in selecting regions with greater predictability [139]. 
The high spatial resolution of individual seeds may pose challenges for high-throughput 
screening, as well as data processing. Here, the individual seeds can be selected and clas-
sified into respective groups based on the classification model. The particle tables are 
smaller in file size and include information on the physical attributes of the object, such 
as roundness and size. 

 
Figure 4. An example of an average spectrum of perennial ryegrass seeds pre- and post-white-and-
dark calibration. The variables represent 288 wavelengths acquired in the SW-NIR reflectance (1000–
2500 nm) region. 

Figure 4. An example of an average spectrum of perennial ryegrass seeds pre- and post-white-
and-dark calibration. The variables represent 288 wavelengths acquired in the SW-NIR reflectance
(1000–2500 nm) region.

Sensors 2022, 22, x FOR PEER REVIEW 14 of 24 
 

 
Sensors 2022, 22, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/sensors 

 
Figure 5. Flow chart of a series of steps for analysing hyperspectral image data of seeds in 
MIA_Toolbox. (1) Hyperspectral image normalisation. (2) Background removal and class selection 
of individual seeds. (3) Particle image/particle table spectral pre-processing optimisation and cali-
bration and prediction. 

The pre-processing methods for the removal of undesired effects that correct for 
noise, light scattering and specular reflectance from variation in surface morphology are 
used to improve the calibration model performance. The recommended pre-processing 
method for NIR-HSI perennial ryegrass average absorbance data (particle table) includes 
detrending to remove the mean offset from each sample (row), extended multiplicative 
scatter correction/signal correction (EMSC), OSC filter, Savitzky–Golay smoothing and 
derivatives and mean centre to remove mean offset from each variable. The commonly 
utilised pre-processing method for high spatial resolution data (particle image) is 2nd de-
rivative, standard normal variate (SNV) and a mean centre to remove the mean offset from 
each variable. The particle image data contain enormous numbers of data and complex 
pre-processing is not recommended. 

High-dimensional imaging data can be subjected to two approaches of multivariate 
analysis, including unsupervised and supervised classification. Unsupervised techniques 
that require no class information of the data include PCA. PCA is also an effective method 
to detect and remove outliers. The supervised classification methods include linear meth-
ods such as PLSDA or nonlinear approaches such as the support vector machine (SVM), 
common techniques for analysing full-wavelength data NIR-HSI data (Table 2). The next 
step is to select candidate wavelengths with variable selection tools based on variable im-
portance projection (VIP) and selectivity ratio (sRatio). If the model separates in a PCA 
score plot, a loading plot can be generated to evaluate the wavelengths that give a signif-
icant contribution to the classification model. Those that possess a high loading value 
could be selected and evaluated. The full-wavelength and EW selection can be evaluated 
for calibration, validation and prediction performance using the R2 Cal, R2 CV, R2 Pred, 
CV, CEP, RMSEC, RMSECV and RMSEP numerical parameters. A wavelength selection 
technique is highly recommended to develop a parsimonious model that can easily be 
transferable to low-cost online multispectral systems. The selection of a particular series 
of methods also depends on the classification challenge, the size of the data set, the imple-
mentation and economic practicality. 

Figure 5. Flow chart of a series of steps for analysing hyperspectral image data of seeds in
MIA_Toolbox. (1) Hyperspectral image normalisation. (2) Background removal and class selec-
tion of individual seeds. (3) Particle image/particle table spectral pre-processing optimisation and
calibration and prediction.

High-dimensional imaging data can be subjected to two approaches of multivariate
analysis, including unsupervised and supervised classification. Unsupervised techniques
that require no class information of the data include PCA. PCA is also an effective method
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to detect and remove outliers. The supervised classification methods include linear meth-
ods such as PLSDA or nonlinear approaches such as the support vector machine (SVM),
common techniques for analysing full-wavelength data NIR-HSI data (Table 2). The next
step is to select candidate wavelengths with variable selection tools based on variable
importance projection (VIP) and selectivity ratio (sRatio). If the model separates in a PCA
score plot, a loading plot can be generated to evaluate the wavelengths that give a signifi-
cant contribution to the classification model. Those that possess a high loading value could
be selected and evaluated. The full-wavelength and EW selection can be evaluated for cali-
bration, validation and prediction performance using the R2 Cal, R2 CV, R2 Pred, CV, CEP,
RMSEC, RMSECV and RMSEP numerical parameters. A wavelength selection technique is
highly recommended to develop a parsimonious model that can easily be transferable to
low-cost online multispectral systems. The selection of a particular series of methods also
depends on the classification challenge, the size of the data set, the implementation and
economic practicality.

