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Abstract

Background: Successful neovascularization requires that sprouting endothelial cells (ECs) integrate to form new vascular
networks. However, architecturally defective, poorly integrated vessels with blind ends are typical of pathological
angiogenesis induced by vascular endothelial growth factor-A (VEGF), thereby limiting the utility of VEGF for therapeutic
angiogenesis and aggravating ischemia-related pathologies. Here we investigated the possibility that over-exuberant
calpain activity is responsible for aberrant VEGF neovessel architecture and integration. Calpains are a family of intracellular
calcium-dependent, non-lysosomal cysteine proteases that regulate cellular functions through proteolysis of numerous
substrates.

Methodology/Principal Findings: In a mouse skin model of VEGF-driven angiogenesis, retroviral transduction with
dominant-negative (DN) calpain-I promoted neovessel integration and lumen formation, reduced blind ends, and improved
vascular perfusion. Moderate doses of calpain inhibitor-I improved VEGF-driven angiogenesis similarly to DN calpain-I.
Conversely, retroviral transduction with wild-type (WT) calpain-I abolished neovessel integration and lumen formation. In
vitro, moderate suppression of calpain activity with DN calpain-I or calpain inhibitor-I increased the microtubule-stabilizing
protein tau in endothelial cells (ECs), increased the average length of microtubules, increased actin cable length, and
increased the interconnectivity of vascular cords. Conversely, WT calpain-I diminished tau, collapsed microtubules, disrupted
actin cables, and inhibited integration of cord networks. Consistent with the critical importance of microtubules for vascular
network integration, the microtubule-stabilizing agent taxol supported vascular cord integration whereas microtubule
dissolution with nocodazole collapsed cord networks.

Conclusions/Significance: These findings implicate VEGF-induction of calpain activity and impairment of cytoskeletal
dynamics in the failure of VEGF-induced neovessels to form and integrate properly. Accordingly, calpain represents an
important target for rectifying key vascular defects associated with pathological angiogenesis and for improving
therapeutic angiogenesis with VEGF.
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Introduction

Vascular endothelial growth factor-A (VEGF) is essential for

embryonic vasculogenesis and for angiogenesis in a variety of

important pathologies including ischemia and wound repair,

proliferative retinopathies, psoriasis, rheumatoid arthritis, and

cancers [1]. Paradoxically, VEGF induces a highly abnormal

vasculature in pathological settings. Typical vascular abnormalities

include vessel tortuosity, abnormal vessel spacing and branching,

vessel leakiness, and failed integration of vascular networks

resulting in numerous blind ends (reviewed in [2,3]). These

architectural defects result in poor blood vessel function, especially

poor blood flow. Vascular abnormalities may be due to

comparatively high VEGF expression in pathological settings [4]

and also may result from an imbalance between VEGF and other

important factors [2], including the vascular cytokine angiopoie-

tin-1 [5]. Regardless, cellular mechanisms responsible for

abnormal neovascularization in pathological settings have been

largely unexplored.

In searching for mechanistic explanations for the architectural

defects associated with abnormal angiogenesis, we became

interested in a possible connection between failed integration of

neovascular networks, VEGF, and calpain activity. Calpains are

intracellular, calcium-dependent thiol proteases (reviewed in [6]).

Upon activation, these widely expressed enzymes cleave a broad

spectrum of functionally important intracellular protein targets [6]

that regulate cytoskeletal organization [7], cell adhesion and

spreading [8,9,10], and cell migration [10,11,12]. Moreover,

VEGF has been shown previously to induce calpain activity in

endothelial cells (ECs) [13,14]. Therefore, we directly examined
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the involvement of calpain activity in regulating the integration of

VEGF-induced neovascular networks in vivo with both genetic and

pharmacologic approaches. We also employed in vitro models of

capillary morphogenesis to explore, at the cellular level, mecha-

nisms by which calpain activity controls the assembly and

organization of ECs into new blood vessels. Our findings directly

implicate VEGF-induction of calpain activity in the failed inter-

connectivity of neovascular networks and illustrate that appropri-

ate inhibition of calpain substantially improves neovessel integra-

tion and lumen formation.

Results

A Dominant-negative Mutant of Calpain-I Improves VEGF
Neovessel Integration and Lumen Formation In Vivo

