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1  | INTRODUC TION

Alzheimer's disease (AD) is a leading cause of age-related dementia 
in the developed world. Deficits in synaptic plasticity, defined as any 
experience (activity)-dependent changes that occur between neu-
rons that alter their communication dynamics over time, have been a 

hallmark of the early aetiology of AD and similar age-related cognitive 
disorders.1-4 Excess amyloid-β (Aβ) has been demonstrated to induce 
dysregulation of excitatory glutamate receptors like N-Methyl-d-
aspartic acid or N-Methyl-d-aspartate receptors (NMDARs) and 
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors 
(AMPARs), one of the earliest steps in the pathogenesis of AD.5-11 
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Abstract
It	is	well	established	that	GluA1	mediated	synaptic	plasticity	plays	a	central	role	in	
the early development of AD. The complex cellular and molecular mechanisms that 
enable GluA1-related synaptic regulation remain to fully understood. Particularly, un-
derstanding the mechanisms that disrupt GluA1 related synaptic plasticity is central 
to the development of disease-modifying therapies which are sorely needed as the 
incidence of AD rises. We surmise that the published evidence establishes deficits 
in synaptic plasticity as a central factor of AD aetiology. We additionally highlight 
potential therapeutic strategies for the treatment of AD, and we delve into the roles 
of GluA1 in learning and memory. Particularly, we review the current understanding 
of the molecular interactions that confer the actions of this ubiquitous excitatory 
receptor subunit including post-translational modification and accessory protein re-
cruitment of the GluA1 subunit. These are proposed to regulate receptor trafficking, 
recycling, channel conductance and synaptic transmission and plasticity.
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Synaptic modulations that lead to age-related neurodegenerative 
disease may occur through molecular changes such as post-trans-
lational modifications (PTMs), protein interactions and, ultimately, 
structural changes at either the pre-, post- or trans-synaptic re-
gions.12-14 Thus while neuron morphology may remain relatively 
stable over time, the structural plasticity of individual neurons may 
be sufficient to alter mammalian circuits such as those required for 
long-term memory or cognition.15	 Indeed,	dysmorphia	of	neuronal	
microstructures and the distribution of AMPAR subunits in the syn-
apse have all been linked to AD specifically, as detailed below.

At the memory epicentre, the hippocampus, AMPARs make up 
a large proportion of the excitatory synapse, up to 80% in the CA1 
region.16,17 AMPARs form tetramers of various combinations of four 
subunits	 (GluA1-4).	 In	 hippocampal	 CA1	 neurons,	 the	majority	 of	
AMPARs are made up of GluA1/GluA2 and GluA2/GluA3 hetero-
tetramers, with a small presence of GluA1 homomers and an even 
smaller proportion of GluA1/GluA3 heterotetramers.18-20 GluA1 and 
GluA4 contain long cytoplasmic tails, while GluA2 and GluA3 have 
shorter cytoplasmic tails. The composition of the receptor tetramer 
largely determines the functionality of the receptor. Consequently, 
the synaptic function is shaped by the collective receptor popu-
lation. For example, some evidence has suggested that AMPARs 

with longer cytoplasmic tails are primarily targeted to synapses in 
response to neuronal activity, such as long-term potentiation (LTP) 
induction, while short-tailed receptors are constitutively targeted to 
synapses.21-25

AMPAR subunits are highly susceptible to regulation through 
a myriad of PTMs conferring changes to protein interactions, each 
distinctly altering the properties and function of the receptor.25 The 
layers of modulation that occur through subunit composition, pro-
tein interactions, PTMs26 and auxiliary subunits have been dubbed 
the ‘AMPAR code’ by Diering and Huaganir 2018, suggesting that as 
our understanding of these modulatory factors grows, the status of 
synaptic plasticity can be predicted.27 Post-translational modifica-
tion of the AMPAR subunits has also been correlated with recep-
tor trafficking, insertion and overall abundance at the synapse.28 
While channel properties can also be affected by a variety of PTMs 
(ie conductance), it is more likely that functional receptor changes 
such as LTP and long-term depression (LTD) occur through changes 
in AMPAR abundance at the synapse.29 Changes in synaptic strength 
can trigger changes in the structure and abundance of components 
such as dendritic spines and axonal boutons.15,30,31 Pathological 
structural alterations in turn can form the basis of various diseases 
such as Alzheimer's, Parkinson's, schizophrenia and epilepsy.32-35

