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Glaucoma is a chronic ocular disease characterized by damage to the optic nerve resulting in progressive and irreversible visual
loss. Early detection and timely clinical interventions are critical in improving glaucoma-related outcomes. As a typical and
complicated ocular disease, glaucoma detection presents a unique challenge due to its insidious onset and high intra- and
interpatient variabilities. Recent studies have demonstrated that robust glaucoma detection systems can be realized with deep
learning approaches. The optic disc (OD) is the most commonly studied retinal structure for screening and diagnosing
glaucoma. This paper proposes a novel context aware deep learning framework called GD-YNet, for OD segmentation and
glaucoma detection. It leverages the potential of aggregated transformations and the simplicity of the YNet architecture in
context aware OD segmentation and binary classification for glaucoma detection. Trained with the RIGA and RIMOne-V2
datasets, this model achieves glaucoma detection accuracies of 99.72%, 98.02%, 99.50%, and 99.41% with the ACRIMA,
Drishti-gs, REFUGE, and RIMOne-V1 datasets. Further, the proposed model can be extended to a multiclass segmentation and
classification model for glaucoma staging and severity assessment.

1. Introduction

Glaucoma is a common ocular disease caused by high intra-
ocular pressure, which can eventually lead to irreversible
blindness. It is a complex disease, influenced by patient’s
age, race, refractive error, OD, and retinal nerve fiber layer
(RNFL) [1]. OD is an important indicator of glaucoma,
where changes like cupping and thinning of RNFL are the
most common signs of glaucoma. By exploiting the changes
of OD, glaucoma can be detected in the early stages to pre-
vent adverse outcomes. Different types of glaucoma have
similar OD appearances and it is crucial to develop a frame-
work for glaucoma detection that is robust to OD variability.

Several clinical studies have been performed to elucidate
the relationship between glaucoma and the OD in terms of
its structural changes, including thinning, cupping, excava-

tion, and disc hemorrhage. One such investigation before
two decades reported in [2] describes several OD variables
and their ranking for early detection of glaucoma. Later, a
systematic [3] approach for glaucoma detection defines five
assessments of OD regions, viz., size of OD, shape, and area
of rim, identification of RNFL loss, para papillary atrophy
(PPA), and hemorrhages. In line with this, the significance
of the examination of OD parameters in the differential
diagnosis of glaucoma is presented in [4]. A most recent
review [5] in this context brings out the risks of undiagnosis
and overdiagnosis of glaucoma due to overlapping symptoms
between glaucomatous and nonglaucomatous optic neuropa-
thy in the OD region. Further, a recent case study also shows
that constrictive ODs manifest in pediatric patients with cen-
tral retinal vein occlusion (CRVO) [6], one of the important
causes of glaucoma. These investigations show that the clinical
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importance of ODs in glaucoma detection is well recognized
in ophthalmology research community.

Classification of glaucomatous disc changes is challeng-
ing due the mixed morphological manifestations of hemor-
rhage patterns on the surface of the OD. Cup to disc ratio
(CDR) [2], evaluated as the ratio of vertical cup diameter
(VCD) to vertical disc diameter (VDD), is one of the com-
mon measures for detecting glaucoma. A larger CDR
signifies a higher risk of glaucoma. However, VCD is subjec-
tive, and the estimation of the OD’s shape from fundus
images, especially from the images taken through the OD’s
boundary, is also difficult. It is also challenging to find out
the location of the OD’s boundary for detecting cup shapes,
especially when the eye is rotated to image the OD. CDR is
evaluated by segmenting the OD and optic cup (OC) regions
and computing the VCD to VDD ratio. The earlier
approaches for automated glaucoma screening are called
measurement-based approaches [7-10] which segment the
ODs and cups followed by CDR computation.

Segmentation of ODs and cups is a nontrivial problem
where inaccurate segmentations may result in false detec-
tions. In the recent years, deep learning approaches are
gaining popularity in the deployment of automated glau-
coma detection. Deep learning networks capable of learning
image features at various levels of abstraction are employed
as feature extractors and classification and segmentation
models in glaucoma screening. Several two-stage convolu-
tional neural network- (CNN-) based glaucoma detection
frameworks which perform segmentation followed by classi-
fication are proposed in [11-14]. In the recent years, there is
an increased attention on deep learning models for joint
segmentation [15] of ODs and OCs which are rather com-
plex to implement. However, these approaches are demon-
strated to achieve superior performances compared to the
conventional OD and OC segmentation based glaucoma
detection models.

Existing works in literature pay less attention to the
contextual information in glaucoma screening. While the
models which segment the OD and OC separately focus on
clear separation of boundaries for CDR calculation, the joint
segmentation approaches are based on heavy learning
models such as generative adversarial networks (GAN) and
ensemble-based architectures. This research presents a con-
text aware joint segmentation and classification framework
for glaucoma detection based on the aggregated transforma-
tions and class activation maps (CAM). The framework
called GD-YNet follows a YNet architecture [16] comprising
a segmentation subnetwork and a classification branch. The
segmentation subnetwork is trained on the region of interest
(Rol) images encompassing the OD, captured from contex-
tual features of activation maps to segment the ODs. The
classification branch is constructed with a convolutional
layer and two fully connected layers, and it is trained with
a combination of low-level image features and the
segmented disks and for binary classification.

The contributions of this research are as below.

(1) A joint segmentation classification framework based
on Ynet architecture which demonstrates superior
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OD segmentation and
performances is proposed

glaucoma classification

(2) A hierarchical approach for Rol segmentation based
on class activation maps (CAM) and aggregated
transformations is proposed

(3) The prosed framework is designed to harnesses the
low-level and structural features of the fundus image
in glaucoma detection

The proposed joint model is trained and tested with
public databases, demonstrating superior segmentation and
classification performances. From the objective metrics and
explainable analysis, it is seen that the proposed model is a
prospective solution for integration with glaucoma screening
pipelines for better clinical outcomes.

Rest of this paper is organized as below. In Section 2,
representative works on deep learning-based glaucoma
detection models are reviewed. Section 3 presents the
datasets and underlying methods employed in building
the proposed system. In Section 4, the architecture of
the proposed model and subnetworks is presented with
the training mechanism. Experimental results and their
interpretations are presented in Section 5, and the paper
is concluded in Section 6.