To investigate a possible relationship between calpain activity

and abnormal neovascular architecture, we employed an estab-

lished mouse model of VEGF-driven angiogenesis [15,16]. This

model utilizes immortalized, transfected cells engineered for

continuous expression and secretion of VEGF165 under the

direction of a constitutively active cytomegalovirus immediate-

early gene (CMV) promoter. To provoke angiogenesis, the VEGF-

expressing cells are mixed with basement membrane Matrigel, and

the mixture is injected into the sub-dermal space. Robust

angiogenesis in the overlying dermis is typically evident by four

days, and the neovasculature routinely exhibits all of the hallmarks

of pathological angiogenesis (e.g., vessel tortuosity, abnormal vessel

spacing and branching, vessel leakiness, and failed integration of

vascular networks resulting in numerous blind ends). In addition to

the VEGF-expressing cells, we included equal numbers of

retroviral packaging cells in the Matrigel for continuous delivery

of engineered retroviruses. The different retroviral packaging cells

expressed retrovirus encoding either a validated dominant-

negative (DN) mutant of calpain-I [8], wild type (WT) calpain-I

[8], or no insert (empty vector). This retrovirus-based model of

VEGF-driven angiogenesis offers the advantage of high retroviral

transduction efficiency that is favored in proliferating cells, and

ECs are actively dividing in response to continuous VEGF-

stimulation [15,16]. Moreover, the inclusion of packaging cells

provides a constant source of freshly produced retrovirus

throughout the experimental interval. Previously, the efficacy of

this model has been validated with packaging cells expressing

retrovirus encoding GFP [16], RhoA mutants [15], and

transcription factor Nur77 [17].

Animals were harvested on day 8 following induction of

angiogenesis, at which time neovascularization of the over-lying

dermis was extensive. As shown with CD31-staining of paraffin

sections (Fig. 1, top panels), ECs in the VEGF + DN calpain-I

specimens were well organized into blood vessels with clearly

distinguished lumens, whereas ECs in the VEGF + WT calpain-I

group were very poorly organized and lumens were nearly absent.

ECs in VEGF + empty vector specimens exhibited intermediate

lumen formation (Fig. 1, top panels, Fig. 1 bar graph: Relative

lumen area; for lower power views of larger fields see Fig. S1,

Supporting Information). Interestingly, the numbers of ECs per unit

area in cross-section was indistinguishable among DN calpain-I,

WT calpain-I, and empty-vector groups (Fig. 1 bar graph: ‘‘EC

density’’), indicating that expression of DN calpain-I or WT calpain-

I had no influence on EC number. Consistent with these

observations, co-culture of the various retroviral packaging cells

with the VEGF-expressing SK-MEL-2 cells in the same proportions

employed in vivo had no effect on VEGF production (see Methods),

as expected because VEGF expression in this system is constitutively

driven by a CMV promoter. Thus, the marked differences in lumen

formation among the different experimental groups can best be

explained by differences in blood vessel formation rather than

differences in EC density or VEGF expression.

Consistent with the CD31-staining analyses, microscopic analyses

of the vasculature in whole mounts revealed that prominent

neovessel sprouts in the VEGF + DN calpain-I group were well

integrated and perfused by Evans blue dye, whereas neovessel

sprouts in the VEGF + empty vector group were poorly integrated,

exhibited blind ends, and were incompletely perfused (Fig. 1 Evans

Blue Dye). In sharp contrast, neovessels in the VEGF + WT calpain-

I group were virtually absent indicating total disruption of

angiogenesis by WT calpain-I. Quantification of perfused neovessel

density from gross images taken at dissection indicated that DN

calpain-I increased neovascularization 60% relative to empty-vector

controls; whereas, WT calpain-I inhibited neovascularization by

.80% (Fig. 1 bar graph: ‘‘Relative neovascularization’’). Perfusion

with lysine-fixable 70 kD Texas-red dextran and confocal micros-

copy confirmed the architectural distinctions observed with Evans

blue perfusion (Supporting Information, Fig. S1).

To analyze further the improvement in angiogenesis attributable

to DN calpain-I, we prepared vascular casts with Microfil perfusion

(Fig. 1, Vascular Cast with Microfil). Two parameters were

quantified: numbers of neovessels with blind ends and neovessel

integration with neighboring neovessels as measured by counting

closed vascular loops (polygons) [18]. These quantitative analyses

indicated that, relative to empty-vector, DN calpain-I reduced blind

ends .50% and increased the number of closed vascular polygons

.100%, thus indicating substantial improvement in vascular

integration (Fig. 1 bar graphs: ‘‘Polygons’’ and ‘‘Blind ends’’).

DN Calpain-I Supports Integration of Vascular Networks
During Capillary Morphogenesis In Vitro

To investigate cellular mechanisms through which calpain

controls neovessel formation and integration, we prepared cultured

human dermal microvascular ECs (MVECs) transduced with DN

calpain-I, WT calpain-I, and empty vector. Cells were cultured in

the continuous presence of VEGF to imitate conditions in vivo. As

expected, MVECs transduced with DN calpain-I exhibited a

moderate but significant decrease (,35%) in calpain activity,

relative to controls, as measured with a fluorescent calpain substrate

assay (Fig. 2A, see Methods). Conversely, MVECs transduced with

WT calpain-I exhibited a moderate but significant increase in

activity (Fig. 2A). Next, these MVEC populations were stimulated

with three-dimensional collagen-I matrices, thereby inducing

assembly of vascular cord-like structures that are the precursors to

tubes with lumens [19,20]. This dynamic process closely resembles

formation of blood vessels in vivo [21,22]. Consistent with the in vivo

experiments described above, transduction of dermal MVECs with

retrovirus carrying DN calpain-I enhanced the inter-connectivity of

vascular cords in vitro (Fig. 2B, C). DN calpain-I increased cord

length, reduced blind ends, and increased formation of closed

polygon networks relative to empty-vector controls (Fig. 2B, C).

