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A paradoxical finding from genome-wide association studies (GWAS) in
plants is that variation in metabolite profiles typically maps to a small
number of loci, despite the complexity of underlying biosynthetic pathways.
This discrepancy may partially arise from limitations presented by geo-
graphically diverse mapping panels. Properties of metabolic pathways that
impede GWAS by diluting the additive effect of a causal variant, such as
allelic and genetic heterogeneity and epistasis, would be expected to increase
in severity with the geographical range of the mapping panel. We hypoth-
esized that a population from a single locality would reveal an expanded
set of associated loci. We tested this in a French Arabidopsis thaliana popu-
lation (less than 1 km transect) by profiling and conducting GWAS for
glucosinolates, a suite of defensive metabolites that have been studied in
depth through functional and genetic mapping approaches. For two distinct
classes of glucosinolates, we discovered more associations at biosynthetic
loci than the previous GWAS with continental-scale mapping panels. Candi-
date genes underlying novel associations were supported by concordance
between their observed effects in the TOU-A population and previous
functional genetic and biochemical characterization. Local populations
complement geographically diverse mapping panels to reveal a more
complete genetic architecture for metabolic traits.

This article is part of the theme issue ‘Genetic basis of adaptation and
speciation: from loci to causative mutations’.
1. Introduction
Plants produce a vast array of secondary metabolites that collectively underpin
many functions—from regulating growth and development to tolerating abiotic
stresses, attracting pollinators and deterring enemies [1]. Illuminating the gen-
etic architecture of secondary metabolism is not only integral to understanding
plant physiology, adaptation and diversity across environments [2]; it also
provides precise routes to create more durable and productive crops [3].

In recent years, genome-wide association studies (GWAS) have emerged as a
tool of choice for elucidating the genotype-to-phenotype links that shape plant
metabolic diversity [3–5]. GWAS involve tests for statistical associations between
genetic variants and organismal phenotypes. Because they require only genoty-
pic and phenotypic information across a panel of natural plant genotypes
(accessions), GWAS offer a straightforward and efficient method for inferring
links between millions of single-nucleotide polymorphisms (SNPs) across the
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genome and thousands of metabolites, enabled by the parallel
advances in genome sequencing and metabolomic profiling.

A paradoxical pattern emerging from GWAS of plant
metabolic features is that only a few loci are associated with
variation in the abundance of a given metabolite [5].
Indeed, an average of fewer than two significant loci per
metabolite were discovered across four GWAS studies
encompassing greater than 6500 metabolites in leaves and/
or seeds of Arabidopsis, rice and maize (N = 305–529 plant
accessions per study) [6–9]. Such simple genetic architectures
are surprising given that secondary metabolites are often the
product of biosynthetic pathways that have many enzyme-
catalyzed steps [10]. One potential explanation is that many
genes in these pathways are subject to strong purifying selec-
tion [11,12], and thus lack polymorphisms to be mapped.
However, this explanation does not fully explain the simple
genetic architecture, as GWAS fails to replicate many func-
tionally validated loci uncovered through other techniques
for interrogating the genetic basis of metabolic variation [13].

Much attention has been paid to forces that reduce the
efficacyofGWAS, and to both experimental designs and statisti-
cal approaches to mitigate them [14,15]. One relatively
understudied factor is the composition of the mapping panel,
especially the geographical distribution over which accessions
are drawn [14,15]. This is an important consideration because
GWAS mapping panels in plants have conventionally been
assembled over broad geographical scales, such as theArabidop-
sis RegionalMapping Population (RegMap) and 1001 Genomes
Project (1001G), which are composed predominantly of acces-
sions collected across the European continent [16,17]. This
design ensures that a broad swath of the species’ genetic diver-
sity is included within the mapping panel, one of the main
advantages of GWAS compared to quantitative trait locus
(QTL) mapping. However, it also exposes analyses to a variety
of geographically driven confounding forces.

The most popularized cause of confounding driven by
geography concerns population structure [18,19]. False-
positive associations arise at non-causal variants whose geno-
types are correlated (i.e. in long-range linkage disequilibrium)
with causal variants, and geographical population structure is
a major source of these correlations [18]. The incorporation of a
kinship matrix in the GWAS model can control these spurious
associations [20,21], but at the cost of reducing power to detect
causal variants whose geographical distribution tracks major
axes of population structure [22,23].

However, even with effective control for the effects of
long-range linkage disequilibrium, additional confounding
factors are strengthened in geographically structured popu-
lations. Three processes in particular can dilute the strength
of association at a causal variant. First, many alleles have geo-
graphically restricted distributions, causing the genetic basis
of a trait to vary across regions (genetic heterogeneity)
[14,24,25]. Because rare alleles in particular tend to be geo-
graphically restricted [26], mapping within local or regional
panels would also have the benefit of elevating the frequen-
cies of some rare alleles relative to their species-wide
frequency [26], thus enhancing power to detect rare, informa-
tive SNPs. Second, a locus can have more than two
functionally distinct haplotypes (allelic heterogeneity),
especially in geographically broad mapping panels that
have high genetic diversity [14,27]. Because GWAS typically
interrogates biallelic SNPs, a variant’s effect is diluted by
averaging across the haplotypes tagged by each allele.
Third, population structure across multiple causal loci can
produce different genotypic combinations in different geo-
graphical regions. GWAS is less powerful when a causal
variant’s effect is markedly weakened in some genetic back-
grounds due to epistasis since standard GWAS models are
formulated to detect average additive effects across genetic
backgrounds [28,29]. All of these factors point to the benefit
of mapping in local panels, provided that adequate
phenotypic and genetic variation is present.