2. Related Works

Existing deep learning approaches for glaucoma detection
are based on feature extraction, object recognition, transfer
learning, Rol segmentation, OD and OC segmentation, and
feature discrimination. The earliest deep learning model
for glaucoma detection proposed in [17] is deployed as a
six layered CNN with four convolutional and two fully con-
nected layers. This model is trained on the augmented
ORIGA [18] dataset and tested with the ORIGA and SCES
[19] datasets achieving area under curve (AUC) values of
0.831 and 0.887, respectively. Realizing the significance of con-
text information, the authors of [17] have proposed Automatic
feature Learning for glAucoma Detection based on Deep
LearnINg (ALADDIN) [20], following a contextual training
strategy which enables the model to adaptively learn deep
features discriminating normal and glaucomatous images.
Later, several deep learning models for glaucoma detec-
tion based on OD and OC segmentation have been pro-
posed. In [21], the conventional UNet [22] which follows
an encoder-decoder architecture is modified with dropout
regularization, reducing the number of filters for OC and
OD segmentation, achieving improved segmentation accu-
racies compared to conventional approaches. An ensemble
learning-based CNN proposed in [23] employs entropy
sampling to select highly informative points to reduce com-
putational overheads. Further, it follows a gentle Adaboost
approach for learning the filters in each convolutional layer.
RACE-Net [24] based on a recurrent neural network models
a generalized level set-based deformable model (LDM) to
capture high-level dependencies between points on the
object boundaries. It iteratively segments the ODs and OCs
from a Rol, learning curve evolution velocities in each
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time-step, in an end-to-end manner. A multitask CNN [25]
for joint segmentation of OD and OC and glaucoma detec-
tion is implemented by adding a classification branch to
the classic UNet. The UNet is trained to jointly segment
the OD and OC from the rough Rol segmented from the
fundus image by intensity thresholding. The appearance
features extracted at the encoder path are concatenated with
the segmentation maps generated by the decoder path and a
feature vector is constructed by global average pooling. A
fully connected layer with a single neuron detects the pres-
ence of glaucoma from this feature vector. This model
trained and tested with the REFUGE [26] dataset achieves a
dice coeflicient (DC) of 0.96 for OD segmentation and a sen-
sitivity of 0.88 and a specificity of 0.91 for glaucoma detection.

A dual machine learning system [27] is built with two
UNets, one each for disk and cup segmentation and a
MobileNetV2-based classifier [28]. Features extracted from
the localized disk and cup regions are used to evaluate the
CDR, and the classifier is trained to detect glaucoma with
the entire fundus image. Finally, a reporting tool is used to
present the parameters such as adequacy of the size and
shape of the segmented disk and cup, CDR, images of the seg-
mented disk and cup, and classification score to an ophthal-
mologist. This system reports a classification accuracy of 86%
on the Drishti-gs dataset [29] with the MobileNetV2-based
classifier. However, the significance of the discreteness of
the subsystems and nondependency between segmentation
results and classification has not been justified by the authors.

In [15], OD and OC joint segmentation is modeled as a
multilabel segmentation problem. A one stage network called
the M-Net is implemented with an encoder-decoder archi-
tecture similar to UNet, extended with multiscale input and
a side-output layers. Initially, disk center of a fundus image
is localized by a deformable model, and the fundus image is
transformed into polar coordinates. The multiscale pyramid
of this image is fed as input to the input layer, and segmenta-
tion maps are constructed at the side-output layers. Finally,
these maps are fused, and an inverse polar transformation
provides the segmentation mask. This network achieves best
segmentation results on the ORIGA dataset and superior
classification accuracies with ORIGA and SCES datasets.

A depth guided semantic segmentation network is
employed in [30] for joint segmentation of ODs and OCs.
Initially, a fully connected convolutional network (FCN)
with dilated residual inception blocks is trained to extract
depth maps from the fundus images. Experimental results
show that sparse fusion of depth information provides better
segmentation results with small overlapping errors. Further,
this framework is extended to glaucoma detection by threshold-
ing the CDRs computed from the segmented ODs and OCs.
The pseudodepth version of this model achieves an AUC of
0.8404 for glaucoma detection with the ORIGA dataset.

RetinaGAN [31] based on GAN for retinal vessel segmen-
tation is extended to OD segmentation. This framework is
implemented in four versions with a U-Net architecture as an
encoder and four GANs such as Pixel GAN, Patch GAN-1,
Patch GAN2, and Image GAN as decoders. Though this model
demonstrates significant improvement in vessel segmentation,
no such improvement is evidenced with OD segmentation.

The context encoder network CENet [32] captures high-
level semantic information and preserves spatial informa-
tion for semantic segmentation of medical images. It
comprises feature encoder, context extractor, and feature
decoder modules. The feature encoder employs a pretrained
ResNet34 blocks for feature extraction. The context encoder
is implemented with dense atrous convolution (DAC) and
residual multikernel pooling (RMP) blocks to construct
high-level semantic feature maps from these features, which
are fed to the feature decoder modules to generate segmen-
tation masks. This model reports small overlapping errors in
OD segmentation compared to the classic UNet and other
baseline models.

A spatial-aware neural network (SAN) [33] based on
atrous CNN, pyramid filtering, and spatial-aware segmenta-
tion modules for joint OD and OC segmentation is a
complex network which performs feature extraction in two
stages. Initially, the local features are extracted with the
Atrous CNN, and multiscale features are extracted from
these feature maps with parallel pyramidal filters to con-
struct spatial-aware feature maps. Segmentation is per-
formed with spatial-aware segmentation blocks (SEB)
which assigns class labels to the pixels by pixel-wise classifi-
cation. This model is heavy due to the computation intensive
architectural components.

A U-shaped CNN built with multiscale input and multi-
kernel modules (MSMKU) proposed in [34] captures image
features at multiple scales for improved segmentation.
Further, this network is trained on Mixed Maximum Loss
Minimization Learning strategy (MMLM) to train the net-
work parameters, focusing on the samples exhibiting large
training losses. Experimental results with RIMOne [35]
and Drishti-gs datasets demonstrate superior performances
with OD and OC segmentations and glaucoma detection.