Conversely, transduction with retrovirus carrying WT calpain-I

reduced cord length, increased the number of blind ends, and

reduced formation of closed polygon networks (Figs. 2B, C).

Importantly, these findings established direct parallels with our

observations in vivo (Fig. 1), thereby confirming the value of this in

vitro assay for further investigations on mechanism.

DN Calpain-I Supports Vascular Cord Integration by
Improving Cytoskeletal Dynamics

Cytoskeletal analyses indicated that MVECs transduced with

either DN calpain-I or treated with calpastatin peptide, - a cell
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permeable and calpain-specific peptide inhibitor representing the

active region of the natural calpain inhibitor calpastatin [23],

exhibited a robust microtubule cytoskeleton relative to controls

(Fig. 3A); quantification of microtubule length indicated a highly

significant increase of nearly 100% (Fig. 3B). In contrast, cells

transduced with WT calpain-I exhibited a significantly diminished

microtubule cytoskeleton (Fig. 3A, B). These observations

suggested the possibility that calpain activity regulates integration

of MVEC networks through microtubule stability. To test this

hypothesis, we performed capillary morphogenesis assays in vitro

with taxol (15 mM), - a microtubule-stabilizing agent, or

nocodazole (15 mM), - an inhibitor of microtubule polymerization.

Cords were allowed to form for 3 hours before taxol or nocodazole

were added, and cord formation was then allowed to proceed for

Figure 1. DN calpain-I improves VEGF neovessel lumen formation and integration in vivo. Transfected SK-MEL2 cells engineered to
express VEGF165 were mixed with retroviral packaging cells expressing retroviruses encoding either dominant-negative (DN) calpain-I, wild-type (WT)
calpain-I or control retrovirus (Empty Vector), as indicated, and injected together with Matrigel into the sub-dermal space as described in Materials
and Methods. After 8 days, the structure and function of the angiogenic response elicited in the overlying dermis was investigated. Animals were
harvested following 10 min perfusion with the indicated tracer and tissue sections were analyzed by immunohistochemistry. CD31 Stain: Staining of
ECs in cross section with CD31 antibody (brown color) illustrates that DN calpain-I improved lumen formation (red arrowheads) relative to Empty
Vector control, whereas WT calpain-I almost completely abolished lumen formation. Scale bar = 25 microns. M = Matrigel, V = region of
neovascularization, S = skeletal muscle. Evans blue dye: Gross images of the vasculature in the dermis overlying the Matrigel implants (scale bar
= 500 microns) show that DN calpain-I improved blood vessel integration and tracer perfusion (Note: all perfused blood vessels appear blue) and
reduced blind ends (white arrows) relative to Empty Vector control (Note: numerous red-tipped vessels indicating sprouts that have not been
perfused with Evans Blue tracer), whereas WT calpain-I blocked formation of new blood vessels. Vascular Cast with Microfil: Following perfusion of the
entire vasculature with Microfil, blind ends (red arrows) were found to be numerous in the Empty Vector control but vessel inter-connectivity was
substantially improved by transduction with DN calpain-I. Scale bar = 450 microns. Bar graphs present quantification of relative lumen area from
CD31-stained sections; n$18 for each group, p,0.01 for DN calpain-I vs. empty vector and WT calpain-I vs. empty vector; ECs (per 0.01 mm2) from
CD31-stained sections; n$18 for each group; relative neovascularization (from gross images); n$18 for each group; p,0.01 for DN calpain-I vs. empty
vector and WT calpain-I vs. empty vector; and quantification of polygons (closed vascular loops) (p,0.02) and blind ends (p,0.02) from vascular casts
with Microfil; $10 for each group. Values reported for polygons and blind ends correspond to a sample area of 12 mm2.
doi:10.1371/journal.pone.0013612.g001
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an additional one hour. Consistent with the importance of

microtubule stability for integration of MVEC capillary networks,

stabilization of microtubules with taxol markedly improved cord

length and reduced blind ends relative to controls (Fig. 3C, D).

Conversely, destabilization microtubules with nocodazole reduced

cord length and increased blind ends (Fig. 3C, D). Accordingly,

taxol-stabilization of microtubules improved vascular network

integration in vitro similarly to DN calpain-I (Fig. 2), whereas

nocodazole-destabilization of microtubules reduced network

integration similarly to WT calpain-I (Fig. 2). Therefore, our

observations that calpain inhibition enhances microtubules, and

that microtubule stability is important for the integration of

vascular networks are all consistent with the hypothesis that

calpain regulates integration of vascular networks through the

microtubule cytoskeleton.