There are limited reports on the online application of NIR-HSI for seed quality at-
tributes. Some examples include determining the age of wheat seeds in a real-time appli-
cation using the GaiaSorter Hyperspectral Sorting System with calibration and test data
acquired directly from the system [61]. The transference of calibration models developed
on NIR-HSI small-scale lab scanner systems to industrial applications can lead to losses in
accuracy related to the random distribution of the samples on a conveyor belt system, in-
creased speeds and lighting variations in the visible range of the electromagnetic spectrum,
for example, in sorting adulterated almonds [60]. Therefore, the hyperspectral imaging
development for applications that would eventually be transferred to a seed sorting device
requires a parsimonious calibration model to reduce the high-dimensional spectral and
spatial computational burden using the afore-mentioned EW selection algorithms. The use
of EW selection allows low-cost multi-spectral sensors to be used in place of hyperspectral
cameras, further reducing deployment costs.
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Table 4. Selected applications of NIR-hyperspectral imaging in agriculturally important seeds (reflectance mode).

Application Classification Methods Instrument Spectral Range
and Wavelength Selection

Wavelength Selection/Full-
Wavelength Range

HSI
System Software

Data Processing
Software

Calibration/Training and
Prediction/Test
Set Accuracies

Reference

Detection of
bacteria-infected

watermelon seeds
(n = 336)

PLS-DA and least-squares
support vector machine

(LS-SVM)

400–1000 nm;
visible and near infrared
hyperspectral imaging

(VNIR HSI);
spectral resolution, 46 nm;
spatial resolution, 0.22 mm

Wavelength selection based
on RMSEV values
(493–584 nm and

684–1004 nm) and full
wavelength using PLS-DA

classification
were comparable

Visual Basic 6.0 MATLAB

FW: PLSDA calibration and
prediction accuracy of 91.7%
WS: PLSDA calibration of

91.3% and prediction of
90.5% accuracy

[103]

Classification of
glycyrrhiza seeds
(planting pattern,

species and origin)
(n = 475)

PLS-DA;
SVM

948–2512 nm;
spectral resolution, 5.45 nm

Wavelength selection based
on PCA using SVM

classification was superior
compared to full

wavelength using PLS-DA

ENVI5.3 MATLAB R2017b

Planting pattern: PLS-DA
calibration = 100% and

prediction = 92.83%;
SVM calibration = 98.22;

test = 96.97%
Species: PLS-DA

calibration = 95.56% and
prediction = 100%; SVM

calibration = 99.56%;
prediction = 97.75%
Seed origin: PLS-DA

calibration = 100% and
prediction = 86.11%; SVM
calibration = 97.75% and

prediction = 93.67%

[104]

Classification of
Norway spruce (Picea

abies) viable seeds,
empty seeds and seeds
infested by Megastigmus

sp. larvae.
(n = 1606)

Support vector machine
(nu-SVM) and sparse

logistic regression-based
feature selection

Short-wave infrared (SWIR;
1000–2500 nm range)

Wavelength selection using
logistic regression

using nu-SVM
classification model

-
MATLAB 7.9
and LIBSVM

(“nu-SVM” classifier)

Leave-one-out classification
accuracy: for WS, 93.8%

(3 wavelengths) and 99%
(21 wavelengths); for
FW, 99.2% accuracy

[139]

Discrimination of basil
seed (Ocimum basilicum

L.) origin (Singapore,
India, Pakistan

or Vietnam)
(n = 480)

PLS-DA (calibration) 900–1700 nm;
spectral resolution = 5 nm -

Microsoft
Windows Operating

System
Unscrambler (v10.5)

Full wavelength:
calibration = 90.12%
prediction = 88.19%

[147]
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Table 4. Cont.