F I G U R E  1   GluA1 mediated synaptic 
plasticity	in	AD.	In	AD	brain,	deficits	in	
synaptic plasticity that occur between 
neurons, which alter their communication 
dynamics, have been the aetiology of AD. 
GluA1 has been linked to AD through 
synaptic plasticity
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In	 this	 review,	we	 outlined	 the	 role	 of	 aberrant	 synaptic	 plas-
ticity in the aetiology of AD (predominantly amyloid β-driven and to 
a lesser extent tauopathy-driven) and dived into the role of GluA1 
in synaptic plasticity, in the hippocampus as it pertains to induction 
and maintenance of LTP and LTD (Figure 1). We detailed the criti-
cal aspects of GluA1, such as trafficking and internalization of the 
subunit-containing receptors, microstructural adaptations, changes 
to channel properties and PTMs that alter the interaction of GluA1 
with kinases, accessory proteins and other regulatory proteins.

2  | ROLE OF GLUA1 IN ABERR ANT 
SYNAPTIC PL A STICIT Y IN DISE A SE STATES

Synaptic plasticity is an essential component for learning and mem-
ory functions, endowing the ability for progressive modulations of a 
synapse in response to stimuli.36,37 LTP refers to the likelihood of ac-
tivation of NMDARs and subsequent calcium influx that occurs with 
repeated synaptic activation. Modulations like LTP lead to lasting 
changes in gene expression and the expression of synaptic proteins 
like kinases and post-translational modifiers which propagate the 
modified synaptic function. Similarly, LTD occurs via low-frequency 
stimulation to modulate synaptic strength in the opposite manner, 
reducing	the	likelihood	of	excitatory	receptor	activation.	It	is	unsur-
prising then that a hallmark of many neurological diseases is synaptic 
dysfunction. For example, dysregulation of synaptic vesicle release 
machinery and age-related decline in synaptic proteins have been 
identified as the source of cognitive impairment in animal models of 
ageing and AD.38-41	On	the	other	hand,	pathological	triggers	such	as	
cerebral infarct or formation of amyloid plaques are positively cor-
related with spine turnover and neurite plasticity/dysmorphia.15,42

Alzheimer's brains are often characterized by the presence of 
Aβ peptides plaques, aggregated tau protein, or neurofibrillary tan-
gles.43-45 The appearance of Aβ plaques often follows the appear-
ance of Aβ oligomers, which are generally correlated with the onset 
of cognitive impairment, an early symptom of AD.46	One	of	the	ear-
liest molecular signs of AD is deficits in synaptic AMPAR distribution 
and impaired LTP/LTD.47-51 As such, special attention has been given 
to explorations of the role of synaptic dysfunction across various 
models of AD. For example, in an APP23 mouse model of age-re-
lated Aβ accumulation, researchers found that working memory task 
stimulation led to a rapid decay of LTP, though no structural changes 
were observed.52

Researchers believe that a major contributor to synaptic dys-
function in AD is the disruption of AMPAR trafficking by Aβ oligo-
mers.53,54 Specifically, it has been reported that the Aβ oligomers 
may directly bind GluA2-containing complexes,55 inducing acute 
increases in calcium-permeable (CP) AMPARs and excitotoxicity.56 
Aβ	can	also	interfere	with	CaMKII	activity,	disrupting	phosphoryla-
tion-dependent AMPAR trafficking and causing subsequent deficits 
in LTP/LTD.57 The post-synaptic protein Bin1 has been identified 
as a late-onset Alzheimer's disease-associated protein. Located in 
synaptic spines, reductions in Bin1 in AD models reduce exocytosis 

recycling, causing a build-up of recycling endosomes, suggesting a 
regulatory	 role	 in	 trafficking.	 Indeed,	Bin1	 interacts	with	Arf6	and	
GluA1 to modulate the expression of AMPARs in the synapse.58	In	
a similar vein, various actin-binding proteins that regulate the cy-
toskeleton are reduced in the hippocampi of 3xTg-AD, contributing 
to altered synaptic spine morphology and function.59	 One	 report	
proposes that age-related increases in GluA1 subunit ubiquitination 
deregulate AMPAR trafficking and internalization may be an under-
lying mechanism of AD.60	In	vitro,	Tg2576	neurons	secrete	elevated	
levels of Aβ	similar	to	that	observed	in	vivo.	In	these	cells,	PSD-95	
levels are reduced in tandem with a reduction in surface expression 
of GluA1-containing AMPARs,38 supporting the role of synaptic dys-
function in the early progression of AD. These and other proposed 
AD pathways are illustrated in Figures 2 and 3.