Glucosinolates (GSLs), the primary class of secondary
defensive metabolites in Arabidopsis [30], are a well-studied
example for which GWAS uncovers only a subset of genes
in a complex biosynthetic pathway. As such, they offer a com-
pelling opportunity to test the hypothesis that a local GWAS
mapping population can better expose the genetic architec-
ture of a complex trait than a geographically broad GWAS
population. Glucosinolate biosynthesis requires a number of
sequential enzyme-catalyzed reactions to produce a given ali-
phatic GSL (methionine-derived, 12–15 reactions) or indolic
GSL (tryptophan-derived, 7–9 reactions) from their precursor
amino acid [31]. Each step of the pathway has been function-
ally characterized through forward and reverse genetics
approaches, leading to the identification of at least 45 genes
involved [31]. Yet three GWAS of aliphatic GSL variation
with large mapping populations (N > 300) spanning Europe
have consistently described associations at only three biosyn-
thetic loci [6,13,32], even though the causal polymorphisms
underlying mapped QTL have been localized to additional
biosynthetic genes [33].

Intriguingly, GSLs across the European distribution of Ara-
bidopsis [13] exhibit all sources of confounding detailed above.
Recurrent loss of function and gene conversion events have
generated complex patterns of allelic heterogeneity, including
rare variants, and the geographically restricted distributions
of functionally defined haplotypes at a few major-effect loci
implies strong genetic heterogeneity [13,32,34]. Higher-order
epistatic interactions among major-effect loci determine
which GSL molecules accumulate, resulting in GSL profiles
that can be binned into qualitative ‘chemotypes’, defined by
whether the gene(s) at each locus are functional [35]. Distri-
butions of these epistatically defined chemotypes are also
geographically biased, displaying regional or continental
clines [13,32]. If similar patterns have arisen at other loci
with more modest phenotypic effects, geographical confound-
ing might hinder their detection through GWAS; at the very
least, large effect epistasis has been documented for other
GSL biosynthetic enzymes [33,36].

Here, we quantified variation in GSL profiles in a single
local population of Arabidopsis, compared the genetic archi-
tecture revealed through GWAS in this local population and
geographically broad mapping panels, and explored poten-
tial confounding factors underlying differences in the
performance of the mapping populations. We focused on a
population from Toulon-Sur-Arroux (TOU-A), France,
which was collected along a fence line spanning only a few
hundred metres [37]. Previous investigations found that the
TOU-A population harbours less than 20% of the variants
segregating at detectable frequencies in the 1001G, yet var-
iants underlying heritable variation for a wide range of
morphological, growth, defence, and fitness-related traits in
TOU-A can be successfully mapped using GWAS [37,38].
We restricted our focus to genes with validated functions in
GSL biosynthesis, broadly defined to include core structure
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formation, side-chain elongation, and secondary modification
[31]. Decades of research have compiled a near-exhaustive
catalogue of the genes participating in these processes and
their substrate specificities, providing functional data sup-
porting novel associations that we uncovered at these loci.
Overall, the expanded catalogue of natural polymorphisms
shaping GSL variation in the TOU-A population suggests
that GWAS in local mapping populations could complement
and expand the genetic architecture for metabolic variation
revealed from geographically broad mapping panels.
rnal/rstb
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2. Material and methods
(a) Plant growth
To minimize maternal effects, seeds were harvested from 294
TOU-A accessions grown at 22°C with a 16 : 8 h light : dark
photoperiod, with 3 weeks vernalization at 4°C in 8 h : 16 h light :
dark to synchronize flowering, in autumn 2017. For GSL profil-
ing in mid-2019, seeds were sown on a 1 : 1 blend of nutrient
retention (BM1) and seed germination (BM2) soil mixes
(Berger, CA) in a complete randomized block design with four
replicates per accession (i.e. N = 1 replicate per accession per com-
plete block). After 4 days stratification at 4°C, growth trays were
moved to a chamber with white LED light (180–200 µmol s−1) at
20°C in 10 h : 14 h light : dark. Seedlings were thinned to one per
cell 1 week after germination. Trays were rotated and bottom-
watered every second day with fertilizer (15N-16P-17 K) solution
at 100 ppm N until harvesting at 21 days.