Calpains act through cleavage of numerous intracellular

substrates, and many of these substrates regulate the cytoskeleton

and cell adhesion [6]. Therefore, we searched for protein targets in

MVECs, cultured in the presence of VEGF, that are regulated by

DN calpain-I, WT calpain-I, or calpastatin peptide. At the protein

level, in .7 separate experiments, we did not detect significant

regulation of the focal adhesion proteins paxillin, talin, vinculin, or

the cytoskeletal proteins vimentin and a-tubulin, - all of which can

be cleaved by calpains [6,24] (Supporting Information, Fig. S2).

However, we consistently observed decreased quantity of the

microtubule-stabilizing protein tau in MVECs transduced with

WT calpain-I, and increased tau in cells transduced with DN

calpain-I and in cells treated with calpastatin peptide (Fig. 3E, F).

Tau cleavage by calpain is well documented [6]; and tau is

important for microtubule stability [25,26], Therefore, these data

support the hypothesis that inhibition of calpain supports

integration of vascular cord networks by increasing tau and,

consequently, increasing microtubule stability.

Finally, and consistent with previous findings that calpain

suppresses Rho activity by cleaving RhoA to generate a dominant-

negative form [27], we found that calpain-inhibitory calpastatin

peptide modestly but significantly increased Rho activity in dermal

MVECs (Supporting Information, Fig. S3A). Comparably modest

increases in RhoA activity have been shown previously to increase

actin stress fibers in dermal MVECs [15]. Moreover, consistent

with increased Rho activity, calpastatin peptide and DN calpain-I

each increased actin stress fibers relative to controls in confluent

quiescent cultures of dermal MVECs whereas WT calpain-I nearly

abolished stress fibers and (Supporting Information, Fig. S3B).

Similarly, in MVECs undergoing cord formation in response to

stimulation with collagen I, both calpastatin peptide and DN

calpain-I markedly increased actin cable length (Supporting

Information Fig. S3C, D). Collectively, these observations raise

the possibility that regulation of actin cytoskeletal dynamics, in

addition to regulation of microtubule stability, is also important to

the mechanism by which calpain regulates capillary morphogen-

esis and network integration.

Figure 2. Calpain activity regulates integration of vascular networks during capillary morphogenesis in vitro. (A) Quantification of
relative calpain activity, as determined with a fluorescent calpain substrate assay (see Methods) in MVECs transduced with DN calpain-I, empty vector,
or WT calpain-1 (n.17 and p#0.01 for all comparisons). (B) Equal numbers of transduced dermal MVECs (+20 ng/ml VEGF) were overlaid with three-
dimensional collagen-I to induce assembly of vascular cords. Relative to empty vector control, transduction with DN calpain-I enhanced inter-
connectivity of vascular cords. In contrast, WT calpain-I increased blind ends (white arrows) and diminished cord inter-connectivity. Bar = 100 mm. (B)
Quantification of EC density and cord organization; n$17 for each group; measured parameters correspond to actual areas of 0.4 mm2. Cord length:
p,0.001 for DN calpain-I vs. empty vector and WT calpain-I vs. empty vector. Blind ends: p,0.002 for DN calpain-I vs. empty vector and WT calpain-I
vs. empty vector. Polygons (closed vascular loops): p,0.001 for DN calpain-I vs. empty vector and WT calpain-I vs. empty vector.
doi:10.1371/journal.pone.0013612.g002
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Pharmacological Moderation of VEGF-induced Calpain
Activity with Calpain Inhibitor-I Supports Integration of
Vascular Networks In Vitro and Improves Lumen
Formation and Integration of VEGF Neovessels In Vivo

Consistent with previous reports that VEGF induces calpain

activity in MVECs from lung and skin [13,14], we found that

VEGF, at the concentration routinely employed in all of our in vitro

experiments (20 ng/ml), induced calpain activity .50% (Fig. 4A).

Calpastatin peptide (200 nM) and another calpain inhibitor,

calpain inhibitor-I, also known as ALLN (200 nM), each reduced

calpain activity in VEGF-stimulated cells to levels present in the

absence of VEGF stimulation. Moreover, 200 nM ALLN, which

suppressed calpain activity to baseline identically with 200 nM

calpastatin peptide (Fig. 4A), markedly improved integration of

vascular cords as measured by reduction in blind ends and

increased network connectivity (Fig. 4B, C). However, higher

doses of ALLN ($2.0 mM) did not improve integration of cords,

but rather these doses were inhibitory and caused cell rounding

(not shown). Notably, these higher doses of ALLN ($2 mM)

