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Abstract

Scrub jays are thought to use many tactics to protect their caches. For instance, they predominantly bury food far away
from conspecifics, and if they must cache while being watched, they often re-cache their worms later, once they are in
private. Two explanations have been offered for such observations, and they are intensely debated. First, the birds may
reason about their competitors’ mental states, with a ‘theory of mind’; alternatively, they may apply behavioral rules learned
in daily life. Although this second hypothesis is cognitively simpler, it does seem to require a different, ad-hoc behavioral
rule for every caching and re-caching pattern exhibited by the birds. Our new theory avoids this drawback by explaining a
large variety of patterns as side-effects of stress and the resulting memory errors. Inspired by experimental data, we assume
that re-caching is not motivated by a deliberate effort to safeguard specific caches from theft, but by a general desire to
cache more. This desire is brought on by stress, which is determined by the presence and dominance of onlookers, and by
unsuccessful recovery attempts. We study this theory in two experiments similar to those done with real birds with a kind of
‘virtual bird’, whose behavior depends on a set of basic assumptions about corvid cognition, and a well-established model
of human memory. Our results show that the ‘virtual bird’ acts as the real birds did; its re-caching reflects whether it has
been watched, how dominant its onlooker was, and how close to that onlooker it has cached. This happens even though it
cannot attribute mental states, and it has only a single behavioral rule assumed to be previously learned. Thus, our
simulations indicate that corvid re-caching can be explained without sophisticated social cognition. Given our specific
predictions, our theory can easily be tested empirically.
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Introduction

Over the last decade, the social cognition of corvids – the

extended family of crows – has been the subject of much scientific

attention. Experiments have shown, for instance, that Clark’s

nutcrackers can use human cues to find food [1], that pinyon jays

can reason about social hierarchies [2], and that rooks can

cooperate to obtain rewards [3]. Most impressive are the behaviors

that ravens [4,5,6,7] and scrub jays [8,9,10,11,12,13] display in

the context of caching. Like most corvids, these species hide food

under ground, saving it for later. However, items may be stolen by

conspecifics that saw the caching occur. This could create an

incentive for the birds to be sensitive to the visual perspectives of

others [14], and many results appear to confirm that they are.

When pilfering, if two ravens are present at a caching event, the

more subordinate one pilfers faster if the cache site was within the

dominant one’s field of vision, and thus likely to be stolen, than if

the cache site was not [5]. Similarly, when a raven is shown two

cache sites in front of a competitor, it first raids the cache that the

competitor also had a line of sight to, and only then the other [7].

When caching, corvids bury most of their items far away from

onlookers, and behind barriers [4,11,12]. Furthermore, scrub jays

often re-cache their worms later, when they are in private, if they

were forced to cache in the presence of others [8,9,10,11,12].

The two explanations that have been offered for these results

are the subject of intense debate [14,15,16,17]. First, the birds

could be reasoning about the mental states of their competitors

[14]. A scrub jay might infer that other birds intend to steal its

worms, and that if others see it caching they will know where its

worms are. Furthermore, a scrub jay could realize that caching far

away from onlookers makes it difficult for them to see its caches,

and that re-caching when alone will ensure that they no longer

know the locations of its items. According to this hypothesis, scrub

jays thus have some elements of a ‘theory of mind’. Alternatively,

the birds could be applying behavioral rules that they have learned

previously, from experience in daily life [16]. For instance,

through cache interruptions, ravens could learn the rule ‘cache far

away from onlookers’ [18]: The nearer conspecifics are, the

greater the likelihood that one of them will try to take the food the

cacher is trying to bury. In this way, the birds could learn that the

proximity of conspecifics implies cache loss, and should therefore

be avoided. However, they might also learn rules that are more

complex; for example, they might associate ‘a specific competitor’s

line of sight in the past’ with ‘a general feeling of unease’ regarding

a particular cache site.