(b) Glucosinolates extraction and quantification
Glucosinolates were extracted and quantified for each harvested
rosette individually, yielding N = 4 biological replicates per acces-
sion. All liquid preparation and storage steps throughout the
following protocol were conducted in polypropylene 96-well
plates sealed with silicone cap mats. Entire rosettes were first
clipped from the root, weighed and directly submerged into
1.2 ml 80% methanol, which inhibits endogenous myrosinase
activity [39]. After 2 days dark incubation at ambient temperature,
sampleswere centrifuged for 1 min at 4000 × g, and the supernatant
was transferred into a fresh plate and stored at−80°C. Immediately
prior toGSLprofiling, 240 µlwas evaporatedwith a 96-pin air drier
in a fresh plate and redissolved in 120 µl 25% methanol. This
approach was chosen after favourable comparisons to alternative
extraction methods with freezing and/or homogenization steps
(see electronic supplementary material, Note).

GSL content was quantified with an Agilent 1200 Series
HPLC machine coupled to an Agilent 6410 triple quadrupole
mass spectrometer with parameters described in Humphrey
et al. [40]. Samples were eluted with 0.1% formic acid in water
(A) and 100% acetonitrile (B) using the following separation gra-
dient: 3.5 min of 99% A followed by a gradient from 99% to 65%
A (1 to 35% B) over 12.5 min, and a wash with 99% B for 4 min
with 5 min post-run re-equilibration to 99% A. The mass spec-
trometer was run in precursor negative-ion electrospray mode,
monitoring all parent ions from m/z 350–520 with daughter
ions of m/z 97, which correspond to the sulfate moiety of the
GSL analytes. External standards (sinigrin, every 12th sample;
and a GSL extract from a mixture of TOU-A genotypes, every
24th sample) interspersed throughout each run were monitored
to ensure consistency. Individual GSLs were identified based
on their fragmentation pattern and retention time [32] (electronic
supplementary material, table S1). Intensities for each molecule
were integrated using MSnbase v. 2.8.3 [41] and xcms v. 3.4.4
[42] in R, using a customized approach that did not require deli-
neating discrete peak boundaries and thus enabled increased
sensitivity for low abundance molecules (see electronic
supplementary material, Note).

(c) Genotypes
Genotypes for the TOU-A population were obtained
from Frachon et al. [37]. Genotype data for the RegMap [16] and
1001G [17] datasets were obtained from Arouisse et al. [43]. For
the 1001G dataset, this consisted of SNPs that were directly geno-
typed through whole-genome resequencing (WGS). For the
RegMap panel, this consisted of SNPs that were directly geno-
typed with a 250 K SNP chip and supported by WGS in
resequenced accessions, and SNPs imputed by intersecting the
RegMap chip genotypes and 1001G WGS genotypes. Of SNPs,
2.8 M with greater than 95% imputation accuracy were retained,
which primarily excludes SNPs with low-frequency alleles.

(d) Broad-sense heritability of glucosinolates
We fitted linear mixed models for log-transformed ion counts per
milligram of leaf tissue using lme4 [44], including random inter-
cept effects for the plant accession identity and for the plate
containing the sample during extraction and HPLC-MS/MS
quantification. The models included all biological replicates per
accession (mean N = 3.93 for TOU-A, see above; mean N = 3.69
for Brachi et al. [32]; mean N = 2.00 for Katz et al. [13]). Variance
components were extracted from the model, and heritability was
estimated as the proportion of total variance explained by acces-
sion identity, after excluding variance explained by sample plate
identity. This approach leverages the independent biological
replicates per accession to estimate variance components without
the use of SNP genotypes or the matrix of genetic relatedness
among accessions and thus is not biased by potential differences
in patterns of population structure among mapping panels. Sig-
nificance of accession identity was assessed by a likelihood ratio
test with one degree of freedom. For published GSL measure-
ments of RegMap [32] and 1001G [13] accessions, an identical
model was implemented using GSL abundances scaled by
sample weights as reported by the authors.

(e) Genome-wide association mapping
To standardize comparisons across datasets, analyses were con-
ducted identically for the TOU-A, 1001G and RegMap datasets.
First, best unbiased linear predictors (BLUPs) were extracted
from the linear mixed models above; for one dataset [6] that
pooled biological replicates, abundances from the single technical
replicate per accession were used directly. Values were converted
to z-scores so that GWAS would produce effect size estimates in
units of phenotypic standard deviations. Second, GWAS were
implemented as linear mixed models in GEMMA v0.98.1 [45],
including a centred genetic relatedness matrix (-gk 1) to account
for population structure. Significance per SNP was assessed by
Wald Tests (-lmm 1). Finally, to estimate the proportion of variance
explained by a given SNP, we fitted a linear mixed model using
lme4qtl v. 0.2.2 [46] with the centred genetic relatedness matrix
as a random effect and the SNP genotype as the only fixed
effect, and extracted the proportion of variance explained by
fixed effects (R2

m) using MuMIn v. 1.43.17 [47].
Traits that were modelled separately for GWAS included (i)