In [36], joint segmentation of OD and OC is formulated
as a semantic pixel-wise labeling problem. An encoder-
decoder network called Cup Disc Encoder Decoder Network
(CDED-Net) based on the fully connected SegNet [37]
architecture is proposed, employing feature information
reuse to bridge the semantic gap between the features shared
between the encoder and decoder blocks. This model dem-
onstrates state-of-the-art OD segmentation results with
Drishti-gs, RIM-ONE, and REFUGE datasets.

Recurrent fully convolution network (RFC-Net) [38] is
designed with recurrent units, multiscale input layer, and
multiple output layer to capture high-level features of images
and fine edges. Four types of recurrent units, each with a
unique configuration of stacking the basic convolutional
layers, are employed to evaluate the performance of the
model for OD and cup segmentations. Experimental results
show that best results are achieved with the stacked recur-
rent units achieving an accuracy of 0.9795 for joint segmen-
tation of the disc and cup on the Drishti-gs dataset.

A disc-aware ensemble network (DENet) [39] is mod-
eled as a binary classifier for glaucoma screening, guided
by OD segmentation map. This network is implemented
with four classification streams based on the fundus image,
disc-cropped fundus image, disc segmentation map, and disc
polar transform. The classification results from the four



streams are combined by average ensembling to obtain a
single classification score. This network achieves best AUC
values of 0.9183 and 0.8173 on the SCES and SINDI [40]
datasets, respectively, compared to conventional and deep
learning based glaucoma screening models.

An adversarial learning framework called patch-based
Output Space Adversarial Learning framework (pOSAL)
[41] performs joint segmentation of ODs and OCs based
on their morphologies. This network exploits unsupervised
domain adaptation to minimize errors on segmentation with
target datasets of diverse domains. In this framework, Rols
extracted from images of the source and target domains
are fed as input to an adversarial segmentation network to
predict the masks of the OD and OC. A discriminator
follows the adversarial learning scheme to produce similar
predictions for the source and unannotated target images.
While segmentation loss is computed on the source images,
adversarial loss is computed on the target images for gener-
alization of the segmentation network. This network
achieves a DC of 0.946 for the REFUGE validation dataset.

GLNet [42] is a multilabel segmentation model based on
GAN for joint segmentation of ODs and OCs. The generator
is a full convolutional network trained to construct the prob-
ability maps for OD and OC segmentation. The discrimina-
tor is implemented as an 8-layer network which assigns
binary labels to the pixels, and it is optimized by minimizing
the error between the predictions and the ground truth.

Though several deep learning frameworks are employed
in OD and OC segmentation and glaucoma detection, exclu-
sive studies to evaluate the performance of several deep
learning classifiers on diverse datasets do not exist. One such
investigation by Sreng et al. [43] presents a two-stage frame-
work for OD segmentation in the first stage and classifica-
tion of features extracted from the segmented ODs for
glaucoma detection in the second stage. OD segmentation
is performed using DeepLabv3+ [44] semantic segmentation
network, employing ResNet18 [45], ResNet50 [45], Xcep-
tionNet [46], MobileNet, and InceptionResNet [47] as
encoders. Performance evaluation of OD segmentation
shows that best segmentation accuracy of 99.7% is achieved
with MobileNet as the encoder of DeepLabv3+. Further,
glaucoma detection is performed by employing three CNN
based classification frameworks. The first framework
employs pretrained CNNs for glaucoma detection by trans-
fer learning, the second approach employs pretrained CNNs
as feature extractors and trains SVM classifiers for glaucoma
detection, and the third method creates an ensemble net-
work of these two approaches. Each framework is evaluated
with eleven CNNs, and the best glaucoma detection accuracy
of 99.53% is achieved for the REFUGE dataset by the second
framework with a pretrained DenseNet model [48] as a
feature extractor.

The DenseNet supports feature propagation between
layers with direct connections and facilitates feature reuse.
The Fully Connected DenseNet (FC-DenseNet) model [49]
for simultaneous OD and OC segmentation follows a U-
shaped architecture. Glaucoma detection is performed by
evaluating the CDR along the vertical and horizontal axes
from the boundaries of the segmented ODs and OCs. In this
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approach, during preprocessing, the area within 2 optic disc
diameter (20DD) in the OD is cropped as the Rol for train-
ing the model. However, the mechanism for disk localization
for cropping has not been revealed by the authors.

Despite several deep learning models deployed in glau-
coma detection, surprisingly, new models following different
learning paradigms have been proposed in 2020. A frame-
work proposed in [50] for OD segmentation employs several
basic machine learning operations such as binary masking,
morphological opening, and estimation of the center of
Rol for OD localization and cropping. From the cropped
image, the highest peak value of the intensity is obtained
with the improved Circular Hough Transform (CHT) to
define the boundary of the OD. The circular region of the
image captured around the peak is further subjected to
superpixel segmentation in the red channel to segment the
OD. Though this discrete framework reports a segmentation
accuracy of more than 99% for different datasets, it does not
provide a classifier model, learning features from these data-
sets for testing new images acquired.

The fuzzy broad learning system (FBLS) [51] for glau-
coma screening employs two flat broad networks with fuzzy
reasoning abilities for OD and OC segmentation. In this
system, the Rol is extracted from the fundus image by direc-
tional matched filtering and level set segmentation, and the
red and green channel images of the Rol are given as input
to the OD and OC segmenting flat broad networks, respec-
tively. Glaucoma detection is performed by computing the
CDR from the segmented ODs and OCs. The authors report
that optimal results are achieved with preprocessing and
postprocessing the images. However, the postprocessing
mechanism is not explicitly described.

Three representative deep learning models for glaucoma
detection are proposed in 2021, each following an unique
architecture. A two-stage glaucoma detection model
proposed in [52] employs pretrained AlexNet [53], Incep-
tionV3, InceptionResNetV2, and NasNet-Large [54] models
in the first stage for glaucoma prediction, and these predic-
tions are combined in the second stage by an ensemble clas-
sifier. Two approaches, namely, accuracy-based weighted
voting and accuracy/score-based weighted averaging are
used in ensembling the predictions of the discrete classifiers.
Experimental results show that NasNet-Large demonstrates
superior glaucoma detection accuracy of 99.3%, averaged
on five different datasets. Further, accuracy/score-based
weighted ensembling improves the average detection accu-
racy to 99.5%.