Application Classification Methods Instrument Spectral Range
and Wavelength Selection

Wavelength Selection/Full-
Wavelength Range

HSI
System Software

Data Processing
Software

Calibration/Training and
Prediction/Test
Set Accuracies

Reference

Cotton seed varieties
(n = 13,160)

PLS-DA;
LR;

SVM
942–1646 nm Effective wavelength

selection: PCA -

Deep learning (CNN,
ResNet);
PLS-DA;

SVM;
LR

Full wavelength:
CNN and ResNet with

(LR/Softmax/PLS-
DA/SVM) calibration of

91–99%,
validation of 84–89% and

prediction of 82–88%.
Selected wavelength: CNN

and ResNet with
(LR/Softmax/PLS-

DA/SVM)
calibration of 87–98%,

validation of 76–84% and
prediction of 75–84%

[118]

Maize seed varietal
classification

(n = 1632)

PCA;
LS-SVM 400–1000 nm

Wavelength selections:
multi-linear discriminant

analysis (MLDA) vs.
UVE and SPA

ENVI 4.3 MATLAB 2009b
(LS-SVM toolbox)

Full wavelength:
calibration of 100% and

prediction of 93.26%.
Wavelengths, 5–15 selected:

MLDA
calibration of 99.39–99.88%

and prediction of
90.40–93.81%;

UVE
calibration of 99.46–99.85%

and prediction of
88.20–91.94%;

SPA:
calibration of 98.66–99.40%

and prediction of
80.8–87.40%

[119]
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8. Conclusions

The burgeoning field of hyperspectral imaging for seed phenomics is fast becoming
a promising cutting-edge technological advancement for the assessment of seed adulter-
ations, microbial infections, morphology, varietal purity, age and quantitative nutritional
properties. Although the capability of the chemical imaging technique is not without
its challenges, it is a much-needed necessity, as current quality control measures for the
inspection of seeds are expensive and labour intensive. There is an extraordinary number of
reports on the capabilities of NIR-HSI technology and its real-time applications, particularly
for the assessment of food quality. However, seed phenotyping can be more challenging,
as physiological properties may not be as obvious when using imaging techniques due
to constraints in size and the quantities of individual seeds required to be evaluated in a
high-throughput manner.

In this review, we provide an NIR-HSI workflow and data-analysis pipeline for Lolium
spp., using perennial ryegrass seeds, which reveals both challenges and recommendations
in developing classification models. The review also explores and reports the wide scope
of techniques utilized in NIR-HSI imaging for seed phenomics. Subsequently, provid-
ing alternative measures to further develop NIR-HSI pipelines to explore more complex
physiological traits in seed that should be explored in future research efforts.

There are very few reports of real-world applications of NIR-HSI seed quality as-
sessments; thus, it is anticipated that on-going improvements in chemometrics, imaging
toolboxes and technological advancements will drive the deployment of on-line automated
systems for seed sorting in the future.
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9. Šašić, S.; Ozaki, Y. Short-wave near-infrared spectroscopy of biological fluids. 1. Quantitative analysis of fat, protein, and lactose
in raw milk by partial least-squares regression and band assignment. Anal. Chem. 2001, 73, 64–71. [CrossRef] [PubMed]

http://doi.org/10.1016/j.ejps.2015.12.004
http://www.ncbi.nlm.nih.gov/pubmed/26657202
http://doi.org/10.1016/j.aca.2014.04.002
http://doi.org/10.1255/jnirs.941
http://doi.org/10.13031/2013.35348
http://doi.org/10.1366/0003702021955150
http://doi.org/10.1021/ac000469c
http://www.ncbi.nlm.nih.gov/pubmed/11195513


Sensors 2022, 22, 1981 18 of 22

10. Muñiz, R.; Pérez, M.A.; De La Torre, C.; Carleos, C.E.; Corral, N.; Baro, J.A. Comparison of principal component regression
(PCR) and partial least square (PLS) methods in prediction of raw milk composition by VIS-NIR spectrometry. Application to
development of on-line sensors for fat, protein and lactose contents. In Proceedings of the 19th IMEKO World Congress 2009,
Lisbon, Portugal, 6–11 September 2009; pp. 2498–2502.

11. Archibald, D.; Thai, C.; Dowell, F. Development of Short-Wavelength Near-Infrared Spectral Imaging for Grain Color Classification; SPIE:
Bellingham, WA, USA, 1999; Volume 3543.

12. Delwiche, S.R.; Kim, M.S.; Dong, Y. Fusarium damage assessment in wheat kernels by Vis/NIR hyperspectral imaging. Sens.
Instrum. Food Qual. Saf. 2011, 5, 63–71. [CrossRef]

13. Zhang, Z.Y.; Li, G.; Liu, H.X.; Lin, L.; Zhang, B.J.; Wu, X.R. Detection of benzoyl peroxide in wheat flour by NIR diffuse reflectance
spectroscopy technique. Guang Pu Xue Yu Guang Pu Fen Xi/Spectrosc. Spectr. Anal. 2011, 31, 3260–3263. [CrossRef]