abundances of each of the heritable GSL molecules, and (ii) log2-
transformed ratios of the abundances of pairs of molecules with pre-
cursor:product relationships (electronic supplementary material,
figure S1). For indolic GSLs in TOU-A, we also implemented a
multi-trait GWAS approach (multivariate linear mixed model,
mvLMM [48]), which jointly models the relationships between the
abundances of all detected molecules. Severe genomic inflation
and/or algorithmic termination errors prevented the implemen-
tation of these models for other molecules and mapping panels.
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Figure 1. Reduced genetic complexity within local Arabidopsis populations. (a) The proportion of non-matching GSL chemotypes, which reflect the joint genotype at
three epistatically interacting loci (MAM, AOP, GS-OH), increases sharply and then plateaus as a function of geographical distance in pairwise comparisons among
accessions. Points represent comparisons among European 1001G accessions in 40 km bins. (b) The allele frequency spectrum is skewed toward common alleles in
TOU-A relative to European accessions in the 1001G. The plotted lines were produced by connecting points indicating the proportion of SNPs falling into 1% bins of
minor allele frequency. (c) Tajima’s D is also elevated in TOU-A, shown as a distribution of values across 50 kb genomic windows. The 1001G panel was down-
sampled to 192 individuals to match TOU-A, and both populations were downsampled to 100 individuals per SNP site, to avoid sample size and genotyping
efficiency biases in panels (b,c). (Online version in colour.)
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Unless otherwise stated, all GWAS excluded SNPs with minor allele
frequency (MAF) less than 0.05 or missing genotypes in greater than
5% of the accessions (relaxed to 10% for TOU-A, which had more
uncalled sites).Weexcludeda small numberofGWASexhibiting sys-
tematic genomic inflation as determined from the χ2-test statistic
corresponding to the median p-value (λGC> 1.04) [49] or an excess
of associated SNPs (98th percentile of genome-wide p-values < 0.01).

To search for significant associations harbouring GSL biosyn-
thetic loci, we used a recently compiled catalog of functionally
validated genes in the aliphatic and indolic GSL biosynthetic
pathways ([31]; categories: side chain elongation, core structure
synthesis, side chain modification). Because peaks of association
at known GSL biosynthetic loci in previous GWAS reside tens or
even hundreds of kb from the causal genes [13,32,34]—which
may arise from extended causal haplotypes [34], structural var-
iants, or intergenic regulatory variants—we defined candidate
SNPs as those within 30 kb of known biosynthetic genes. For
the three loci with significant SNPs in our re-analysis of the
1001G and RegMap datasets, for which the causal genes are
well-established, we further extended these windows in 10 kb
increments until they captured 90% of the SNPs within 0.5 Mb
of the known causal loci (AOP2/3, GS-OH, MAM1/3) that har-
boured significant associations with single GSL molecules or
precursor:product ratios in those datasets.
( f ) Population genetic comparisons
Methods for all population genetic analyses are described in the
electronic supplementary material, Methods.
3. Results
(a) A deficit of rare alleles in the local TOU-A

population
A population genetic comparison between TOU-A and the
European 1001G accessions revealed favourable conditions
for GWAS relative to geographically broad mapping panels.
First, for the particular example of glucosinolates, we found
that epistatic variation increases rapidlywith geographical dis-
tance (figure 1a). Second, despite reduced overall diversity (1.9
M SNPs in TOU-A versus 11.5 M SNPs in 1001G), the TOU-A
population (1.3 M) and 1001G panel (2.2 M) had a relatively
comparable number of common variants (defined here as bial-
lelic SNPswithMAFgreater than 0.03). Indeed, a large fraction
of common variants from the 1001G panel (2.2 M) were also
common in TOU-A (0.83 M, 38%), indicating the reduced gen-
etic diversity in TOU-A arises from a lessened contribution of
rare variants. This was reflected in the allele frequency spec-
trum: after downsampling the 1001G to account for
differences in sample size, the TOU-A population still dis-
played a less pronounced enrichment of rare relative to
higher frequency variants (figure 1b), resulting in higher
genome-wide values of Tajima’s D (figure 1c). This strong
reduction in both total and rare variants is expected to
reduce confounding effects of genetic and allelic heterogeneity
in TOU-A, while the presence of many common variants
suggests this does not come at the expense of drastically culling
the polymorphisms that can be interrogated through GWAS.
(b) Heritable variation in glucosinolate profiles within
the local TOU-A population

We quantified the relative concentrations of 13 major ali-
phatic and four indolic glucosinolates in 294 accessions
from the TOU-A population under controlled growth
chamber conditions. By contrast to broader geographical
scales, where loss-of-function mutations within the gluco-
sinolate biosynthetic pathway are pervasive, every TOU-A
accession exhibited a fully functional GSL biosynthetic path-
way. This was evidenced by abundant concentrations of the
final products in the biosynthetic pathways for both short-
chain aliphatic (hydroxyalkenyl) and indolic GSLs (electronic
supplementary material, figure S2).

Genetic differences among individuals explained statistically
significant portions of the between-accession variation in abun-
dance for every GSL molecule: broad-sense heritabilities
ranged from 0.19 <H2< 0.92 (all PBonferroni < 0.05). In fact, analy-
sis of GSL measurements from previous studies revealed
systematically higher heritability estimates in TOU-A than the
RegMap (Sign Test, median difference = 0.16 [95 %CI:0.04,0.31],
p= 0.02) and no significant difference between TOU-A and the
1001G (median difference = 0.04 [−0.20,0.20], p= 0.46)
(figure 2). Although the experimental design, tissue sampling,
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or data collection variables across studies could contribute to
differences in heritability among the mapping populations,
these data clearly indicate a high level of heritability for GSL
traits within the TOU-A population, even in the absence of the
loss-of-function alleles at biosynthetic loci that have dramatic
effects on GSL profiles across broader geographical scales.