severely inhibited calpain activity in comparison with 200 nM

ALLN (Fig. 4A), underscoring the importance of moderate calpain

inhibition to achieve the desired outcome. To summarize, these

experiments indicate that: (1) VEGF induction of calpain activity is

likely responsible for impaired integration of vascular cords, and

(2) that normalization of calpain activity to baseline levels with

calpain inhibitor-I, improves integration of vascular cords

comparably to DN calpain-I (Fig. 2). Moreover, these findings

suggested that systemic administration of this inhibitor might

similarly improve neovascularization in vivo. To test this possibility,

we employed the same VEGF-driven angiogenesis model

described above but without retroviral packaging cells. Instead

animals were treated with calpain inhibitor-I (ALLN), which has

been used extensively in animal models but for other applications

[28,29,30,31]. In initial pilot experiments, calpain inhibitor-I was

administered daily (5, 10, 15, and 20 mg/kg, i.p.) beginning on

day two following implantation of the VEGF-transfectants. No

adverse effects on animal health were observed with any of these

doses. As determined grossly in these pilot experiments at day 8,

the 20 mg/kg dose clearly inhibited angiogenesis. In contrast, the

10 mg/kg dose did not inhibit neovascularization but rather

improved the integration of neovessels. Therefore, more extensive

experiments and analyses were performed with the 10 mg/kg

dose. As quantified grossly and in cross-section (Figure 4 D, E),

10 mg/kg daily calpain inhibitor-I markedly reduced blind ends

and increased vessel lumens similarly to DN calpain-I. These

improvements in neovascular architecture were accomplished

without any detectable effect on EC density (Figure 4E), indicating

that daily administration of 10 mg/kg calpain inhibitor-I did not

affect EC number. Similar to DN calpain-I, calpain inhibitor-I

(200 nM, ,1 x IC50) had no effect on production of VEGF by

SK-MEL2 cells (the source of VEGF expression) (see Methods),

consistent with the fact that VEGF expression was driven

constitutively by a CMV promoter. Thus, the cumulative evidence

indicates that improvement in neovascular architecture by calpain

inhibitor-I is best explained by improvement in capillary

morphogenesis rather than by differences in EC density or VEGF

expression.

Discussion

Although defects in neovascular architecture associated with

pathological angiogenesis are well recognized (reviewed [2,3]),

mechanistic explanations have been lacking. Experiments de-

scribed here identify VEGF-induction of calpain activity as an

important and previously unrecognized mechanism responsible for

failed integration of neovascular networks. As demonstrated here

with a mouse skin model of VEGF-driven angiogenesis, expression

of an established DN mutant of calpain-I reduced vascular blind

ends and markedly improved network integration and vascular

perfusion. Conversely, over-expression of WT calpain-I abolished

integration of neovascular networks. Importantly, daily adminis-

tration of calpain inhibitor-I, at 10 mg/kg, markedly improved

neovascular network integration and perfusion in vivo similarly to

DN calpain-I.

Calpains are a complex family, and multiple isoforms may be

involved in regulating integration of neovascular networks [6].

The most likely candidates are calpain-I and/or calpain-II which

are both are expressed by ECs [32]. Calpain-I is activated by

micro-molar calcium whereas calpain-II is activated by milli-molar

calcium and by the ERK pathway [6,33]. VEGF induces calcium

uptake and also releases free calcium from intracellular stores

[34,35] suggesting a mechanism for activating calpain-I. VEGF

also activates the ERK pathway [36] and activates calpain-II

[13,14]. Our experiments with WT calpain-I establish that over-

expression of calpain-I has strong negative consequences for

VEGF neovascular network integration both in vivo and in vitro.

Conversely, DN calpain-I and calpain inhibitor-I at the appropri-

ate dose strongly improve network integration. Although both DN

calpain-I and calpain inhibitor-I suppressed calpain activity in

MVECs as measured with a calpain fluorescent substrate assay,

our experiments do not identify which of the various calpain

isoforms were inhibited. Nonetheless, and regardless of which

calpain isoforms are involved, our studies establish a functional

connection between over-exuberant calpain activity and the failed

integration of neovascular networks during VEGF-driven angio-

genesis.

Figure 3. DN calpain-1 supports integration of vascular cord networks by enhancing the microtubule cytoskeleton. (A) MVECs
transduced with DN calpain-I or calpastatin peptide (200 nM) exhibited a robust microtubule cytoskeleton relative to Empty Vector controls. In
contrast, cells transduced with WT calpain-I exhibited a markedly diminished microtubule cytoskeleton. Microtubules were stained with a-tubulin
antibody; bar = 25 mm. (B) Quantification of mean microtubule lengths (n.20 cells; p,0.001 for DN calpain-I vs. empty vector; p,0.05 for WT
calpain-I vs. empty vector; p,0.001 for calpastatin peptide vs. vehicle control). (C) Equal numbers of MVECs were stimulated with collagen-I to
undergo capillary morphogenesis (as in Figure 2). Treatment with the microtubule-stabilizing agent taxol (15 mM) during the final hour of cord
formation, i.e. three hours after the initiation of capillary morphogenesis (see Methods), improved cord formation and reduced blind ends whereas
incubation with the microtubule-destabilizing agent nocodazole (15 mM) impaired cord formation and increased blind ends (white arrows). Cords
were stained for F-actin with phalloidin; bar = 50 mm. (D) Quantification of cord organization; n$17; measured parameters correspond to actual areas
of 0.4 mm2. Cord length: taxol vs. control p,0.001; nocodazole vs. control p,0.001. Blind ends: taxol vs. control p,0.002; nocodazole vs. control
p,0.003. Polygons (closed vascular loops): taxol vs. control p,0.001; nocodazole vs. control p,0.001. (E) As determined with immunoblotting, the
microtubule-stabilizing protein tau was increased in MVECs treated with calpastatin peptide or transduced with DN calpain-I, and decreased in MVECs
transduced with WT calpain-I relative to empty vector (Ctrl). Total Erk1/Erk2 served as loading controls (see Methods). (F) Quantification of tau protein
from blots stained with anti-tau antibody; n$5. Calpastatin peptide vs. control: p,0.03. DN calpain-I vs. empty vector control: p,0.03. WT calpain-I
vs. empty vector control: p,0.05.
doi:10.1371/journal.pone.0013612.g003
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Importantly, these studies also identify moderate inhibition of