14. Wang, D.; Ma, Z.; Han, P.; Zhao, L.; Pan, L.; Li, X.; Wang, J. Research on detection of lime in wheat flour by NIR micro-imaging.
Sens. Lett. 2012, 10, 252–257. [CrossRef]

15. Behrens, T.; Müller, J.; Diepenbrock, W. Optimizing a diode array VIS/NIR spectrometer system to detect plant stress in the field.
J. Agron. Crop Sci. 2007, 193, 292–304. [CrossRef]

16. Smith, C.; Cogan, N.; Badenhorst, P.; Spangenberg, G.; Smith, K. Field spectroscopy to determine nutritive value parameters of
individual ryegrass plants. Agronomy 2019, 9, 293. [CrossRef]

17. Sun, D.; Cen, H.; Weng, H.; Wan, L.; Hassan, A.A.M.; El-Manawy, A.I.; Zhu, Y.; Fu, H.; Shu, Q.; Liu, F.; et al. Hyperspectral
imaging technology combined with genome-wide association study rapidly identifies more genes related to rice quality. In
Proceedings of the ASABE 2018 Annual International Meeting, Detroit, MI, USA, 29 July–1 August 2018.

18. Park, B.; Chen, Y.R.; Nguyen, M. Multi-spectral image analysis using neural network algorithm for inspection of poultry carcasses.
J. Agric. Eng. Res. 1998, 69, 351–363. [CrossRef]

19. Chen, Y.-R. Classifying diseased poultry carcasses by visible and near-IR reflectance spectroscopy. In Proceedings of SPIE—The
International Society for Optical Engineering; SPIE: Bellingham, WA, USA, 1993; pp. 46–55.

20. Ripoll, G.; Alberti, P.; Panea, B.; Olleta, J.L.; Sanudo, C. Near-infrared reflectance spectroscopy for predicting chemical, instrumen-
tal and sensory quality of beef. Meat Sci. 2008, 80, 697–702. [CrossRef] [PubMed]

21. Senthilkumar, T.; Jayas, D.S.; White, N.D.G.; Fields, P.G.; Gräfenhan, T. Detection of ochratoxin A contamination in stored wheat
using near-infrared hyperspectral imaging. Infrared Phys. Technol. 2017, 81, 228–235. [CrossRef]

22. Senthilkumar, T.; Jayas, D.S.; White, N.D.G.; Fields, P.G.; Gräfenhan, T. Detection of fungal infection and Ochratoxin A contamina-
tion in stored wheat using near-infrared hyperspectral imaging. J. Stored Prod. Res. 2016, 65, 30–39. [CrossRef]

23. Senthilkumar, T.; Jayas, D.S.; White, N.D.G. Detection of different stages of fungal infection in stored canola using near-infrared
hyperspectral imaging. J. Stored Prod. Res. 2015, 63, 80–88. [CrossRef]

24. Sendin, K.; Williams, P.J.; Manley, M. Near infrared hyperspectral imaging in quality and safety evaluation of cereals. Crit. Rev.
Food Sci. Nutr. 2018, 58, 575–590. [CrossRef] [PubMed]

25. Sendin, K.; Manley, M.; Baeten, V.; Fernández Pierna, J.A.; Williams, P.J. Near infrared hyperspectral imaging for white maize
classification according to grading regulations. Food Anal. Methods 2019, 12, 1612–1624. [CrossRef]

26. Scholten, R.C.; Hill, J.; Werner, W.; Buddenbaum, H.; Dash, J.P.; Gomez Gallego, M.; Rolando, C.A.; Pearse, G.D.; Hartley, R.;
Estarija, H.J.; et al. Hyperspectral VNIR-spectroscopy and imagery as a tool for monitoring herbicide damage in wilding conifers.
Biol. Invasions 2019, 21, 3395–3413. [CrossRef]

27. Sagan, V.; Maimaitiyiming, M.; Fishman, J. Effects of ambient ozone on soybean biophysical variables and mineral nutrient
accumulation. Remote Sens. 2018, 10, 562. [CrossRef]

28. Rodríguez-Pulido, F.J.; Lourdes González, M.M.; Heredia, F.J. Application of imaging techniques for the evaluation of phenolic
maturity of grape seeds. Opt. Pura Y Apl. 2017, 50, 1–11. [CrossRef]

29. Rodríguez-Pulido, F.J.; Hernández-Hierro, J.M.; Nogales-Bueno, J.; Gordillo, B.; González-Miret, M.L.; Heredia, F.J. A novel
method for evaluating flavanols in grape seeds by near infrared hyperspectral imaging. Talanta 2014, 122, 145–150. [CrossRef]