(c) Genome-wide association studies within the local
TOU-A population reveals known and novel variants
shaping aliphatic glucosinolate profiles

For 192 phenotyped accessions with whole-genome
sequences, we conducted GWAS using mixed models that
controlled for confounding due to population structure by
including a matrix of kinship among accessions as a
random effect. We first focused on the abundances and
relationships between 13 aliphatic GSLs.

(i) Significant associations
The identity of associated loci in TOU-A depended on how
GSL phenotypes were represented. First, we performed sep-
arate GWAS for the abundance of each molecule. This
approach cumulatively uncovered significant associations at
five biosynthetic loci (figure 3a). By contrast, only four cumu-
lative associations (three per dataset) were recovered using
the same approach in a re-analysis of three previous GWAS
datasets, which consisted of mapping populations spanning
the European continent (N > 300 accessions; electronic
supplementary material, figure S3a).

When traits are correlated, as expected for pleiotropic
traits such as metabolites from the same biosynthetic path-
way, GWAS approaches that use information from multiple
traits in a single analysis may increase power [50]. Given
the strong positive and negative genetic correlations among
GSL molecules in the TOU-A population (electronic
supplementary material, figure S4), we reasoned that such
an approach may reveal additional associations. Indeed,
using ratios of the abundances of individual precursor
versus product GSLs as the mapped traits cumulatively
revealed significant associations at five biosynthetic loci in
TOU-A, including two loci not recovered from GWAS using
individual GSL abundances (figure 3b). The same approach
in geographically broad European panels recovered only
three cumulative associations (two to three per study; elec-
tronic supplementary material, figure S3a).

Overall, the significant associations in TOU-A included all
three loci (GS-OH, AOP, MAM) that we also recovered in all
broad European panels, and an additional locus (CYP79F1/F2)
recovered in only one other panel (figure 3c and electronic
supplementarymaterial, figure S3a). Many of these same associ-
ations were reported in the authors’ original analyses [6,13,32],
although the CYP79F1/F2 polymorphism had not been pre-
viously reported. In addition, analyses in TOU-A uncovered
three loci not found in GWAS of other mapping panels. The
GS-OX locus, which was successfully mapped in biparental
RILs, had not been mapped in the three GWAS with large map-
ping populations [33,51,52]. Further, we provide the first
evidence for effects of natural polymorphisms in BCAT3 and
CYP83A1. All of these associations had large phenotypic effects,
with the leading SNP explaining an average of 24% of the
phenotypic variation for its most strongly associated trait
(range: 6–43%; electronic supplementary material, table S2).

(ii) Mapping precision
Identifying candidate genes for functional validation is more
efficient when GWAS associations narrowly peak at or near
the causal mutations. Precise peaks of association arise
when a causal variant recombines into different haplotypes.
In populations with reduced genetic diversity, the presence
of a given causal variant on fewer haplotypes could result
in broader peaks of association, posing a drawback for
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GWAS in local populations. Relative to European panels,
GWAS peaks in TOU-A were indeed broader, although pat-
terns varied among loci (electronic supplementary material,
figure S5a). Nevertheless, the leading SNP for over half the
associations fell within the transcribed or flanking intergenic
regions of the biosynthetic gene (four of seven loci), and the
cluster of significant SNPs overlapped with these regions in
all but two cases (electronic supplementary material, figure
S5a-b). Further, an inspection of the genome-wide p-value
distribution revealed no systematic genomic inflation in any
of the mapping populations (electronic supplementary
material, figure S5c). Thus, GWAS in TOU-A retains the
ability to narrowly pinpoint candidate genes.
(iii) Effects on glucosinolate profiles
A model for how the putatively causal enzymes at the seven
significant loci generate GSL profile variation in the TOU-A
population emerges simply by overlaying the reaction cata-
lyzed by each enzyme, from precursor to product
molecules, onto a plot of the major aliphatic GSLs detected
in TOU-A plants. This produces a visual map of the variable
steps in the biosynthetic pathway (figure 3d ). We sought to
use these relationships, supplemented with GSL profiles
from gene knockout mutants in previous studies, to validate
each locus by comparing them to the effects inferred in our
GWAS. To do this, we identified the leading SNP (i.e. the
SNP with the strongest experiment-wide p-value) at each
locus, extracted its GWAS model-fitted effect on the abun-
dance of each GSL molecule, and visualized the effects on
the map of GSL molecular variation in TOU-A (figure 3e).
In addition to offering further evidence supporting the
hypothesized causal genes at each locus, this approach illu-
minates how these loci generate different aspects of GSL
profile variation in the TOU-A population.