Another potential mechanism of AD pathology is homeostatic 
synaptic scaling, the process by which synaptic strength is slowly 
modified to regulate the excitability of a neuron. Typically, this in-
volves insertion, deletion and changes in the turnover of functional 
receptors to maintain neurons functioning within a physiologi-
cal range. However, disruptions in this mechanism can destabilize 
synapses and, consequently, neuronal function. Using mice that 
carry a double knock-in mutation for the human gene preseni-
lin-1 (amyloid precursor protein), investigators demonstrated that 
AMPAR-mediated (evoked and spontaneous) miniature currents 
are downscaled in an age-related manner. Electron microscopy and 
immunohistochemistry confirmed the loss of AMPARs selectively 
at the CA1 stratum radiatum axo-spinous synapses. Further, and 
functional tests further revealed the deficits in LTD/LTP and mem-
ory flexibility.61 Another study of synthetic Aβ overexpression in 
primary hippocampal culture resulted in an aberrant up-regulation 
of AMPAR currents and cell surface expression, particularly in CP-
AMPARs through GluA2-containing AMPARs were also affected.62 
One	study	reported	that	in	presenilin-1	mutants,	calcium	signalling	
is	abnormally	elevated,	as	demonstrated	in	DIV14	cultured	mutant	
hippocampal neurons transfected with GCaMP5, a genetically en-
coded Ca2+ indicator. Further, they found that calcineurin was also 
elevated in these mutants. Elevated calcineurin subsequently de-
creased GluA1 phosphorylation at the S845 site and selectively 
decreased	synaptic	GluA1.	Interestingly,	pharmacological	inhibition	
of calcineurin with the selective inhibitor FK506 reduced elevated 
calcineurin in the presenilin mutant neurons, inducing synaptic scal-
ing and selective GluA1 trafficking to the synapse.63	 It	 is	 import-
ant to note that there are different types of amyloid plaques, and 
those soluble Aβ peptides appear to play the most critical roles in 
AD pathogenesis. Additionally, Aβ elevation is modelled differently 
across experimental studies; for example, in many studies, soluble 
Aβ is injected intracranially wherein other studies Aβ is manipulated 
through genetic ablation of proteins involved in Aβ production. 
Regardless of the model, it appears that inhibited LTP and enhanced 
LTD are common features of early-onset AD pathology that pre-
cedes amyloid plaques and neural degeneration, indicating that ab-
normal plasticity is responsible for much of the working memory loss 
in early AD.64
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Interestingly,	 emerging	 studies	 have	 elucidated	 a	 possible	 role	
for insulin resistance in the aetiology of AD and associated cognitive 
deficits.41,65-67 Defective insulin signalling in the brain is a hallmark of 
AD, and several studies have demonstrated improved cognition and 
memory performance in aged and AD patients upon insulin adminis-
tration.68	Insulin	promotes	trafficking	of	GluA1-containing	AMPARs,	
which appears regulated by phosphorylation of S845. Thus, reduc-
tions in hippocampal insulin or insulin receptors could suppress hip-
pocampal	 LTP.	 In	 animal	models	 of	 the	 high-fat	 diet,	 palmitic	 acid	
is enhanced in the hippocampus leading to hippocampal insulin 
resistance to overexpression of the palmitoyltransferase zDHHC3. 
Consequently, GluA1 is hyperpalmitoylated and trafficking to the 
plasma membrane is inhibited. This phenomenon is concurrent with 
reduced AMPAR current amplitude, LTP and hippocampal-depen-
dent memory.69,70

Progress in our understanding of the role of GluA1 and GluA1-
containing AMPARs in the brain will undoubtedly shed light on novel 
therapeutic strategies for the treatment of dementia and age-related 
cognitive disorders like AD. For example, activation of M1 receptors 
promotes the membrane insertion of GluA1 through phosphoryla-
tion of S845, a critical site for AMPAR trafficking to the synapse.71 
In	that	animal	model,	M1	receptor	activation	reversed	learning	and	
memory impairments through the modulation of GluA1 trafficking. 

In	another	study,	the	genetic	ablation	of	endophilin2	(a	regulatory	of	
synaptic vesicle endocytosis) demonstrated resistance to oligomeric 
Aβ-induced AMPAR dysfunction.72 This study highlighted that the 
genetic silencing of endophilin2 interacts with AMPARs to regulate 
oligomeric Aβ-mediated AMPAR endocytosis in primary hippocam-
pal culture, indicating a possible avenue for therapeutic exploration. 
In	the	Tg2576	AD	animal	model,	7,8-dihyddroxyflavone,	a	selective	
TrkB agonist, increases synaptic GluA1 and GluA2 and protects 
against dendritic loss and preserving spatial memory despite no ap-
parent changes to the accumulation of Aβ.73 Agonist-mediated TrKB 
receptor activation suggests a therapeutic role of TrKB in the AD 
brain.