An attention UNet [55] constructed by adding an atten-
tion gate (AG) to the conventional UNet is fine-tuned with
the DRIONS-DB and Drishti-GS datasets for OD and OC
segmentation. Experimental results show a noticeable
improvement in performance metrics of the model under
transfer learning, with a smaller training dataset.

A convolutional autoencoder- (CAE-) based segmenta-
tion network for OD segmentation is proposed in [56].
Initially, the CAE is trained to learn the significant features
from unlabeled fundus images by unsupervised learning,
and it is transformed into a segmentation network by adding
a convolutional layer with a 3 x3 filter after the final
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convolutional layer of the decoder blocks of the CAE. This
network learns to segment an OD, from an annotated set
of fundus images. The convolutional layer employs a
sigmoid activation function to construct the binary mask
of the segmented OD.

From a thorough review of automated glaucoma detec-
tion literature, it is evident that context aware segmentation
approaches yield best classification results in glaucoma
screening, rather than conventional classifiers based on
extraction of deep features from the fundus images. Recently,
joint segmentation methods are getting wide research atten-
tion due to the simplicity of the design. However, their imple-
mentation is complex due to the intricacies involved in
deploying them as multilabel segmentation approaches.
Further, there are few works on multitask learning such as
[16, 25] which combine segmentation and classification in a
unified YNet framework. These models are realized by add-
ing a classification branch to the segmentation networks. It
is seen that this framework is promising as it considerably
reduces the number of network parameters.

3. Materials and Methods

This section presents the training and testing datasets
employed in this research and a succinct description of the
underlying methods.

3.1. Datasets and Implementation Details. The public
datasets, viz., ACRIMA, Drishti-gs, REFUGE, RIGA, and
RIM-ONE are employed in training and testing the pro-
posed system. The unified segmentation and classification
model proposed in this research is trained and tested with
discrete datasets without any data augmentation, to evaluate
its generalization ability. The details of the datasets are given
in Table 1.

The proposed framework is implemented with Matlab
2021a software, employing the image processing and deep
learning toolboxes. The model is trained and tested with a
NVIDIA GeForce GTX1060 3GB Graphics card enabled
i7-7700K processor with 32GB DDR4 RAM.

3.2. ResNeXt Architecture. Training deep networks is chal-
lenging due to the vanishing gradient and gradient explosion
issues. To solve these problems, the residual learning
approach was proposed in [45]. In this method, each layer
in a deep neural network is equipped with a skip connection,
and each layer of residual block is designed to learn the
residual of the last layer and the layer itself. Therefore, the
gradient of the activation of each layer can be propagated
through the whole network to avoid the gradient vanishing
or exploding. To obtain higher accuracy, the convolutional
layers in the residual block are followed by the global average
pooling (GAP).

The ResNeXt architecture [57] is an extension of the
ResNet which replaces the standard residual block with a
ResNeXt block which leverages a split-transform-merge
strategy for aggregated transformations. In the ResNeXt
architecture, the original input is split into a series of resid-
ual branches, each of which is followed by a series of

point-wise convolutions and an element-wise sum. The out-
put of the last layer of the network is then concatenated with
the input to produce the output of the network. This archi-
tecture introduces a new parameter called cardinality, i.e.,
the size of the group of transformations which is demon-
strated to improve classification accuracy. The schematics
of the residual and ResNext blocks are shown in Figure 1.
This architecture is leveraged with the layered CAM in the
localization of the Rol in the proposed system.

3.3. Layer CAM. The CAMs generated from the final convo-
lutional layer of a CNN provide a visual representation of
the behavior of the classifier model, highlighting the areas
of the image which are the most important for the classifica-
tion. These maps are generated by first pooling the features
of the neurons in the last layer of the CNN and then passing
this information through a softmax function, to produce a
probability distribution over the classes of the image. In this
way, the activations of the final layer of the CNN can be
viewed as a feature map, which can be interpreted as a visual
representation of the model’s classification decision,
highlighting the topological and spatial distribution of its
decision boundaries. The activation maps can be used in
debugging the model to generate class-specific features for
training a classifier.

However, CAMs are limited to classification problems,
and using these coarse maps for localization is still a chal-
lenge. Jiang et al. [58] proposed an approach for fine-
grained CAM construction exploiting the relationship
between image gradients and feature maps. This approach
generates a LayerCAM for fine-grained object localization,
fusing the CAMs from the shallow and final convolutional
layers. These hierarchical object locations can be interpreted
from the corresponding gradient maps, which is important
for understanding the role of each convolutional feature map.

In this research, the LayerCAM is constructed from the
image gradients as described below. The weight of a spatial
location (i, j) in a feature map f in a layer [ is given in Equa-
tion (1) where A(s) is the activation function.

“%ﬁ=AQﬁ) (1)

The activation of the entire feature map f is obtained by
multiplying the feature values F’(‘i)j) and corresponding

weights as in Equation (2). The LayerCAM is obtained as a
linear combination of the activations of the feature maps
as in (3).

(G A 5 R () )

C:A<;ﬂb>. (3)

The schematic of LayerCAM construction is shown
in Figure 2.
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TaBLE 1: Training and testing datasets.

Stage Data set-no. of training images Data set-no. of testing images
OD segmentation RIGA-750 RIM-ONEv2-455
ACRIMA
Glaucomotous-396, normal-309
RIM-ONEv2 Drishti-gs
. Glaucomotous-70, normal-31
Glaucoma detection Glaucomotous-200
Normal-255 REFUGE
Glaucomotous-40, normal-360
RIM-ONEv1

Glaucomotous-51, normal-118

256-d Input

Cardinality:32

256,1x1,4 [ ------ 256, 1x1, 4

v '

‘ 4,3x3,4 ‘ 4,3x3,4

256, 1x1, 4
. v
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Convolutional Layer ‘
‘ 4, 1x1, 256 |

I 4, 1x1, 256 ‘ 4, 1x1, 256
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FiGure 1: Architecture of (a) residual block. (b) ResNext block.

L
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Feature
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—>@—> Layer CAM

Feature Maps —I

Ficure 2: Layer CAM construction.