The effects of the BCAT3 locus in TOU-A suggest that this
gene underlies a dimension of variation in GSL side-chain
length previously undescribed in natural populations of
Arabidopsis, distinct from effects of the well-characterized
variation at the MAM locus. The BCAT3 locus affected the
abundances of GSLs with intermediate-length side chains,
mirroring effects previously observed in a BCAT3 knockout
mutant (figure 3e and electronic supplementary material,
figure S6). By contrast, functional genetic and biochemical
assays have shown that the MAM1 and MAM2 enzymes pri-
marily affect the abundance of GSLs with short side chains
[53], similar to the inferred effect of the MAM locus in
TOU-A, and MAM3 primarily affects the abundance of
GSLs with long side chains (figure 3e and electronic
supplementary material, figure S6).
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Of two previously unreported associations at cytochrome
P450 monooxygenases functioning downstream of MAM and
BCAT3 in the biosynthetic pathway (figure 3d ), the novel
association at the paralogous CYP79F1 and CYP79F2 genes
[54] is especially noteworthy. The leading SNP at this locus
was associated with a larger magnitude of effect on some
short-chain molecules in TOU-A than MAM or BCAT3
(figure 3e), with especially large effects on molecules with
the shortest observed side-chain length. This is consistent
with the finding that among all biosynthetic enzymes,
CYP79F2 exerts the strongest effect on pathway flux, with
an outsized effect on propyl GSLs (i.e. GSLs with 3C side-
chain lengths) [12]. Functional polymorphism at a CYP79F
gene also underlies a QTL affecting the propyl fraction of
GSLs in Brassica juncea [55], and separately underlies adap-
tive variation in the proportion of GSLs derived from
branched-chain amino acids relative to methionine in Boechera
stricta [56]. The association at CYP79F paralogs was recovered
in our re-analysis of one European Arabidopsis dataset (elec-
tronic supplementary material, figure S3), strengthening the
evidence that CYP79F is a broadly important determinant
of GSL profile variation across populations and species.

Two distinct loci harbour paralogous GS-OX genes that
catalyze the S-oxygenation of methylthioalkyl to methylsulfi-
nylalkyl GSLs with broad substrate specificity. While natural
variation in the locus containing GS-OX2, GS-OX3 and GS-
OX4 had been detected throughQTLmappingwith biparental
RILs [51,52], neither locus had been detected in the three large,
European GWAS panels. In addition to harbouring a signifi-
cant association when considering common variants (MAF >
0.05; figure 3a), GS-OX1 harboured the strongest genome-
wide association for many molecules when slightly rarer var-
iants were considered (MAF > 0.03; electronic supplementary
material, figure S7). Although biases in our GWAS model
can yield inflated or deflated signals of association for alleles
below this threshold, the strength of the association for this
variant is exceptional even among alleles of similar frequency
(0.05 >MAF > 0.03). Intriguingly, the strongest associations at
GS-OX1 did not involve methylthioalkyl GSL abundances
individually or as a ratio compared to their derivedmethylsul-
finylalkyl GSLs (electronic supplementarymaterial, figure S7),
suggesting that linkage disequilibrium with other loci (or an
unexpected effect of GS-OX1) may contribute to this associ-
ation. Nevertheless, the effect on its direct precursor and/or
product molecules is sufficient to drive a significant associ-
ation: we further performed GWAS for a principal
component capturing opposing shifts in the abundance of
long-chain methylthioalkyl versus methylsulfinylalkyl GSLs,
and GS-OX1 harboured the strongest, statistically significant
genome-wide association (electronic supplementary material,
figure S7).

Finally, effects of the two remaining polymorphisms in
TOU-A, at the AOP [57] and GS-OH [58] loci, differed from
the effects of loss-of-function variants at these loci that segre-
gate over broad geographical scales, which eliminate the
production of their GSL products and generate qualitative
presence/absence variation in GSL profiles [13]. In TOU-A,
by contrast, both loci affected their precursor GSL abun-
dances, with only GS-OH also oppositely affecting (but not
abolishing) its product GSL abundances (figure 3e).

It is important to note that the predicted effects do not
include epistatic interactions and that more subtle effects
may not be discovered through GWAS. Accordingly, the
effects described above should be interpreted only as the
strongest, additive effects of each locus.

(d) Genome-wide association studies within the local
TOU-A population reveals known and novel variants
shaping indolic glucosinolate profiles

(i) Significant associations
We implemented the same association mapping approach for
four indolic GSL molecules and were most successful when
mapping traits that captured the relationships among abun-
dances of different molecules. Our initial approach
mapping the abundance of single molecules only recovered
one association in both the TOU-A population and in the geo-
graphically broad European panel with high-quality indolic
GSL data (electronic supplementary material, figure S3b).
We recovered an additional association in TOU-Awhen map-
ping GSL precursor:product ratios (electronic supplementary
material, figure S3b).

Multi-trait mixed models, which jointly model the
relationships among two or more traits together, may further
increase power by using the relationships among traits as
additional information. Importantly, these models can
recover genetic variants affecting both individual traits and
the relationships among traits, which may have distinct gen-
etic bases [48]. We employed a multi-trait GWAS jointly
modelling the abundance of all four indolic GSLs detected
in TOU-A. This recovered a third association, along with
the two previously noted, in the TOU-A population
(figure 4a). The model encountered algorithmic termination
errors when applied to the geographically broad panel,
preventing a comparison with TOU-A for this approach.