A reason to favor this ‘prior learning hypothesis’ is that it seems

cognitively simpler than ‘theory of mind’; it does not require

corvids to be capable of mental state attribution, which is a

controversial claim for all species other than humans

[14,15,16,17]. However, as Tomasello and Call [19] have argued,

a weakness of current accounts that depend on prior learning is
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that almost every experimental result has to be explained by its

own ad-hoc behavioral rule, acquired in some hypothetical past

situation; see, for instance, Penn and Povinelli [16]. Furthermore,

for some of the more complex re-caching patterns exhibited by

scrub jays, it is difficult to imagine prior learning scenarios that are

plausible. For instance, in two studies [11,12], the birds not only

preferred to cache far away from conspecifics; hours later, when

they were alone, they also re-cached more of what they had

cached close to other birds. To learn this, the birds would have to

remember the distances between cache sites and onlookers, and

also relate these distances to pilfering rates. This seems cognitively

complex, especially for scrub jays in small aviaries [20], where the

effect of distance is likely to be small, and thus, difficult to detect.

Therefore, our aim is to develop a cognitively simple theory that

can explain the re-caching behavior of scrub jays without these

drawbacks. We do this by taking our existing computational model

of corvid cognition, as we have already shown that it generates

caching behavior that resembles that of real corvids [21]. In the

present paper, we extend this model with a single behavioral rule

assumed to be previously learned – a preference for caching far

away from conspecifics – and a new set of assumptions related to

stress. The model consists of a ‘virtual bird’. Its basic behavior is

driven by a memory system, based on broadly validated, similar

models built for humans [22,23]; for previous applications to other

species, see [24,25]. It stores one integrated memory of every act of

caching and recovery [26], and the more often, and the more

recently, it has cached or recovered at a particular site, the

stronger that memory will be [22]. The stronger its memory of

having cached somewhere, the lower its tendency to cache there

again, and the higher its tendency to recover there later. Similarly,

the stronger its memory of having recovered somewhere, the lower

its tendency to recover there again.

With regards to our model extensions related to stress, we

assume that stress causes increased caching and, as a special case,

increased re-caching. This is inspired by work explicitly linking stress

to caching [27], based on the observation that birds cache more

when faced with poor habitat quality [28,29,30,31] and light body

weight [32,33,34]. Along the same lines, we interpret it as a sign of

stress that scrub jays often cache [8,10] and re-cache [11] more

when watched. Such enhanced caching in the presence of

conspecifics has also been reported for Eurasian jays [35],

although the opposite pattern has also been found, for both

Eurasian jays [36] and other species of corvid [37,38]. Here, we

focus on scrub jays, and thus, to mimic their behavior, we make

our ‘virtual bird’ re-cache more when it is watched. We also make

it re-cache more if the spectator is dominant than if it is

subordinate, as we assume that the former evokes more stress.

Furthermore, we posit that, in recovery sessions, finding caches

missing is a source of stress, and this, accordingly, makes our ‘virtual

bird’ re-cache more.

We investigate the consequences of these assumptions by

exposing our ‘virtual bird’ to simulated versions of two

experiments. The first compares caching in front of a conspecific

to caching alone, as done in an experiment by Emery and Clayton

[8]; the second concerns the effects of distance and the dominance

of onlookers, as tested by Dally, Emery and Clayton [12]. We

show that in both cases, our ‘virtual bird’ acts as the real birds did.

Results

The experiments that we simulated consisted of one caching

session and one recovery session, in which the scrub jays were tested

individually, in their home cages [8,12]. In a caching session, the

scrub jays were given a bowl of worms, and ice cube trays to cache

in. After caching, both were removed. The birds were left without

any food until the recovery session, several hours later. At that

point, they were mildly hungry, and their trays were returned to

them. For each experiment, we ran one hundred simulations at the

original sample size, and we created as many ‘virtual birds’ as

there were real birds. We averaged the results for each run, and

calculated the discrepancy with the empirical data. Further

analysis was done on the run closest to the average discrepancy.

The model has three adjustable parameters (Table S1): d,

governing how quickly memories decay, n, specifying the noise

in their likelihood of recall, and st, determining the stress threshold

at which recovering ‘virtual birds’ re-cache. They were kept

constant across experiments, and set so that the performance of

the ‘virtual birds’ matched that of the real birds. Our results were

robust, and depended only mildly on the model’s exact parameter

values; see Figure S1, Table S2, and Text S1.

Experiment 1: Watched by a Conspecific
Emery and Clayton [8] investigated whether scrub jays change

their re-caching behavior in response to being watched at caching.