3.4. YNet Architecture. The proposed joint segmentation and
classification model for OD segmentation and glaucoma
detection is realized with a YNet architecture originally pro-
posed in [16]. YNet facilitates convolutional modularity for

generation of discrimination maps and class scores, along
with segmentation, adding a classification branch to the
basic UNet architecture. The UNet follows an encoder-
decoder architecture with a contracting path and a
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F1GURE 3: YNet architecture.

symmetrical expansion path. The contracting path is a
downsampling path, and the expansion path is a upsampling
path. The encoding network learns to map an input image to
a corresponding semantic map. It consists of a series of con-
volutional layers that progressively extract features from the
input. These features are then upsampled to the original
image resolution using transposed convolutions. The decod-
ing network uses a mirror-like strategy to upsample the
encoded image to the resolution of the input. It uses the
upsampled features from the encoding network to predict
the segmentation mask. Classification is performed from
the features extracted at the lowest encoder layer of the
UNet. The schematic of the basic YNet architecture is shown
in Figure 3. This figure illustrates a clear separation of the
UNet and YNet.

Generally, vanilla CNNs such as EfficientNet, Inception,
ResNet, and VGG are employed as the backbones of the
encoders and decoders defining the organization of the
layers in the network. CNNs for image processing problems
use fixed sized filters and exercising the networks to find
optimal filter sizes requires an intensive tuning procedure,
that is not easy to automate. Further, fixed size filters are
suitable only for images with similar size salient parts, and
they fail to adapt to images with varying scale. Inception net-
works employ filters of multiple sizes and shapes together in
a single network. Such networks are shallow but can operate
in a wide range of scales. The inception network is a deep
convolution neural network that can be trained to detect
salient regions in any image, and it can be used to generate
new images that contain the same salient elements. Incep-
tion networks contain layers with multiple sized and shaped
filters. For each layer, a region-of-interest (ROI) is extracted,

and a convolution is computed on the input image with the
filters that are applied to the ROL The results of these com-
putations are concatenated with the results from the previ-
ous layer. This facilitates the network to learn to identify
features of different sizes. In this research, YNet is con-
structed from UNet which is built on the Inception blocks.
The structure of the inception block is illustrated in
Figure 4 which shows filters of different sizes in each layer.

4. Proposed System

OD morphology is a powerful predictor of the outcome of
medical and surgical treatment and is one of the most signif-
icant prognostic factors in the management of patients with
chronic glaucoma. Heterogeneity of OD provides insight
into the pathophysiology of glaucoma and is associated with
disease progression. The proposed framework is realized in
two stages, viz., Rol segmentation followed by joint OD seg-
mentation and glaucoma detection as shown in Figure 5.

Rol segmentation is realized by constructing the Layer-
CAM from the feature maps of the ResNext subnetwork.
Segmentation of OD and glaucoma detection is performed
with the joint segmentation and classification subnetwork,
implemented with the inception YNet network, unifying
inception blocks and the YNet architecture described in
the previous section. The schematic of this subnetwork is
shown in Figure 6.

The basic Ynet proposed in [16] is only employed as the
backbone of the proposed architecture. Each convolutional
layer in the YNet is replaced by the inception module shown
in Figure 4. The inception module includes multiple 1 x 1
convolutions, 3 x 3 convolutions, 3 x3 max pooling, and
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FIGURE 5: Joint OD segmentation and glaucoma detection framework.

cascaded 3 x 3 convolutions. Along the contracting path, the
number of filters is doubled in each layer, and the height and
widths of the feature maps are reduced by half. The incep-
tion module in each stage generates four feature maps from
the input and concatenates them. It results in increase in
depth of the feature map in each layer by 4. The feature
maps are downsampled by maxpooling in each layer, which
results in their width and height being halved in each layer
until the center of the UNet is reached.

At the lowest layer of the network, the feature map from
the encoder path is subjected to a set of four convolutions
and shared with the inception module in the decoder path.
The resulting feature map is upsampled, doubling the width

and height and concatenated with the feature map generated
in the encoding path at the same layer. This results in a sub-
sequent increase in depth of the feature maps by 8. Finally,
the feature map generated at the top most layer of the
decoder path matches the dimensions of the input image,
and it is convolved with a set of 1 x 1 convolutions, by which
the depth of the feature map is reduced to match the number
of class labels. A binary segmentation mask is constructed
from this feature map applying a pixel-wise activation func-
tion. The OD is obtained by masking it with the fundus
image, and it is downsampled by average pooling. The
low-level feature map from the last encoder stage is
upsampled to match the size of the OD and concatenated
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FIGURE 6: GD-YNet architecture with inception blocks in YNet.
with it. The resultant image of size 256 x 256 is fed as input TaBLE 2: Training hyperparameters of GD-YNet.
to a convolutional layer with two 3 x 3 filter to construct a Paramcter Valoes
feature map of size 128 x 128. This is followed by two fully :
connected layers with sigmoid activation functions. The first Maximum epochs 100
fully connected layer generates a feature vector of size 64 x 1, MiniBatchSize 128
and the second one generates the class scores. Momentum 0.9000
The inception modules consists of 1 X1, 3 x 3, and 5% 5 Learning rate 0.001
convolutional filters anq max pooling layers, generating four Optimization SGDM
feature maps from the input and concatenating them. The N
R R L2 regularlzatlon parameter 0.001
3x3 and 5x5 filtering operations are preceded by 1x1 No. of paths (ResNext 3
convolutions to reduce the number of channels, and the o- of paths (ResNext)
maxpooling layer is used to create an abstract representation No. of ResNext blocks
of the feature map before 1 x 1 convolution. The inception No. of layers (YNet) 4

module is designed on the premise that salient parts of med-
ical images are of arbitrary sizes and are often localized in a
small spatial region. Further, the features should be invariant
under changes in the input size to maintain invariance
between different scales of objects. The Inception modules
with different filter sizes integrated with the UNet architec-
ture can capture multiple scales of optic disc features with
various orientations, which can be learned efficiently to dis-
cern the OD. It is to be noted that the size of the input
image, the number of classes, and the number of inception
modules are all parameters of the proposed framework.
Further, training this network with the cropped or resized
candidate Rols extracted from the Layer CAMs can further
simplify the segmentation process.

4.1. Experimental Setup and Model Training. The proposed
system constitutes subnetworks for Rol segmentation, OD
segmentation, and classification. The training parameters
of the framework are listed in Table 2.