Overall, of these three loci recovered in TOU-A, two (both
CYP81F loci) have been previously identified in GWAS [6]
(figure 4b). One of these loci was also discovered through
QTL mapping, and CYP81F2 was functionally validated as
the causal gene [59,60]. The IGMT locus had not been
linked to natural variation in GSL profiles previously.

(ii) Mapping precision
Similar to aliphatic GSLs, peaks of significantly associated
SNPs varied from narrow to broad, depending on the locus
(electronic supplementary material, figure S5). Notably, sig-
nificance peaked directly within the tandem array of IGMT
paralogs, again highlighting the ability of GWAS in TOU-A
to pinpoint candidate genes.

(iii) Effects on GSL profiles
Each putatively causal biosynthetic enzyme underlying the
associations with indolic GSL variation in TOU-A has been
functionally characterized through biochemical assays and
gene knockout mutants. CYP81F paralogs collectively catalyze
the first elaboration step at different sites of the indolic GSL
ring structure [59,60], and IGMT paralogs collectively catalyze
a subsequent elaboration step [61] (figure 4c). Using the effects
of each locus extracted from our GWAS models (figure 4d), we
looked for concordance with previous QTL mapping, func-
tional genetic, and knockout mutant studies to inform how
these loci shape GSL variation in TOU-A.

The CYP81F subfamily of cytochrome P450 monooxygen-
ases are responsible for hydroxylation of indolyl-3-ylmethyl
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(I3M) GSL [59,60], which can subsequently be methoxylated
by other enzymes. The locus harbouring CYP81F2 affected
two GSL molecules in TOU-A (4-hydroxy-I3M-GSL and its
derivative, 4-methoxy-I3M-GSL), which also differentially
accumulate due to the CYP81F2 locus in a previous QTL
mapping experiment [59]. The locus harbouring CYP81F1,
CYP81F3 and CYP81F4 paralogs affected the GSL that is
methoxylated at a different site, 1-methoxy-I3M-GSL; the
CYP81F-catalyzed product from which it derives, 1-hydroxy-
I3M-GSL, is unstable and was not observable through our
GSL profiling approach. These results further support
evidence from previous mapping studies that paralogs at the
two CYP81F loci affect different GSL molecules in planta,
despite overlap in substrate specificities in vitro [59,60].

Four of the five indole glucosinolate O-methyltransferases
(IGMT1-4) inArabidopsis form a tandem array at the locus ident-
ified in our GWAS [61]. This locus had a strong effect on the
abundance of its substrate, 4-hydroxy-I3M-GSL (figure 4d).
Although IGMT1-4 enzymes cumulatively can methoxylate
both 1- and 4-hydroxy-I3M-GSL in biochemical assays, our
observation of effects restricted to 4-hydroxy-I3M-GSL
methoxylation support a model previously inferred from the
characterization of an IGMT5 knockout mutant, which retained
functional copies of all four IGMT1-4 paralogs [61]. The mutant
exhibited an absence of 1-methoxy-I3M-GSL but no reduction in
4-methoxy-I3M-GSL, suggesting the IGMT1-4 locus is
responsible only for 4-methoxy-I3M-GSL’s production in planta.

Taken together, our results more fully link the functional
variation characterized in enzyme biochemical and gene
knockout studies with the variation for indolic GSLs
observed in natural populations, identifying loci acting at
three of the four secondary modification steps that give rise
to the major I3M-derived GSLs in the TOU-A population.

(e) Reduced population structure is unlikely to underlie
improved performance of genome-wide association
studies for glucosinolate profiles in the local TOU-A
population

GSL profiles, and some of the large effect loci that underlie them,
show strong geographical clines within and across Europe
[13,32]. This raises the possibility that methods to control for
population structure in GWAS could weaken signals of associ-
ation with GSLs at loci whose genotypes are strongly
correlated with population structure. To investigate this, we
used ADMIXTURE to infer subgroups (k = 5) contributing to
population structure separately within the TOU-A and the
1001G accessions. Focusing on the 10 glucosinolate biosynthetic
loci recovered byGWAS in TOU-A,we found that among-group
variation in allele frequency was not elevated in the 1001G rela-
tive to TOU-A (electronic supplementary material, figure S8).
This suggests that the efficacy of GWAS for GSLs in TOU-A is
unlikely to be the product of weaker population structure at
causal loci, and may instead arise from differences in other con-
founding factors that are exaggerated in geographically broad
mapping panels.
4. Discussion
As one of the best-studied secondary metabolite pathways in
plants—with a wealth of functional genetic knowledge from
GWAS and QTL mapping of natural variation, characteriz-
ation of genetic mutant lines, and enzyme biochemical
assays [30]—GSLs offered a compelling opportunity to inves-
tigate the performance of GWAS using a local mapping
population. The expanded genetic architecture revealed for
GSLs in the TOU-A population highlights the benefits of
this approach. A modest mapping panel (N = 192 accessions)
led not only to the discovery of variants that were absent in
geographically broad mapping panels with 1.5–4.0× more
accessions but also to novel loci whose contribution to natural
variation was unknown despite numerous QTL mapping
studies (albeit typically with relatively small sample sizes)
previously conducted for GSLs. These associations spanned
each major portion of the pathway (figure 5): the MAM-cata-
lyzed reaction loop for side-chain elongation in GSL
precursor molecules, sequential steps for synthesis of the
GSL core structure, and every level of secondary modification
subsequent to the formation of a functional GSL molecule
[31]. Thus, GWAS within a local population can offer a
deep catalogue of functional polymorphism within a biosyn-
thetic pathway.