An emerging concept in Alzheimer's disease therapeutics is that 
sub-toxic levels of endogenous and exogenous agents that induce ox-
idative stress may actually precondition the cell to future exposures 
such that beneficial pathways (maintenance and repair mechanisms) 
are	triggered	in	response	to	the	low-threshold	insult.	In	C.	elegans,	
olive oil-derived polyphenols demonstrated the ability to modulate 
stress response mechanisms to reduce the degradation of dopami-
nergic neurons.74 The dose-dependent neuroprotective response of 
these plant polyphenols likely exert their hormetic effects by acti-
vating the Nr2f antioxidant response element, releasing detoxifying 
enzymes and positively regulating vitagenes like the longevity gene 

F I G U R E  2   Alzheimer's related 
modulation of GluA1 and consequent 
pathology. A, M1 receptor activation 
can rescue cognitive impairment 
through modulation of GluA1 S845 
phosphorylation and downstream 
incorporation with PSD-95, a pathway 
that is compromised by Aβ aggregation. 
B, Aβ reduces PSD-95, a protein involved 
in recruiting and anchoring glutamate 
receptor subunits to the post-synaptic 
density.	In	agreement,	we	observed	
early reductions in surface expression of 
glutamate receptor subunit GluA1. C. Aβ 
oligomers cause mislocalization of tau 
protein to the dendritic spines. There, 
calcineurin-mediated dephosphorylation 
of GluA1 S845 triggers a pathological 
cascade or rapid AMPAR insertion and 
acute neurotoxicity. D, Aβ oligomers 
impair synaptic function by decreasing the 
amplitude of mEPSCs
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DAF-16.75	 In	models	of	AD,	exposure	of	sub-toxic	 levels	of	hydro-
gen peroxide and superoxide can trigger calcium release from the 
endoplasmic reticulum and enhance LTP in CA1 neurons, respec-
tively.	 This	 response	 to	mitochondrial	 ROS	may	 indicate	 an	 adap-
tive stress response stemming from the regulation of transcription 
factors aimed at protecting the mitochondria from further oxidative 
damage.76 Hormetic agents such as hydroxytyrosol (HT) not only 
act on the oxidative stress pathway but also can exert anti-inflam-
matory and anti-apoptotic properties as well. For example, the HT 
derivative HD has been shown to inhibit the nuclear translocation of 
NFkB	in	addition	to	reducing	iNOS	levels	and	reducing	the	level	of	
pro-apoptotic Bax. This regulation of redox homeostasis ultimately 
led to preservation of dopaminergic neurons in HD-treated mice and 
the prevention of the pathogenic accumulation (proteotoxicity) of 
alpha synuclein.77 Beyond plant polyphenols, naturally occurring, 
well-tolerated substances have been evaluated as hormetic agents 
in clinical trials. For example, a mushroom preparation was used ex-
perimentally in patients with Meniere's Disease (MD), a condition of 
cochlear	neurodegeneration.	In	this	study,	nutritional	supplementa-
tion	activated	a	host	of	vitagenes	(including	HO-1,	SIRT-1	and	oth-
ers) and increased ratio-reduced glutathione in plasma.78 Similarly, 
in PC-12 cells, application of herbal extract Hericium Erinaceus pro-
tected against di(2-ethylhexyl)phthalate (DEHP)-induced cell death. 

This hermetic action demonstrated both a stabilizing effect on mi-
tochondrial membrane potential (due to reduction of intracellular 
ROS)	and	 the	activation	of	 vitagenes	 regulated	Nr2f.79	 Identifying	
and exploiting neuroprotective properties of safe and well-tolerated 
hormetic agents for protection against amyloid beta aggregation, or 
more fundamentally for the biophysical modulation of AMPA recep-
tors is the new therapeutic frontier in the wake of limited progress 
with anti-inflammatory treatments for AD. Next, we dive into mul-
tiple aspects of the AMPAR subunit GluA1 which much of the AD 
literature has implicated.