calpain activity as a therapeutic strategy to reduce key architec-

tural defects associated with VEGF-driven angiogenesis. Blind

ends and poor network integration limit vascular perfusion and

seriously reduce the utility of VEGF as a therapeutic agent for

tissue revascularization [2]. Abnormal neovessels also contribute to

the pathology of disease. For example, in ischemic retinopathies,

abnormal neovascularization largely driven by VEGF damages

retina and can ultimately lead to blindness [37]. Our findings

illustrate that moderate calpain inhibition is a potentially

important strategy for rectifying defects in pathological neovessels

and also for achieving more functional therapeutic angiogenesis

with VEGF. However, it is important to emphasize that

appropriate inhibition of calpain is essential for the desired

Figure 4. VEGF increases calpain activity in MVECs, and calpain inhibitor-I improves VEGF angiogenesis. (A) MVECs, cultured in the
absence of VEGF, were incubated with fluorescent calpain substrate (see Methods) and stimulated with 20 ng/ml VEGF for 15 min; n$10; control vs.
VEGF (p,0.001), VEGF vs. VEGF plus 200 nM calpastatin peptide (p,0.002), VEGF vs. VEGF plus 200 nM ALLN (p,0.002). (B) VEGF-stimulated MVECs
undergoing capillary morphogenesis in 3D collagen. Reduction of calpain activity to normal baseline levels with 200 nM calpain inhibitor-I reduced
blind ends (white arrows) and markedly improved integration of cord networks. Bar = 50 mm. (C) Quantification of cord assays shown in (B); n$15.
Measured parameters correspond to values for samples areas of 0.4 mm2. Calpain inhibitor-I at the 200 nM dose had no effect on EC density but
strongly improved vascular network integration, as indicated by .100% increase in average cord length (p,0.003), .50% reduction in blind ends
(p,0.001), and nearly 50% increase in polygons, i.e. closed networks (p,0.005). (D) Daily systemic administration of calpain inhibitor-I (10 mg/kg)
improves integration and perfusion of new blood vessels. Skin angiogenesis was provoked by VEGF as in Figure 1 but without retroviral packaging
cells. Instead animals were treated daily, beginning on day 2, with 10 mg/kg calpain inhibitor-I and harvested on day 8. Evans Blue Dye: images of
dermis overlying the Matrigel implants (scale bar = 250 microns) following perfusion with dye for 10 min, illustrating that calpain inhibitor-I improved
blood vessel integration and perfusion (blue color) and reduced blind ends (arrows) relative to vehicle control. CD31 Staining: ECs in cross section
stained with CD31 antibody (brown color) illustrating that calpain inhibitor-I improves lumen formation (arrows) relative to control. Scale bar = 30
microns. S = smooth muscle, V = region of neovascularization, M = Matrigel. (E) Quantification of new blood vessel density, closed vascular
networks (polygons), and blind ends from gross images, and EC density and relative lumen area in cross-section from paraffin sections stained with
CD31 antibody; n$17. Gross vessel density (p,0.01), polygons (p,0.03), blind ends (p,0.01), relative lumen area (p,0.01). Numbers of polygons
and blind ends correspond to sample areas of 10 mm2.
doi:10.1371/journal.pone.0013612.g004
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outcome. In vivo, we observed inhibition of VEGF-driven

angiogenesis with 20 mg/kg daily calpain inhibitor-I, whereas

10 mg/kg daily improved rather than inhibited angiogenesis.