The simplest explanation for the effectiveness of GWAS in
TOU-A may be the observed reduction in genetic diversity
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relative to the broader European population. Theory predicts
that allelic heterogeneity, which poses a major obstacle for
GWAS, will be more pervasive in more genetically diverse
populations. Further, the fact that diversity was reduced in
TOU-A primarily through a relative deficit of rare variants,
as expected if rare variants are geographically restricted and
therefore locally more common [26], likely provides an
additional benefit. Rare variants are not only poorly detected
through GWAS, but their presence can obscure true associ-
ations at causal loci [62]. Consistent with this, GWAS has
uncovered more associations and a broader (albeit largely
unvalidated) functional repertoire of underlying candidate
genes—including biosynthetic enzymes, transcription factors,
and transporters—across cultivars of Brassica napus than in
European panels of Arabidopsis [63–65]. Brassica napus cultivars
are less genetically diverse and have an excess of common var-
iants (reflected in elevated Tajima’s D) relative to Arabidopsis
[17,65,66], which may have been further exaggerated at gluco-
sinolate-related genes by the diversity-reducing effects of
directional selection during the breeding process [66].

While the general benefits of reduced geography-driven
confounding in local populations should extend to GWAS
for a variety of traits, our findings also illustrate properties
of local populations likely to be especially beneficial when
studying metabolite diversity specifically. In particular, the
confounding effects of loss-of-function polymorphisms were
absent from the major loci (MAM, AOP, GS-OH) that segre-
gate such mutations over broad geographical scales. Loss-
of-function mutations produce a particularly severe form of
allelic heterogeneity. Many different mutations can produce
analogous loss-of-function alleles at a gene, resulting in a
high gene-wide mutation rate, such that many loss-of-
function polymorphisms involve multiple haplotypes with
parallel loss-of-function mutations [27]. Furthermore, loss-
of-function mutations underlie dramatic epistatic effects,
which may dilute additive effects modelled by GWAS. An
extreme example involves the GS-OH locus that catalyzes
the final secondary modification in the biosynthetic pathway
(figure 5): loss of function alleles at upstream enzymes fully
mask the effect of GS-OH on GSL variation in the majority
of genetic backgrounds in Arabidopsis, and GS-OH itself
segregates numerous loss-of-function alleles [13]. Of the
three major large-effect loci mapped in other GWAS of ali-
phatic GSLs, only GS-OH has failed to consistently yield
associations across previous analyses [6,13,32,34].

Although statistical approaches exist to mitigate geographi-
cally driven confounding factors, they cannot entirely control
for them. Forexample,GWASmodels canbe extended to include
epistatic interactions alongside, or instead of, additive effects
[67]. However, the immense number of possible pairwise inter-
actions across the genome creates computational challenges
and a severe multiple testing burden [68]. Other confounding
factors can be lessened by altering genotype information rather
than the GWAS models themselves. One simple yet powerful
approach involves collapsing all predicted loss-of-function var-
iants at a gene into a single allele, reducing their contribution
to allelic heterogeneity [69]. Nevertheless, this approach requires
genotyping tobe conducted throughwhole-genome sequencing,
and even then, many cases of abolished or altered gene function
are difficult to annotate fromDNA sequence data alone. Further-
more, while this approach can improve power to discover
associations at loci with heterogeneous loss-of-function variants,
it does not address their confounding epistatic effects on other
loci. Even in cases where various genotyping and statistical
approaches do largely succeed in mitigating specific
confounding factors, integrating them to address many factors
simultaneously is challenging. For many research questions,
the use of local mapping populations in which these
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confounding factors are lessened offers an attractive alternative
to these more tailored GWAS approaches.

Despite their benefits, GWAS in local populations are cer-
tainly not ideal for every research question. GWAS of GSLs in
differentmapping populations illustrate this clearly: integrating
population genomic analyses with GWAS using Arabidopsis
accessions sampled throughout Europe revealed how GSL pro-
files have been shaped by adaptation and demography across
the species range [13,32,34], which would be impossible to
infer from a single local population. Meanwhile, GWAS using
the TOU-A population implicatedmore loci in natural phenoty-
pic variation than could bedetected in broadermappingpanels.
Complementary GWAS in local and geographically broad
mapping panels thus provide an exciting avenue toward a
fuller understanding of the genetic variation and evolutionary
processes that shape phenotypic diversity in nature.
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