This was tested in two different ways. First, the birds were given

three trials ‘with onlooker’ and three trials ‘in private’. On ‘with

onlooker’ trials, the cachers could see a bird in an adjacent cage;

on ‘in private’ trials, the cachers could not. At recovery, they were

always in private. The result was that the scrub jays re-cached a

significantly larger proportion of their worms on the ‘with

onlooker’ trials than the ‘in private’ ones (Figure 1A). In a second

setup, the same birds received two trials where they could cache in

two trays, one after the other. While caching in one of the trays,

there was a conspecific present; while caching in the other, there

was not. Several hours later, both trays were returned simulta-

neously, and the birds could recover in private. It was found that

they re-cached a significantly larger proportion of their worms

from the ‘with onlooker’ tray than the ‘in private’ tray (Figure 1B).

These results seem to suggest that the scrub jays remembered

whether they had been watched or not, and then re-cached in

order to protect themselves from future theft [8]. However, our

‘virtual birds’ behaved similarly, without recalling the social

context (Figure 1). The ‘virtual birds’ re-cached more on the trials

where they had been watched during caching than on the trials

where they had not been (Wilcoxon matched-pairs test, n = 7,

V = 0, p = 0.03), and they re-cached more from the tray in which

they had cached with an onlooker, than from the tray in which

Figure 1. Re-Caching in Experiment 1. Average proportion of
caches re-cached, real birds [8] and ‘virtual birds’, with standard errors.
Panel A: Alternating ‘watched’ and ‘in private’ trials. Panel B: At
recovery, ‘watched’ and ‘in private’ trays presented together.
doi:10.1371/journal.pone.0032904.g001
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they had cached alone (Wilcoxon matched-pairs test, n = 7, V = 0,

p = 0.02). In the model, this is due to memory errors. In the

caching session, watched ‘virtual birds’ already re-cached, because

they were stressed by the presence of the spectator. Consequently,

in the recovery session, they remembered caching in many more

sites than actually contained worms. This confusion of their

memory caused them to experience more failed recovery attempts,

which in turn caused them to be more stressed – and thus, to re-

cache more.

Experiment 2: Onlooker Distance and Social Status
Dally, Emery and Clayton [12] investigated whether scrub jays

could take into account the proximity of another bird, as well as its

social status. To test this, the birds were allowed to cache in three

different conditions: Either in front of a dominant onlooker, in

front of a subordinate onlooker, or in private, with an opaque

partition separating them from a neighbor. In each case, they were

offered two ice cube trays to cache in, one near the adjacent bird,

and one farther away. It was found that the cachers preferred to

cache in the far tray when watched - either by a dominant or by a

subordinate - but that they showed no preference when alone.

Furthermore, during the recovery session, they re-cached a greater

proportion of their worms in the ‘dominant onlooker’ condition

than in either of the other two. When they had been watched, the

birds also seemed to re-cache specifically from the ‘near’ tray

(Figure 2A, 2B), although the sample size was too small for

statistical analysis.

These results seem to suggest that the re-caching behavior of the

birds depended on their memory of the social status of the

onlooker, but our ‘virtual birds’ remembered only the locations of

cache sites. Nevertheless, like in the empirical data, we found a

difference in re-caching rates between conditions (Friedman’s

analysis of variance, n = 9, x2
2 = 11.67, p,0.01). This was because

the ‘virtual birds’ re-cached more when they had been watched by

a dominant than by a subordinate (Wilcoxon matched-pairs test,

n = 9, V = 28, p = 0.02), or than when they had been alone

(Wilcoxon matched-pairs test, n = 9, V = 0, p,0.01).