3  | FUNC TIONAL PROPERTIES OF GLUA1

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors me-
diate the majority of excitatory activity in the brain and are essential 
for learning and memory. AMPARs are highly mobile and undergo both 
constitutive and activity-dependent trafficking to the synapse as well 
as recycling and degradation. Synapse function is dictated largely by 
the number, localization and subunit composition of AMPARs. GluA1-
containing AMPARs account for the majority of synaptic AMPARs in 
the hippocampus and are the only subunit capable of forming CP ho-
motetramers.80	In	addition	to	activity-dependent	changes	in	receptor	

F I G U R E  3   Alzheimer's related 
modulation of GluA1 and subsequent 
pathology. A, Aβ has been shown to impair 
synaptic plasticity through impairments 
in GluA1/GluA2-mediated LTP. B, Aβ has 
been shown to impair AMPA trafficking 
and synaptic plasticity. C, Aβ interferes 
with	CaMKII	activity,	disrupting	activity-
dependent AMPAR trafficking. D, 
The loss of post-synaptic AMPARs is 
mediated through the clathrin-dependent 
endocytosis pathway. Endophilin 2 
colocalizes and interacts with GluA1to 
regulate oligomeric Aβ-induced AMPAR 
endocytosis
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abundance or microstructural state, modulation of GluA1-containing 
receptors can yield changes in the functional properties of the single 
channel. For example, GluA1 phosphorylation can increase AMPAR 
currents. Conversely, LTP can induce phosphorylation-driven in-
creases in single-channel conductance of AMPARs.81,82

Additional evidence of the functional changes of GluA1-containing 
receptors during synaptic plasticity is taken from GluA1 gene deletion 
studies	in	mice.	One	study	found	that	GluA1	deletion	generated	im-
pairments in spatial working memory though it enhanced spatial mem-
ory over a 24-hr period (long-term). These observations suggest that 
GluA1 plays a differential role in short-term and long-term memory.83 
Certainly, knockout of GluA1 inhibits the ability to generate LTP, a 
function that can be rescued in vivo with as little as 10% expression of 
recombinant GluA1. Below we described some of the mechanisms by 
which functional changes are achieved on GluA1-containing receptors.

Much of AMPAR function is shaped by the subunit type availability 
at the synapse. GluA2-containing AMPARs are continuously delivered 
to	the	spine	in	basal	states.	In	contrast,	GluA1-containing	AMPARs	are	
enhanced in the synaptic surface following stimulation, first in the den-
dritic region followed by movement into the spines.84,85

It	 is	widely	 accepted	 that	 LTP	 in	 the	hippocampus	 requires	 an	
increase in AMPARs within the post-synaptic density (PSD).86,87 
A large component of AMPAR abundance is the stabilization 
of cell surface and synaptic expression that occurs via trans-
membrane AMPAR regulatory proteins (TARPs).27 Trafficking of 
GluA1-containing AMPARs is largely driven by post-translational 
modification signals that recruit kinases and accessory proteins to 
induce translocation to the PSD by exocytosis and lateral movement 
within the plasma membrane.88 The interaction of GluA1 and 4.1N 
regulates the insertion of AMPARs and the reserve pool of AMPARs 
required for recruitment to the synapses during LTP.89 Specifically, 
GluA1 interaction with the scaffolding protein 4.1N promotes exo-
cytosis of GluA1 from intracellular endosomes.89,90	 On	 the	 other	
hand,	calcium-mediated	activation	of	CaMKII/PKC	phosphorylates	
GluA1 831 to promote targeting of the subunit to the PSD81,91-93 
and phosphorylation of S845 promotes GluA1 targeting to the cell 
surface.94-96 Further evidence of the importance of PTMs to the dis-
tribution of AMPARs comes from knock-in mutation studies of the 
GluA1 phosphorylation sites 831/845 wherein partially impaired 
hippocampal LTP97 and inhibited delivery of GluA1 to the synapse 
were	detected	after	CaMKII	activation	or	LTP.	Interestingly,	double	
mutations do not impair LTP in the CA1 region, indicating the two 
sites may have a synergistic relationship on LTP expression.98	Of	the	
two, S845 phosphorylation seems to be involved in GluA1 target-
ing/stabilization to the cell surface, likely through GluA1 recycling 
and limiting endocytosis.95,96,99 Finally, during hippocampal LTP, PKC 
mediated phosphorylation of GluA1 S818 may interact with 4.1N to 
maintain GluA1 exocytosis and propagate LTP as evidenced by de-
teriorating LTP signals in the presence of ph-GluA1 S818 mimics and 
4.1N knockdown.89,100

During LTD, CP AMPARs (GluA1 homomers residing in the ex-
trasynaptic region) are transiently recruited to the synapse via phos-
phorylation of GluA1 S845 by PKA.101-103 Newly incorporated CP 

receptors could magnify the calcium influx at synapses, resulting 
in LTP stabilization during the first minutes of potentiation. During 
the induction of LTD, these CP AMPARs signal their own removal 
through activation of calcineurin (CaN).104 Low calcium influx stim-
ulation can activate high-affinity phosphatases like CaN, to dephos-
phorylate	PSD	proteins.	Other	studies	of	knock-in	mutations	in	the	
GluA1	CaMKII	and	PKA	sites	exhibit	deficits	in	LTD,	indicating	that	
dephosphorylation is important for LTD.97,105