For Rol segmentation, as seen in Figure 5, the
ResNext101 subnetwork is not trained end-end as it is used
to construct the LayerCAM from the feature maps of the
ResNext blocks. This network is constructed with 4 layers,
each with a ResNext block with cardinality 32. The weights
of the ResNext pretrained with the ImageNet1K dataset are
reused in the generating the feature maps from the fundus
images for construction of the LayerCAMs. The ResNext
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and the inception YNet models are trained with an initial
learning rate of 0.001, decaying the learning rate by a factor
2 after every 20 epochs, following stochastic gradient descent
with momentum (SGDM) optimization. A momentum of
0.9 ensures that the models are trained with significant
contributions from the previous updates.

The objective function of the joint segmentation and
classification framework is expressed as a combination of
segmentation loss L seg and classification Lcls as as
described below. The network is optimized by alternating
minimization of the segmentation loss and the classification
loss in each iteration, thus improving the performance of
both tasks. The objective function of the model is expressed
in Equation (4).

N

II(*Bl,iyn%Z;‘[Lseg(FG(xi)’yi) + Lels(y;)]- (4)

In this formulation, N is the training set size, and y, is
the label of the segmentation mask for the sample i . The
segmentation loss can be formulated as in (5).

1

L =
I oxN

[1=y]lly; = Fo(x;)l, (5)

™=

]
—

1

where 1 — y, denotes the binary crossentropy loss with y,,
Fy(x;) is the predicted segmentation mask, and o is the loss
weight in the range [0 1]. The classification loss can be for-
mulated as in (6).

Lels = =(1 - y;) log (y;)- (6)

In this minimization problem, L seg penalizes the devia-
tion from the ground truth segmentation mask, while Lcls
encourages the segmentation to be as close to one as possi-
ble. y; can be 0 or 1 depending on the ground truth and
network predictions.

5. Experimental Results and Discussions

5.1. Segmentation and Classification Results. This section
presents the OD segmentation and glaucoma detection
results on the datasets. Initially, the Rol is localized with
the LayerCAM constructed from each training image to cap-
ture the candidate ODs. The activations at different channels
of a convolutional layer, and the LayerCAM construction are
shown in Figures 7 and 8, respectively. The LayerCAM is
subjected to binary thresholding to construct a mask, and
the segmented Rol is obtained by masking the fundus image.
These illustrations present visual interpretation of the activa-
tions at multiple learnable layers. Figure 8 shows that the
Rol encompassing the OD is captured by the CAMs at
increasing levels of clarity from the first layer to the fourth
layer. It is seen that the LayerCAM clearly localizes the Rol
encompassing the OD. The joint segmentation and classifi-
cation model is trained with these Rols from the training
images to segment the ODs for glaucoma detection.
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FIGURE 7: Channel activations for a fundus image.

The proposed inception-based YNet framework is
initially fine-tuned for segmentation with the MESSIDOR
dataset, and it is tested with the RIMOne-V2 dataset. The
segmentation results for a subset of images are shown in
Figure 9 for visual analysis. It is seen that the Rols are
segmented precisely from the fundus images, and the ODs
segmented from them match the ground truth binary masks.

The segmentation and classification performances are
evaluated with the accuracy, sensitivity, specificity, precision,
DC, Jaccard coefficient (JC), structure measure (SM), and
enhance-alignment measure (EM) metrics. The ground
truths required for these evaluations are provided with the
RIMOne-V2 dataset.

Accuracy is a measure of the number of correct predic-
tions out of the total number of samples, which is derived
from the true positive (TP), true negative (TN), false positive
(FP), and false negative (FN) values as in (7).

(TP +TN)
(TP+TN+FP +FN) "

Accuracy =

(7)

While sensitivity and specificity refer to the propor-
tions of true positives and true negatives correctly identi-
fied, respectively, in OD segmentation problem, these
metrics refer to the number of correctly identified pixels
of the OD and the background, respectively, as in Equa-
tions (8) and (9).

TP
Sensitivity = ———, 8
Y= TP+ EN)
TN
Specificity = N+ )’ 9)

Precision refers to the number of correctly identified
samples of the total number of predicted positive samples
as in Equation (10).
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Precision = L (10)
~ (TP +FP)’

The dice metric, a measure of the overlap between the pre-
diction P and the ground truth G, is given in Equation (11).

. 2|PngG]
Dice= ———. (11)
[P +]G|

JC also called intersection-union (I-U) measures the
similarity and difference between the prediction and the
ground truth.

_[Png|

C .
J |[PUG]

(12)

The SM which evaluates the similarity between the
segmented mask and the ground truth based on object
and region awareness is given in Equation (13), where S,
»S, @, S,and G refer to the object-aware similarity, region-
aware similarity, trade-off between object and region aware-
ness, predicted mask, and the ground truth, respectively,
where o =0.5 by default.

SM:(I—cx)xSO(Sp, G)+oc><Sr(Sp,G). (13)

EM is a measure of the global and local similarity
between binary maps of the segmented and ground truth
masks as given in Equation (14), where w and h are the
width and height of ground truth mask G, and ¢ is the
enhanced alignment matrix.

1

EM_ =
¢ wh

=[]

h
Y 2(S,%y), G(x.7)). (14)

Given a predictionS,, EM,, is obtained from a binary

mask, thresholding each pixel in the range [0 255]. The
alignment matrix ¢ captures the similarities between the
predicted mask and the ground truth at the pixel and
image levels, from the global means. All these metrics range
from 0 to 1 and evaluate to a value closer to 1 when the
predicted segmentation masks are similar to the ground
truth. Segmentation metrics for the Drishti-gs dataset is
compared with that of state-of-the-art models in Table 3.

From Table 3, it is evident that the best segmentation
results are achieved by the proposed model except specific-
ity. This shows the prevalence of false positives in the seg-
mented ODs, which can be eliminated by localizing them
by morphological analysis. In continuation, the classification
subnetwork, modeled as a binary classifier, is trained with
the ODs segmented from the RIMOne-V2 dataset for
glaucoma detection. The classification results are presented
in Table 4 for the ACRIMA, Drishti-gs, REFUGE, and
RIMOne-V1 dataset in Table 4. It is observed that the pro-
posed model achieves best results for the ACRIMA dataset.
The confusion matrices depicting the classification perfor-
mances are shown in Figure 10.