This occurred because we made our ‘virtual bird’ more stressed

by dominant onlookers than by subordinate ones, and this caused

it to re-cache more during the caching session with the dominant

onlooker. This increased re-caching during the caching session

caused its memory to be more confused during the recovery session,

which in turn caused it to experience more recovery failures. In

our model, such recovery failures cause stress, and stress causes re-

caching, so this caused the ‘virtual bird’ to re-cache more during

the recovery session as well. Furthermore, like the real birds, the

‘virtual bird’ re-cached proportionally more from the ‘near’ tray

when it had been watched (Figure 2A, 2B), but not when it had

been in private (Figure 2C). This was due to the fact that it avoided

the proximity of others at caching, which we assume to have been

learned from daily life. As a consequence, the likelihood of

successfully recovering from the ‘near’ tray was statistically

smaller, because there were fewer worms in it. Therefore, the

‘virtual bird’ experienced more recovery failures in the ‘near’ tray,

which caused a higher level of stress to be associated with that tray,

and thus more re-caching.

Discussion

The re-caching behavior of our ‘virtual birds’ was similar to that

of the scrub jays. However, the ‘virtual birds’ lacked ‘theory of

mind’, and had only a single behavioral rule that was assumed to

be due to prior learning: A preference for caching far away from

conspecifics. In the recovery session, the ‘virtual birds’ did not

remember who had watched them, nor how close cache sites had

been to an onlooker, nor whether they had been watched at all.

Nevertheless, they displayed various behaviors typically interpret-

ed as indicators of ‘cache protection’: They re-cached more after

being watched than after being alone, they re-cached more after

caching with a dominant conspecific than after caching with a

subordinate one, and they re-cached a larger proportion of the

worms cached closer to an onlooker than of the worms cached

farther away. To summarize, these results can be explained as

follows: The more the ‘virtual bird’ was stressed at caching, the

more it re-cached during the caching session, and the more its

memory was confused later, during the recovery session. The more

its memory was confused at recovery, the more often it expected to

find worms in sites that were empty; the more it experienced such

recovery failures, the more stressed it was, and the more it re-

cached. Similarly, the less it had cached in a particular tray, the

lower its likelihood of successfully recovering there; the more it

failed, the more stressed it was, and the more it re-cached.

Empirical Predictions
One beneficial aspect of simulation models is that they can

generate empirical predictions that can be tested easily [39,40].

We list four. First, we predict that birds that re-cache more during

the recovery session must have also re-cached more during the

Figure 2. Re-Caching in Experiment 2. Average proportion of caches re-cached per tray, with standard errors, real birds [12,52] and ‘virtual birds’,
with standard errors, after caching in front of a dominant onlooker (Panel A), a subordinate onlooker (Panel B), or in private (Panel C).
doi:10.1371/journal.pone.0032904.g002

Corvid Re-Caching without ‘Theory of Mind’

PLoS ONE | www.plosone.org 3 March 2012 | Volume 7 | Issue 3 | e32904



caching session. After all, it is this re-caching during the caching

session that causes the ‘virtual birds’ to experience memory

confusion at recovery, and it is the memory confusion that,

through stress, causes the re-caching; thus, without increased re-

caching during the caching session, our whole explanation breaks

down. For the vast majority of experiments, its presence or

absence is not reported [8,9,10,12]. Second, we predict that in a

recovery session, the birds start re-caching only after a number of

recovery failures. If that is not the case, then it cannot be stress

from recovery failures that causes re-caching. Third, we predict

that scrub jays must always re-cache proportionally more from

emptier trays. So, if scrub jays were forced to cache more worms in

one tray than in another, they should also re-cache more from the

emptier tray. Finally, we predict that any cause of stress should

produce enhanced re-caching, irrespective of the social context.

For instance, if some of a bird’s caches were removed by an

experimenter before its tray was returned, then we predict that it

should re-cache more. Although experiments that include cache

removal have frequently been done [26,41,42,43], whether this

causes the scrub jays to re-cache at recovery is not reported.

Other Experiments on the Social Cognition of Western
Scrub Jays

Other experiments on the social cognition of scrub jays can also

be interpreted within our framework. For instance, the fact that

scrub jays use shadows [9] and barriers [11] to protect their caches

can be captured by a slight rephrasing of the rule ‘prefer to cache

far away from onlookers’ to the more general version ‘prefer to

cache where onlookers are difficult to see’, and this can also be

assumed to have been previously learned. Then, like in our current

simulations, selective re-caching from ‘riskier’ trays would be due

to the stress caused by those trays containing fewer worms. Other

results require additional rules to be added to our model. For

instance, scrub jays seem to take into account which caches have

been seen by which onlookers [12]. Thus, it seems that they do

remember who was present during caching, unlike our ‘virtual

birds’. However, this does not imply that they have ‘theory of

mind’. Instead, it could be that the onlooker’s presence triggers the

subject’s memory of the stress it felt during caching, and that this

causes it to re-cache the associated caches, without any specific

intent to prevent those worms from being stolen by that onlooker.