Like the aforementioned 4.1N, AMPAR trafficking is regulated 
by a myriad of accessory proteins, and deficits in the expression 
of these proteins lead to aberrant AMPAR trafficking and synaptic 
expression.106 For example, SAP97 (a member of the PSD-95 fam-
ily) abundance directly influences the amount of synaptic AMPARs 
through the binding of the GluA1 C-terminal PDZ domain.90 Similarly, 
PSD-95 binds GluA1 at the PDZ domains (of the N terminal) to me-
diate the insertion of AMPARs at synapses during LTP.107 Single-
particle tracking has allowed the visualization of decreased lateral 
mobility of GluA1-containing AMPARs in response to auxiliary pro-
teins like stargazing and PSD-95, a mechanism that is thought to fa-
cilitate ‘trapping’ of AMPARs at the synapses.108	Other	work	further	
demonstrated that the first intracellular loop domain (Loop1) of the 
C-tail of GluA1 is particularly involved in targeting AMPARs to the 
synapse though not for the trafficking of receptors to the plasma 
membrane.	 The	 authors	 report	 that	 CaMKII	 phosphorylation	 of	
S567 is a key regulator of Loop-1-mediated AMPAR trafficking.109 
Finally, in addition to stabilization and recruitment of GluA1 for 
AMPAR induction, increases in synaptic GluA1 can be accomplished 
via sourcing from pre-existing surface populations, increases in exo-
cytosis of AMPARs, or recycling endosomes that are trafficked to 
the synapse following LTP.110-112

While it has been hypothesized that age-related deficits in 
AMPAR subunit trafficking and instability may reorganize the syn-
aptic structure and underlie age and disease related changes in cog-
nitive ability, little direct evidence is currently available. Similarly, it 
has been proposed that the presence of Aβ may increase AMPAR 
degradation, leading to synaptic decline. Particularly, the exoge-
nous application of Aβ activates NMDARs and triggers the removal 
of AMPARs.47 This is consistent with reports of declining AMPAR 
function	in	aged	subjects.	In	addition	to	Aβ, there have been reports 
that hyperphosphorylated tau protein can accumulate in dendritic 
spines, dysregulating AMAR trafficking,113-115 likely due to impair-
ments in microtubules.

4  | GLUA1 AND STRUC TUR AL 
ADAPTATIONS

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid recep-
tors can arrive at the synapse by insertion into the plasma mem-
brane followed by lateral diffusion to the synapse.116 Additionally, 
de novo synthesis of GluA1-containing AMPARs can occur through 
mRNA and translation machinery present at the dendrites, sup-
plying AMPARs.106 Though the overall structure of the brain is 
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generally unchanged in response to synaptic plasticity, microstruc-
tural changes have been documented. For example, increases in the 
synaptic insertion of GluA1 (such as occurs after LTP stimulus) can 
lead	to	increases	in	spine	size	in	the	hippocampus.	In	a	two-photon	
microscopy analysis of AMPAR trafficking during whisker stimula-
tion, investigators found a positive correlation between GluA1 in-
tensity at the spine and shaft and spine size.117 Newly synthesized 
GluA1 is recruited to the spines inducing increases in CA1 spine den-
sity.118 This structural change (attributed to the incorporation of the 
cytoplasmic tail of GluA1 specifically) is proposed to drive both the 
structural stabilization which permits spine growth and increased 
synaptic strength via its ligand-gated ion channel.119	 Interestingly,	
incorporation of the cytosolic fragment of GluA1 to the post-synap-
tic density is sufficient to permit spine enlargement.119	 In	fact,	the	
C-terminal domains of AMPARs are reported to be the principal me-
diators of fast excitatory synaptic transmission, and genetic ablation 
showed that the CTD of GluA1 was critical for NMDAR-dependent 
LTP but not NMDAR-dependent LTD.120 AMPAR mobility can be 
further regulated by neuronal activity or interaction with scaffold 
proteins.106

Aβ induces synaptic aberrations by altering the morphology 
and composition of synapses that lead to significant dendritic 
spines loss.121	In	hippocampal	neuronal	culture,	persistent	addition	
of soluble Aβ-derived oligomers resulted in the thinning of spines 
and reductions in spinal density. This structural deterioration was 
concurrent with decreases in cytoskeletal protein drebrin.122	 In	 a	
triple transgenic animal model of AD, dendritic spine density was 
reduced not only near Aβ plaque sites but also in distal areas that 
accumulate both soluble Aβ and hyperphosphorylated tau.123-125 
These reports substantiate a critical role of Aβ in altering the syn-
aptic microstructure.