30. Rodríguez-Pulido, F.J.; Gil-Vicente, M.; Gordillo, B.; Heredia, F.J.; González-Miret, M.L. Measurement of ripening of raspberries
(Rubus idaeus L) by near infrared and colorimetric imaging techniques. J. Food Sci. Technol. 2017, 54, 2797–2803. [CrossRef]
[PubMed]

31. Reddy, K.R.; Zhao, D.; Kakani, V.G.; Read, J.J.; Sailaja, K. Estimating cotton growth and developmental parameters through remote
sensing. In Proceedings of SPIE—The International Society for Optical Engineering; SPIE: Bellingham, WA, USA, 2003; pp. 277–288.

32. Ravikanth, L.; Chelladurai, V.; Jayas, D.S.; White, N.D.G. Detection of broken kernels content in bulk wheat samples using
near-infrared hyperspectral imaging. Agric. Res. 2016, 5, 285–292. [CrossRef]

33. Rajendran, K.; Patil, S.; Kumar, S. Phenotyping for problem soils. In Phenomics in Crop Plants: Trends, Options and Limitations;
Springer: New Delhi, India, 2015; pp. 129–146. [CrossRef]

34. Rajah, P.; Odindi, J.; Abdel-Rahman, E.M.; Mutanga, O.; Modi, A. Varietal discrimination of common dry bean (Phaseolus
vulgaris L.) grown under different watering regimes using multitemporal hyperspectral data. J. Appl. Remote Sens. 2015, 9, 096050.
[CrossRef]

35. Rahman, A.; Faqeerzada, M.A.; Joshi, R.; Lohumi, S.; Kandpal, L.M.; Lee, H.; Mo, C.; Kim, M.S.; Cho, B.K. Quality analysis of
stored bell peppers using near-infrared hyperspectral imaging. Trans. ASABE 2018, 61, 1199–1207. [CrossRef]

http://doi.org/10.1007/s11694-011-9112-x
http://doi.org/10.3964/j.issn.1000-0593(2011)12-3260-04
http://doi.org/10.1166/sl.2012.1821
http://doi.org/10.1111/j.1439-037X.2007.00266.x
http://doi.org/10.3390/agronomy9060293
http://doi.org/10.1006/jaer.1997.0258
http://doi.org/10.1016/j.meatsci.2008.03.009
http://www.ncbi.nlm.nih.gov/pubmed/22063585
http://doi.org/10.1016/j.infrared.2017.01.015
http://doi.org/10.1016/j.jspr.2015.11.004
http://doi.org/10.1016/j.jspr.2015.07.005
http://doi.org/10.1080/10408398.2016.1205548
http://www.ncbi.nlm.nih.gov/pubmed/27622307
http://doi.org/10.1007/s12161-019-01464-0
http://doi.org/10.1007/s10530-019-02055-0
http://doi.org/10.3390/rs10040562
http://doi.org/10.7149/OPA.50.1.49503
http://doi.org/10.1016/j.talanta.2014.01.044
http://doi.org/10.1007/s13197-017-2716-3
http://www.ncbi.nlm.nih.gov/pubmed/28928519
http://doi.org/10.1007/s40003-016-0227-5
http://doi.org/10.1007/978-81-322-2226-2_9
http://doi.org/10.1117/1.JRS.9.096050
http://doi.org/10.13031/trans.12482


Sensors 2022, 22, 1981 19 of 22

36. Rahman, A.; Faqeerzada, M.A.; Cho, B.K. Hyperspectral imaging for predicting the allicin and soluble solid content of garlic with
variable selection algorithms and chemometric models. J. Sci. Food Agric. 2018, 98, 4715–4725. [CrossRef] [PubMed]

37. Rady, A.; Ekramirad, N.; Adedeji, A.A.; Li, M.; Alimardani, R. Hyperspectral imaging for detection of codling moth infestation in
GoldRush apples. Postharvest Biol. Technol. 2017, 129, 37–44. [CrossRef]

38. Esquerre, C.; Gowen, A.A.; Downey, G.; O’Donnell, C.P. Wavelength selection for development of a near Infrared imaging system
for early detection of bruise damage in mushrooms (Agaricus Bisporus). J. Near Infrared Spectrosc. 2012, 20, 537–546. [CrossRef]

39. Hagen, N.; Kudenov, M. Review of snapshot spectral imaging technologies. Opt. Eng. 2013, 52, 090901. [CrossRef]
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