With regards to scrub jays, one final result to consider is the fact

that only experienced pilferers appear to re-cache. This has been

described as a case of experience projection, ‘it takes a thief to

know a thief’ [8]. An alternative explanation is that scrub jays

usually do not feel threatened by onlookers in neighboring cages,

because such onlookers cannot actually reach their worms. In that

case, maybe only birds that have pilfered find it stressful to be

watched by an adjacent bird, because only they have experienced

that trays can be moved between cages. Thus, our hypothesis that

stress drives re-caching can also be extended to account for this

result.

Why Cache More While Being Watched?
Although our model is built upon the observation that Western

scrub jays often cache more when conspecifics are present

[8,10,11], it is still an open question why they do so, especially

given that other species of corvid usually show the opposite pattern

[36,37,44,45]. Clark’s nutcrackers, for instance, have been shown

to cache less when being watched than when not [44]. Clary and

Kelly [44] speculate that this species difference might be due to the

fact that scrub jays are more social than Clark’s nutcrackers, and

thus might consider the task to be cooperative. However, it seems

unlikely that this is the case; if scrub jays consider the task to be

cooperative, it is difficult to explain why they prefer to cache far

away from conspecifics [11]. Alternatively, one could argue that

for social birds it is not always feasible to inhibit caching until

alone; they might have to settle for ‘compensating’ future cache

theft, rather than avoiding it. Whether birds employ one strategy

or the other – ‘cache more while watched’ or ‘cache less while

watched’ – might also depend on individual experience, and the

specific situation. This would explain why both enhanced [35] and

reduced [36] caching have been found for Eurasian jays, and

corresponds well with the observation that ravens gradually

acquire some of their ‘cache protection techniques’ during

development [18].

The Larger Debate
In terms of the larger debate on the social cognition of corvids,

our results offer a way to explain the re-caching behavior of scrub

jays without ‘theory of mind’, and without ‘prior learning’ of many

different behavioral rules. Importantly, our account captures three

different re-caching patterns – based on onlooker presence,

dominance and distance – within a single explanatory framework.

Thus, our account of corvid re-caching avoids Tomasello and

Call’s [19] objection to ‘less cognitive’ theories of chimpanzee

social behavior – that there seem to be so many of them, with a

different ad-hoc rule explaining every single result. Of course, our

simulations do not imply that scrub jays are not reasoning about

the mental states of others; only that such reasoning is not

necessary to produce the results of these specific experiments. That

leaves many other aspects of corvid cognition to be explored by

our model, even if we confine ourselves to studies of caching.

Within the social realm, we could focus on the flexible pilfering

strategies of ravens [5,6,7], or the suppressed caching of Clark’s

nutcrackers in the presence of conspecifics [44]. Beyond that, there

are intriguing results on ‘mental time travel’ in Western scrub jays

[46,47,48], magpies [49] and Eurasian jays [50]; these three

species appear able to recall the ‘what-where-when’ of specific past

events [48,49], and to plan for specific future desires [46,47,50].

These are experiments we hope to address in future work.

Methods

To compare our simulations to the behavior of real birds, we

use the same statistical tests as in the empirical works [6,8]. Alpha

is set at 0.05, and all tests are two-tailed. Our simulations are

implemented in a Java program, CogCor, which is included in the

Supporting Information, Model Code S1. Conceptually, the

program consists of a setup model, a simulator model, and a cognitive

model. The setup model keeps track of the state of the ‘physical

world’ in the original experiments: What ice cube trays are

available, how many worms are cached where, and so on. The

simulator model runs the experiments: It ensures that the cognitive

model and the setup model are initialized, that the right number of

caching and recovery sessions are conducted, and that data is

collected for further analysis. The cognitive model is the ‘virtual

bird’; it consists of behavioral rules (Figure 3), which determine how

decisions are made, and memory chunks, on which decisions are

based.