In particular, our in vitro experiments established that partial

inhibition of calpain activity in MVECs, - specifically by reducing

activity to the baseline level present in the absence of VEGF-

stimulation, provides marked improvement in vascular cord

integration, whereas higher doses of calpain inhibitor impaired

cord formation and caused cell rounding. In a previous report,

plasmid transfection of aortic ECs with DN calpain-I caused cell

rounding [8]; but we did not observe cell rounding in dermal

MVECs transduced by retrovirus with DN calpain-I, probably

because the level of DN calpain-I expression achieved and

consequently the extent of calpain inhibition achieved was more

modest. Nonetheless, we did observe cell rounding in dermal

MVECs with calpain inhibitor-I, at doses that inhibited calpain

activity more severely than retroviral transduction with DN

calpain-I. Also, others have reported previously that calpain

inhibition can suppress angiogenesis in vivo [13] and that calpain

inhibition can block capillary morphogenesis in vitro [14]. Our

findings do not challenge this view; rather they illustrate that more

modest calpain inhibition can actually improve network integra-

tion. Indeed, suppression of angiogenesis with relatively high doses

of calpain inhibitors is not surprising given the importance of

calpain activity for basic cellular functions such as adhesion and

migration [7,8,38,39]. However, our study illustrates the unantic-

ipated finding that appropriately modest inhibition of calpain

activity improves rather than blocks VEGF-driven angiogenesis.

It is also important to emphasize that our experimental findings

pertain to VEGF-driven pathological angiogenesis in a mouse

model without any disease-related complications. Co-morbid

factors such as diabetes and hyper-cholesterolemia cause endo-

thelial dysfunction that seriously hinders neovascularization in

response to pro-angiogenic therapy [40,41]. Thus, in the future, it

will be important to determine whether the calpain inhibitor

strategy described here also can facilitate VEGF pro-angiogenesis

therapy in the presence of endothelial dysfunction due to

underlying disease or if such dysfunction must first be addressed

with additional, unrelated intervention.

Mechanistically, our in vitro experiments indicate that hyper-

activation of calpain impairs neovascular network integration and

causes blind ends by destabilizing the microtubule cytoskeleton,

thereby impairing normal capillary morphogenesis. In particular,

our data indicate that reduction of the microtubule-stabilizing

protein tau, a well-recognized calpain substrate, is likely

responsible for failed neovascular inter-connectivity. Consistent

with a critical requirement of microtubules for proper capillary

morphogenesis and network integration, we found that microtu-

bule destabilization with nocodazole strongly inhibited integration

of cord networks; and these findings are consistent with previous

work demonstrating that microtubule de-polymerizing agents

induce collapse of new blood vessels in vivo and vascular structures

in vitro [42]. Interestingly, calpain also has been implicated in the

collapse of neurite extensions by destabilizing microtubules [43],

suggesting a fundamental parallel with findings reported here.

Similarly, calpain activation in neurite filipodia slows neurite

outgrowth and promotes repulsive growth cone turning [44].

It is important to distinguish microtubule stabilization by tau

protein, which is elevated by calpain inhibition, from artificial

microtubule stabilization mediated by taxol. Tau-mediated

stabilization of microtubules is sensitive to normal regulation by

phosphorylation and is therefore dynamic [45,46]. In contrast,

taxol (paclitaxel) hyper-stabilizes microtubules, thereby forming a

static tubulin/paclitaxel complex that suppresses the normal

dynamic behavior of microtubules [47,48,49]. Consistent with

reduced microtubule dynamics, taxol has been shown to inhibit

angiogenesis [50,51,52]; and although we found that taxol

improved vascular cord inter-connectivity in vitro when adminis-

tered after cords had begun to form, taxol blocked cord formation

if administered prior to the onset of capillary morphogenesis. In

contrast, we found that appropriate inhibition of calpain activity

improved inter-connectivity of cords even when calpain inhibitors

were administered prior to the initiation of capillary morphogen-

esis.

Other than the microtubule-stabilizing protein tau, we observed

no detectable effects of calpain on other known calpain substrates

including paxillin, talin, vinculin, vimentin and a-tubulin, -

indicating a selectivity for tau in MVECs. However, we did

observe a modest but significant reduction in Rho activity,

consistent with previous work demonstrating that calpain

generates a dominant-negative form of RhoA in ECs [27]. This

finding is also consistent with our observations that calpain activity

impairs the length and organization of actin stress fibers in

MVECs that are regulated by RhoA [15]. In addition, RhoA-

mediated actin dynamics are essential for aligning MVECs into

capillary cords in vitro and also for organizing MVECs into new

blood vessels in vivo [15]. Thus, calpain-mediated suppression of

RhoA activity and actin stress fibers are also likely important to the

mechanism by which calpain activity impairs the quality of VEGF-

driven angiogenesis. Accordingly, our findings suggest the more

general hypothesis that impaired regulation of the EC cytoskeleton

is responsible for neovascular defects [3]. Because multiple

signaling pathways regulate the cytoskeleton [53,54], there may

prove to be multiple cytoskeletal-targeting strategies, in addition to

calpain, for rectifying pathological angiogenesis [3]. Moreover,

multiple targeting strategies used in combination may be required

to achieve more complete rectification of pathological neovessels.