5  | GLUA1 AND POST-TR ANSL ATIONAL 
MODIFIC ATIONS

Post-translational modifications of the GluA1 subunit can alter the 
performance of the subunit-containing receptor. This is achieved 
by altering the binding properties of the subunit, the recruitment 
of regulatory accessory proteins and complexes, and the overall 
probability	 of	 synaptic	 plasticity.	One	of	 the	most	 common	PTMs	
occurring in neurons is phosphorylation, which can regulate each of 
the four AMPAR subunits. Phosphorylation is critical for synaptic 
plasticity, with LTD induction generally associated with dephospho-
rylation of major PKA sites while LTP induction is associated with 
dephosphorylation	of	CaMKII	sites.126 Experiments with phospho-
mimetic knock-in mice have demonstrated that S831 and S845 are 
critical phosphorylation sites on the GluA1 subunit. For example, 
phosphorylation of GluA1 S831 increases channel conductance81,127 
while phosphorylation of S845 increases single-channel open prob-
ability.94 GluA1 phosphorylation has also been shown to alter the 
spiking patterns of CA1 cells in vivo via enhanced AMPAR-evoked 
spiking.128 Notably, these sites exhibit lowered thresholds for LTP in 

response to weak, theta-burst stimulation increasing the probability 
of synaptic plasticity.129 RNAi experiments have further shown that 
phosphorylation of GluA1 at S845 is required for spatial memory 
formation.130 The kinase PKC can increase GluA1 S818 phospho-
rylation which in turn recruits the exocytosis-associated protein 
4.1N to maintain LTP.89,100	In	general,	activity-dependent	phospho-
rylation of GluA1 is associated with AMPAR delivery to the synapse, 
while dephosphorylation is associated with AMPAR endocytosis and 
synaptic weakening131 (the role of PTMs in GluA1 distribution are 
covered in the section ‘functional properties of GluA1’). Studies in 
rat hippocampus have further indicated that activation of different 
NMDA subpopulations greatly influences GluA1 phosphorylation, 
suggesting a mechanism for NMDAR-dependent synaptic plasticity.

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid recep-
tors are susceptible to lysine acetylation at the C-terminal, reducing 
AMPAR internalization and degradation, leading to increased cell 
surface localization and stabilization.53	On	the	other	hand,	ubiquiti-
nation by E3 ligases, including Nedd4, facilitates AMPAR internal-
ization and degradation.53 Finally, S-nitrosylation of GluA1 at S831 
has been shown to facilitate AMPAR conductance and endocytosis 
via AP2 binding in HEK293 cells overexpressing GluA1.132 Diering 
and Huganir eloquently lay out all 11 known PTMs occurring on 
GluA1, including seven phosphorylations, two palmitoylations, one 
S-nitrosylation and one ubiquitination, each of which can uniquely 
modify the subunit to exhibit different properties.27

Due to the influence of PTMs on AMPAR insertion, trafficking 
and stability, they have been investigated in the aetiology of AD. 
To date, one class of post-translational modification has stood out 
in the body of AD research. AMPAR ubiquitination and subsequent 
removal of AMPARs from the plasma membrane has been demon-
strated in cultured neurons exposed to soluble Aβ oligomers. This 
exposure produced reductions in AMPAR currents as well as spine 
loss.133 More recently, Aβ exposure was shown to increase GluA1 
ubiquitination (particularly at lysine 63) concurrent with increased 
AMPAR degradation in cortical neuron culture and AD brain lysates. 
This was observed to occur in tandem with increases in the E3 li-
gase Nedd4, while the expression of deubiquitinating enzymes was 
decreased.134

6  | GLUA1 AND SYNAPTIC PROTEIN 
INTER A AC TIONS

GluA1 properties are heavily regulated by synaptic protein interac-
tions. For example, the cytoskeletal protein Arc acts as an imme-
diate early gene that can be induced in the nucleus in response to 
excitatory activity.135	In	the	nucleus,	Arc	regulates	GluA1	transcrip-
tion to modulate synaptic strength. Arc specifically decreases GluA1 
transcription by regulating endocytosis of AMPAR.136,137	 CaMKII-
mediated phosphorylation of the TARP stargazing promotes binding 
to PSD-95, subsequently promoting retention of GluA1-containing 
AMPARs	 to	 the	 synapse.	 If	 GluA1	 binds	 SAP97	 at	 the	 PDZ	 do-
main	 following	CaMKII	 activation,	GluA1-containing	 receptors	 are	
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recruited to the synapse via binding of the motor protein myosin 
VI.138 Finally, binding of the PDZ domain with nexin27 promotes the 
maintenance of basal AMPAR surface expression and in mediating 
AMPAR insertion during LTP.139 An interesting feedback loop was 
found wherein retinoic acid (a regulator of GluA1 protein synthe-
sis) is triggered by silencing of synaptic transmission, consequently 
stimulating GluA1 in the synapse.140