Memory Chunks
All caching and recovery events are explicitly encoded in

memory, in chunks. A chunk’s type refers to whether it was a caching

or recovery event, and its location refers to the associated cache site.

In the case of a recovery event, a chunk also records success, which

refers to whether or not a cache was actually found. Thus, a chunk

is a memory of a particular kind of experience – caching in a site,

Corvid Re-Caching without ‘Theory of Mind’
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successfully recovering there, or unsuccessfully recovering there.

Every time a ‘virtual bird’ experiences one of these events, it

creates the appropriate chunk, and encodes it in memory. If the

appropriate chunk already exists, it receives an update instead.

These updates help determine its activation, or ‘memory strength’.

A chunk h’s activation Ah depends on its recency and frequency of use

[22], as specified by Equation 1, where tj represents the elapsed

time t since use j of chunk h, and d is a decay parameter (Table 1).

This equation is adapted from ACT-R, a computational model

designed to study human cognition [23,51].

Ah~
X

j

tj
{d ð1Þ

For the purpose of computing the activations of chunks, time is

measured in steps. Every cache or recovery event counts as one

step, and time outside of the experimental sessions is not considered.

Although real animals definitely experience memory loss over

time, our approach still seems reasonable: The recovery accuracy

of Western scrub jays appears to decrease only after retention

intervals of several days [42], not the several hours used in these

experiments.

Behavioral Rules
The ‘virtual birds’ have two sets of behavioral rules: One for

caching sessions, one for recovery sessions. However, in each case, they

Figure 3. Model flowchart.
doi:10.1371/journal.pone.0032904.g003

Table 1. Model variables.

Fixed Settings Parameters

oad oas crw crd crs d n st

21.25 20.5 0.6 0.8 0.4 0.2 0.3 0.6

doi:10.1371/journal.pone.0032904.t001

Corvid Re-Caching without ‘Theory of Mind’
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must repeatedly decide where to cache or recover, and this process

is always the same. First, a ‘virtual bird’ evaluates all its possible

options – all the discrete ice cube tray sections that are on offer.

For each of these options, it estimates the ‘attractiveness’ of

caching or recovering there. In caching sessions, it estimates ‘cache

attractiveness’, in recovery sessions, it estimates ‘recovery attrac-

tiveness’; these will be explained further in coming sections.

However, both types of attractiveness always contain at least two

components, namely, inhibition of return, which helps the ‘virtual

bird’ avoid revisiting the same sites with the same purpose, and

noise.

Inhibition of Return. To calculate the inhibition of return Ik

associated with a site k, a ‘virtual bird’ checks whether any chunks l

exist of the current session’s type, that refer to the same site. If any

such chunks l exist, the effect of inhibition of return, Ik, associated

with site k is equal to Equation 2, where gAl is the sum of the

activations of all such chunks l. Thus, the stronger a ‘virtual bird’s’

memories of having cached in a particular location, the lower its

tendency to cache there again; similarly, the stronger its memories

of having recovered in a particular location, the lower its tendency

to recover there again.

Ik~
X

Al ð2Þ

Noise. Every site’s attractiveness always has a noise

component, representing sources of transient error. The noise

term is computed according to Equation 3, taken from the

cognitive architecture ACT-R [23,51], where n is a parameter that

we tune (Table 1), and r is a random value between 0 and 1.

noise~n : ln
1{r

r
ð3Þ

Caching Sessions. In a caching session, a ‘virtual bird’

makes as many caches as the real birds did in the corresponding

experiment. Every time it must decide where to cache, it chooses

the site with the highest ‘cache attractiveness’ Ck, as determined by

Equation 4. Here, Ok stands for the influence of onlooker aversion,

while Ik refers back to the inhibition of return of Equation 2, and

noise to the transient error of Equation 3.

Ck~{Ok{Ikznoise ð4Þ

The onlooker aversion component Ok causes the ‘virtual birds’ to

avoid caching in the ‘near’ tray in Experiment 2, where they are

watched by dominant and subordinate conspecifics [12]. As we

assume that increased distance is a preference that the scrub jays

have learned before the experiment, we incorporate it directly into

the model. Therefore, Ok is equal to oad for sites in the ‘near’ tray in

the ‘dominant onlooker’ condition, to oas for the same sites in the

subordinate onlooker condition, and to zero otherwise (Table 1).