The receiver operating characteristics (ROC) of the clas-
sifier model for the four datasets are shown in Figure 11. It is
observed that the curves and optimal operating points are
consistent for all the datasets.

Further, a comparison of the classification results with
representative works is presented in Table 5. Comparison
of performance metrics for the four datasets shows that the
proposed framework is superior to the state-of-the-art
approaches. Best classification accuracies of the proposed
model are attributed to the Rol segmentation from the
CAMs from multiple convolutional layers and perfect
segmentation of the ODs. It is seen that compared to the
pretrained classification networks such as the shuffleNet,
squeezeNet, and other inception networks fine-tuned with
the glaucoma detection, the proposed framework which
shares features across segmentation and classification tasks
demonstrates superior performance. Further, it is also
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TABLE 3: Segmentation results comparison with state-of-the-art-Drishti-gs.
Model/method Accuracy DC JC Sensitivity Specificity SM EM
Modified UNet [21]
Sevastopolsky (2017) — 0.9043 0.835 0.9156 0.9969 — —
Ensemble CNN [23]
Zilly et al. (2017) - 0973 0914 - - - -
RACE-Net [24] B 097 B _ B _ B
Chakravarty and Sivaswamy (2018) '
M-Net [15]
Fu et al. (2018) — 0.9678 0.9386 0.9711 0.9991 — —
FC-DenseNet [49]
Al-Bander et al. (2018) 0.9969 0.949 0.9042 0.9268 0.9992 — —
Retina- GAN (pixel GAN) [31]
Son et al. (2019) - 0.9674 - - - - -
SAN [33]
Liu et al. (2019) a 098 - a - a a
U-Shaped CNN with MSMKU [34]
Xu et al. (2019) — 0.9780 0.9496 0.9792 0.9994 — —
Dual UNet+MobileNetV2 [27] . 0.93 . . . . .
Civit-Masot (2020) ’
CDED-Net [36]
Tabassum et al. (2020) — 0.9597 0.9183 0.9754 0.9973 — —
REC-Net [38]
Gao et al. (2020) 0.9764 0.9787 — 0.9578 0.9783 — —
Improved Image Processing Algorithms [50]
Ramani and Shanthamalar (2020) 0.9922 0.8663 - 0.9495 0.9934 - -
FBLS [51]
Ali et al. (2020) - 0.968 - - - - -
Attention UNet [55]
Zhao e al. (2021) 0.9975 0.9638 0.9301 0.9488 0.9993 — —
CAE [56]
Bengani and Vadivel (2021) 0.9957 0.967 0.9314 0.9539 0.9993 — —
GD-YNet (proposed) 0.9986 0.9945 0.9971 0.9812 0.9801 0.8271 0.8045
-Not reported.

TaBLE 4: Classification results for four test datasets.

Dataset Accuracy Sensitivity Specificity Precision FPR F1 MCC
ACRIMA 0.9972 1 0.9935 0.9950 0.0065 0.9975 0.9943
Drishti-gs 0.9802 0.9857 0.9677 0.9857 0.0323 0.9857 0.9535
REFUGE 0.9950 1 0.9944 0.9524 0.0056 0.9756 0.9732
RIMOne-V1 0.9941 1 0.9915 0.9808 0.0085 0.9903 0.9861

observed that misclassifications are highly pronounced with
the normal images which signify a high FP rate.

5.2. Explainable Artificial Intelligence Analysis. Recently,
explainable artificial intelligence (XAI) has emerged as one
of the key methodologies to enable trust, acceptance, and
adoption of machine learning models in several domains.
XAI complements the learning models by providing trans-
parent explanations for the decisions based on the data.
Generally, XAI is performed with CAMs and gradient

CAMs constructed from the final learnable layer of a deep
learning model. In this paper, the LayerCAM construction
for Rol segmentation is based on multiple CAMs as
described in Section 3.4. In this research, gradient-CAMs
(GCAM) [59] are employed in analyzing the behavior of
the binary classification process. This analysis is performed
by capturing the GCAM of the convolutional layer in the
classification branch of the GD-YNet. The GCAMs and the
class scores are shown in Figure 12 for classification of nor-
mal and glaucomatous images in the Drishti-gs dataset.
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FiGgure 10: Confusion matrices for classification: (a) ACRIMA, (b) Drishti-gs, (c) REFUGE, and (d) RIM-One.

It is observed that the class scores for the correct classifi-
cations are closer 1 while they are comparatively lower for
misclassifications. It is seen the GCAM for the misclassified
normal image is very small, and that of the glaucomatous
image is not intact. The GCAMs show that the ODs are of
diverse morphologies for normal and glaucomatous images.
A detailed analysis of the CAMs can facilitate the definition
of the OD morphologies in the staging and severity analysis
of glaucoma.

5.3. Ablation Study. Experimental results reveal that the
proposed model demonstrates superior performance with
few misclassifications on all test datasets. This shows that
the experimental setup is ideal for the glaucoma detection
problem. In this scenario, it is unrealistic to study the per-
formance of the model by increasing the depth of the YNet
architecture. Since the classification accuracy depends on
the segmentation of the ODs, it is appropriate to perform
ablation study with the ResNeXt network used in Layer-
CAM construction.

As shown in Figure 5, the proposed segmentation classi-
fication framework employs four ResNeXt blocks for Layer-
CAM construction. Ablation study is performed by reducing
the number blocks to three and evaluating the classification
performances on the ACRIMA, Drishti-gs, REFUGE, and

RIMOne-V1 datasets. The effect of this study on Rol seg-
mentation is shown in Figure 13. LayerCAMI is constructed
from the CAMs of the first three layers, and LayerCAM?2 is
constructed from that of all the four layers. It is evident that
reducing the number of CAMs results in a loss of finer
details for localization of OD and accurate OD segmenta-
tion. The classification results obtained under the ablation
study are given in Table 6, and it is seen that there is a per-
formance degradation by 5% compared to that of the pro-
posed GD-YNet, implemented with the segmentation
subnetwork with four ResNeXt blocks reported in Table 4.