Pathologically, Aβ has been shown to alter the synaptic distribu-
tion	of	the	kinase	CaMKII.	For	instance,	in	APP	transgenic	mice,	the	
pool	of	CaMKII	 is	reduced	and	in	cortical	neurons	treated	with	Aβ 
oligomer,	decreased	CaMKII	clusters	are	present	at	 the	synapse.57 
The	restoration	of	CaMKII	and	AMPAR-mediated	transmission	fur-
ther implicates Aβ as a regulator of the subcellular distribution of 
CaMKII	and	destabilizer	of	synaptic	AMPARs	and	synaptic	potenti-
ation.	On	the	other	hand,	animal	models	of	tauopathy	have	shown	
through sophisticated imaging strategies that although the synaptic 
density of AMPARs, synaptic proteins like PSD-95, GluN1 and GluA1 
are reduced.141 These findings suggest that synapses exposed to ab-
errant tau may exert ultrastructural changes through the alteration 
of synaptic proteins which can significantly alter synaptic function in 
pathological states like AD.

7  | CONCLUSIONS AND FUTURE 
PERSPEC TIVES

In	the	United	States	alone,	AD	impacts	over	5	million	and	is	estimated	
to bear a 200 billion dollar per year economic burden. The disease is 
particularly pressing as society faces an increased ageing population. 
Thus, elucidating the underlying mechanisms of cognitive and mem-
ory function and decline is especially important. An increasing body 
of evidence has implicated Aβ and tau aggregates to a host of delete-
rious neurobiological processes such as reductions in excitatory syn-
aptic transmission, loss of dendritic spines and excitotoxic neuronal 
death.	Indeed,	a	hallmark	of	AD	aetiology	includes	dysregulated	syn-
aptic transmission that has been largely attributed to dendritic spine 
loss, deficits in glutamatergic synaptic transmission and impaired cog-
nition,	 learning	and	memory	capacity.	 Interestingly,	 these	phenom-
ena have been found to occur prior to the detection of pathological 
plaques and neuronal loss. This beckons the question of whether 
any of the above described molecular pathologies are consequence 
or cause. Regardless, the evidence is quite clear in that AD affected 
subjects distinctly suffer inhibited LTP due to reductions in excita-
tory neurotransmission. As a major excitatory receptor in the central 
nervous	system,	AMPARs	have	been	a	focus	of	AD	research.	Indeed,	
as previously discussed, AMPAR abundance, trafficking, localization 
and function have all been shown to be dysregulated across various 
AD models. The receptor subunit GluA1 is perhaps the most well-
studied component among AMPARs. Through a variety of molecular 
mechanisms including trafficking, recycling, modifications of micro-
structural properties, PTMs and modulations due to interactions with 
critical synaptic proteins, GluA1-containing AMPARs are a medium 
for the aetiology of AD and similar neurogenerative pathologies.

In	 this	 review,	we	discussed	various	aspects	of	GluA1’s	 role	 in	
establishing synaptic plasticity, a fundamental component of cog-
nitive processes like learning and memory. Specifically, we high-
lighted peer-reviewed findings in the areas of GluA1 trafficking to 
and from the synapse, microstructural adaptations caused by GluA1-
containing receptor modulation, single-channel functional modula-
tion and well-studied PTMs that influence interaction of the subunit 
with regulatory proteins. Altogether, these variations provide ample 
possibilities for GluA1-containing AMPARs to modify synaptic trans-
mission to shape LTD/LTP and subsequently learning and memory. 
Many questions stand including the resolution of a complex net-
work of subunit diversity, PTMs and regulatory protein interactions. 
Additionally, potential crosstalk between PTM-conferring proteins, 
compensatory mechanisms and feedback loops remain to be fully 
characterized. Undoubtedly, the list of proteins able to regulate syn-
aptic AMPAR levels and their activity remains incomplete. Further, 
it is likely that live, high-resolution microscopy has only begun to 
reveal the intricacies of molecular movement at the synapse. Finally, 
pathology-driven changes in GluA1 dynamics and novel therapeutic 
strategies to address these remain to undergo a battery of clinical 
investigation.
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