The settings oad and oas are tuned so that approximately 25% of

the caches end up in the ‘near’ tray in each condition, as found in

the empirical data [12].

To capture our assumption that scrub jays are stressed by

having to cache in front of a conspecific, and that stress causes

them to re-cache [11], watched ‘virtual birds’ can immediately

recover a cache they have just created, with odds crw. Thus, every

time a ‘virtual bird’ caches in front of an onlooker, it has a small

chance of immediately recovering its worm. We set crw to 0.6,

which is tuned to our first experiment. There, it causes the ‘virtual

birds’ to re-cache worms an average of 1.29 times when they are

watched; this is very close to the empirical average of 1.2 [11].

Furthermore, for Experiment 2, we assume that dominant

onlookers evoke more stress than subordinate onlookers, and that

this translates into more stress; therefore we set the respective re-

caching odds crd and crs to 0.8 and 0.4 (Table 1).

Recovery Sessions. In a recovery session, a ‘virtual bird’

continues to recover until it has recovered all its caches. In reality,

this is usually not the case; recovery percentages between 39% and

73% have been reported [8,10], and another study mentions that ‘a

few items were often cached and not recovered’ [12]. Furthermore,

in some cases, the birds recovered relatively more of their ‘watched’

caches than their ‘in private’ ones [8,10]. However, without a

specific theory of scrub jay motivation – why they cache as much as

they do, why they eat as much as they do – having the ‘virtual birds’

always recover everything seemed simplest.

Every time a ‘virtual bird’ must decide where to recover, it

chooses the site with the highest ‘recovery attractiveness’ Rk, as

determined by Equation 5. Here, Fk is a cache relocation effect,

which helps the ‘virtual bird’ recover at sites where it has

previously cached, while the inhibition of return Ik and noise are the

same as described previously, in Equations 2 and 3 respectively.

Rk~Fk{Ikznoise ð5Þ

The cache relocation effect Fk associated with a site k depends on

the existence of a cache chunk o referring to the same site. Then,

the cache relocation effect associated with site k is equal to that

chunk’s current activation Ao (Equation 1). Thus, the stronger a

‘virtual bird’s’ memory of having cached somewhere, the more

attractive it finds it to recover there.

If a ‘virtual bird’ recovers a worm, it needs to decide whether to

re-cache it. To do so, it first calculates the safety risk Sk associated

with the site k where it just found its worm. This safety risk

depends on its previous recovery experiences with site k’s tray, but

only on those recovery experiences directed at its actual cache sites

or their neighbors. This is in line with our previous work [21],

where we show that scrub jays probably do not learn from all their

recovery attempts, but only from those that are directed at sites

where they have cached.

To calculate the safety risk Sk associated with site k, a ‘virtual

bird’ compares the ratio of ‘unsuccessful recovery attempts’ to

‘total recovery attempts’ within site k’s tray, according to Equation

6, where Au is the total activation of chunks encoding unsuccessful

recovery attempts, and As the total activation of chunks encoding

successful recovery attempts. This ratio is then compared to the

stress threshold st, which is a parameter that we tune (Table 1). If

Sk is greater than st, the ‘virtual bird’ re-caches the worm. Once a

worm is re-cached in a recovery session, it is not recovered again.

This assumption is made to keep the model as simple as possible,

but it is also consistent with the empirical data. Unwatched,

recovering scrub jays re-cache mainly in ‘out of tray’ locations,

elsewhere in their home cages, and re-cache most worms only

once [12].

Sk~
Au

AuzAs

ð6Þ
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at different values for the noise parameter n and the decay

parameter d, given a specific value for the stress threshold st. Grey

circles mark parameter combinations that produced all five of the

patterns listed in Table S2; white circles mark parameter

combinations that produced four of the patterns or less.

(TIF)

Model Code S1 Simulations implemented in a Java
program, CogCor.
(ZIP)

Table S1 Range of parameter values evaluated.
(DOCX)

Table S2 Patterns present at different parameter
combinations.
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Text S1 Robustness.
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