6. Discussion

The efficacy of the proposed glaucoma detection model is
established with the experimental results, comparative anal-
yses, and explainable studies. Further, XAI analysis shows
that OD morphologies of arbitrary shapes and sizes are cap-
tured by the proposed model. Superior performance of the
proposed framework is attributed to the context aware Rol
segmentation using LayerCAM. The ResNeXt model, com-
monly used as a pretrained classifier or encoder backbone
in semantic segmentation networks, is employed as a feature
extractor in the construction of LayerCAM. Several existing
models initially perform cropping for Rol or OD
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Figure 11: ROC for classification: (a) ACRIMA, (b) Drishti-gs, (c) REFUGE, and (d) RIM-One.

segmentation. However, several images in the dataset cap-
tured at different orientations do not have the ODs oriented
to the image centers, and cropping them results in loss of the
Rol. To the contrary, the proposed model localizes the Rols
from the LayerCAMs constructed from the ResNeXt blocks
aggregating the finer and coarse details of the OD.

The proposed GD-YNet resembles the joint segmenta-
tion and classification architectures of [16, 25]. The multi-
task CNN proposed in [25] is exclusively meant for
glaucoma detection with color fundus images. However, this
framework requires a rough Rol segmentation based on
intensity thresholding and Hough Transform. Further, it
follows a complex postprocessing procedure to refine the
segmentation results. Also, binary thresholding and mor-
phological operations are performed on the segmented
masks to separate the ODs and OCs. Further, ellipse fitting
is performed to segment the OD. This framework is tested
with only the REFUGE dataset, and the classification accu-
racy is smaller compared to the GD-YNet.

The Ynet proposed in [16] for joint segmentation and
classification of breast biopsy images generalizes the conven-
tional UNet with a classification branch. This network
requires the Rol of the biopsy image to be fed into the YNet
for further segmentation and classification. This network is
implemented with residual convolutional blocks (RCB) and
efficient spatial pyramid blocks (ESP) in the encoder and
decoder paths. An increase in 4% accuracy is witnessed,
increasing the depth of this network from 2 to 5.

Though the architecture of the proposed GD-YNet
matches the schematic of the YNet, the proposed frame-
work is superior to the works in [16, 25] in two main
aspects. The proposed framework employs a context-
aware Rol segmentation approach unlike the multitask
CNN and YNet. Further, the encoder and decoder blocks
of the GD-YNet are implemented with inception blocks,
employing filters of varied sizes to capture features at mul-
tiple scales. While convolutional and deconvolutional filters
are employed in multitask CNN, and the RCB and ESP
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TaBLE 5: Classification results comparison with state-of-the-art for four test datasets.
Dataset Model Accuracy Sensitivity Specificity AUC
GD-YNet (proposed) 0.9972 1.0 0.9935 1.0
Dis-pint et o (2019 07021 - - e
Sreng ot 2. (202) 09983 - - .
ACRIMA Tfjl?tdjle.t(;zz]l ) 0595 L oo B
T otal 2001) 0985 o " -
s i
et o) -
GD-YNet (proposed) 0.9802 1.0 0.9355 1.0
7 ando et al. Q017) - - - e
Drishti- i
E Dis-Fint et o (2019 07523 - - e
Srsél;ll;ﬁ:fft(%?()) 0.8067 B . P
GD-YNet proposed 0.9950 1.0 0.9944 1.0
REFUGE Chakri\\i[;l:;:;scll( g\lilv\lva[risy] (2018) - 088 0o 0o
iy o - o
GD-YNet proposed 0.9941 1.0 0.9915 1.0
e
Tl (021 0922 e e B
e o) bo0s e e )
RIMOne-V1 -
- R 010 w7 o -
G(’)mez—\)ia(li/(e?;e [;:1311. (2019) B 08701 0.8901 04
Dise-Pito et 4. (2019 izt - - e
SqueezeNet [43] 0.9737 _ _ 1.0

Sreng et al. (2020)

-Not reported.

blocks are employed in YNet, these architectures do not
have the flexibility of the inception blocks used in the pro-
posed GD-YNet. Inception networks offer several variants
of the inception blocks with filter factorizations, towards
label smoothing, improved optimization, and computa-
tional cost reduction.

In spite of the demonstrated efficacies of the proposed
framework in segmentation and classification, certain limita-
tions have been identified which must be addressed in
future. The first limitation is concerned with the architecture
of the ResNeXt blocks. The cardinality value of the ResNeXt

blocks is arbitrarily assumed as 32. LayerCAM with different
cardinalities and group convolutions can be used to study
the performance of the model with respect to these parame-
ters towards optimization of the cardinality and filter sizes.
The second limitation is the usage of the basic inception
modules with dimension reduction abilities in the encoder-
decoder paths. Recently, variants of inception networks have
been introduced with factorized 7 x 7 convolutions, root
mean square (RMS) optimizers, and reduction blocks. The
naive inception blocks may be replaced by these variants
for improved performances.
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TaBLE 6: Classification results under ablation study (No. of ResNeXt blocks is reduced to 3 from 4).

Dataset Accuracy Sensitivity Specificity Precision FPR F1 MCC
ACRIMA 0.9453 0.9516 0.9418 0.9433 0.0582 0.9486 0.9456
rishti-gs 0.9292 0.9344 0.9174 0.9344 0.0826 0.9374 0.9068
REFUGE 0.9433 0.9480 0.9427 0.9029 0.0573 0.9278 0.9255
RIMOne-V1 0.9424 0.9476 0.9399 0.9298 0.0601 0.9418 0.9378

7. Conclusion and Future Directions

This paper presents a novel framework based on YNet archi-
tecture for joint segmentation and classification in glaucoma
detection. It is implemented in two stages with context
aware Rol segmentation, leveraging the potential of the
aggregated transformations of the ResNeXt architecture in
the first stage and a light-weight classification branch in
the second stage. The proposed GD-YNet model based on
this framework is trained to segment the ODs from the

segmented Rols followed by binary classification from the
ODs. Tested with public datasets, this framework demon-
strates superior segmentation and classification perfor-
mances compared to state-of-the-art models. Chronic
glaucoma manifests diverse morphological patterns in the
ODs such as disc hemorrhage, nerve fiber layer defects,
nerve fiber layer swelling, and atrophy. The proposed frame-
work can be extended to multiclass segmentation and classi-
fication in the detection of pathologies pertaining to
neuroretinal rim losses, disc cupping, rim thinning, disc
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hemorrhage, etc. This requires extensive training of the
proposed model with several classes to differentiate morpho-
logical patterns of the ODs.
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