Finally, because calpain activity regulates neovessel integration

during angiogenesis, it seems likely that calpain activity relates to

fundamental mechanisms by which sprouting EC tip cells [55] link

up with distal sprouting EC tip cells to establish a new contiguous

blood vessel. To establish connections with other sprouting ECs at

a distance, sprouting tip cells are believed to establish guidance

pathways within the extracellular matrix through tensional forces,

i.e. by creating a ‘‘matrical track’’ [21] or ‘‘matrix guidance

pathway’’ [56]. A tensional signal is transmitted through the

extracellular matrix by tractional forces exerted by extending tip

cells, and the success of this process very likely depends on the

dynamic stability of tip cell extensions. Although further study is

required to address the involvement of calpain activity directly in

this process, it is tempting to speculate that VEGF-activation of

calpain activity impairs the stability of tip cell extensions and

thereby impairs the ability of these extensions to establish the

tensional forces required for linking-up with other sprouting tip

cells from distal vessels. This possibility is entirely consistent with

the role of calpain activity in tail retraction, i.e. in promoting rear

end detachment in migrating cells [10] and in promoting neurite

retraction [43], as discussed above.

In summary, VEGF activates calpain activity in MVECs

resulting in over-exuberant calpain activity that inhibits the

integration of neovascular networks, thereby causing formation

of vascular blind ends. Moreover, at the cellular level, VEGF-

induced calpain activity impairs neovessel integration by destabi-

lizing the microtubule cytoskeleton. Collectively, these experi-

ments identify hyper-activation of calpain as responsible for a

previously unexplained neovascular defect commonly associated

with pathological angiogenesis, and they provide new understand-

ing as to why VEGF induces abnormal neovascularization. They
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also identify a previously unrecognized role for calpain activity in

regulating blood vessel formation and integration. Finally, these

studies identify appropriately modest inhibition of calpain as a

previously unrecognized method for improving integration and

perfusion of VEGF-induced neovessels. Accordingly, this rational

pharmacological strategy offers promise for improving vascular

outcomes in clinical settings wherein rectifying defects in

pathological neovessels or improving therapeutic angiogenesis is

the desired goal [2].

Materials and Methods

Reagents
Purified recombinant human VEGF165, expressed in Sf21 cells,

was obtained from the NCI Preclinical Repository, Biological

Resources Branch, Frederick, MD. TAU-5, paxillin, talin, ERK1/

2 (K-23), and RhoA antibodies were from Chemicon international

(Temecula, CA). Vinculin, vimentin, and ã-tubulin (Clone DM

1A) antibodies, taxol and nocodazole were from Sigma-Aldrich

(St. Louis, MO). ECL Western Blotting Substrate kit was from

Pierce (Rockford, IL). Texas-Red secondary antibody for micro-

tubule staining was from Jackson Immunoresearch (West Grove,

PA). CD31 (PECAM-1) antibody was from BD Biosciences

Pharmingen (San Diego, CA). DAB substrate Kit was from

Zymed Laboratory Inc. (Carlsbad, CA). Matrigel and collagen-1

were from BD Biosciences (Bedford, MA). Oregon Green-

conjugated phalloidin was from Invitrogen. Calpain inhibitor-I

(ALLN) and calpastatin peptide were from Calbiochem (Gibbs-

town, NJ). Lysine-fixable Texas-red dextran (MW 70 kD) for

perfusion studies was from Invitrogen (Carlsbad, CA).

Preparation of Packaging Cells Expressing Retroviruses
Encoding DN Calpain-I and WT Calpain-I

Previously validated DN calpain-I and WT calpain-I cDNAs [8]

were subcloned into retrovirus vector pLNCX2 (Clontech, Palo

Alto, CA) through HindIII/NotI sites. Clones were verified by

sequencing. PT67 retroviral packaging cells (Clontech, Palo Alto,

CA), which express the 10A1 viral envelope for production of

amphotropic virus, were transfected with pLNCX2 vector

containing DN calpain-I, WT calpain-I, or vector without insert

(empty vector). Transfectants were cloned, and clones expressing

retrovirus at 16105 c.f.u./ml were selected for subsequent

experiments.

Angiogenesis in Mouse Skin, Retroviral Transduction and
Drug Administration In Vivo, and Analyses of Vascular
Parameters

Neovascularization was investigated in vivo according to a

previously established method that includes both VEGF165-

transfected SK-MEL2 cells and retroviral packaging cells, thereby

providing a constant source of VEGF and retrovirus [15,16].

Seven week old female athymic nude mice were injected

subcutaneously on right and left flanks with 0.3 ml of 9 mg/ml

Matrigel (BD Biosciences) containing 16106 VEGF165-SK-MEL2

cells together with 16106 retroviral packaging cells, as indicated.

Untransfected parental SK-MEL2 cells do not provoke angiogen-

esis detectably, and therefore the VEGF165-SK-MEL2 transfec-

tants employed here allow for specific investigation of VEGF-

driven angiogenesis [57]. At times indicated, the animals were

euthanized, dissected, and photographed. In addition, to analyze

perfusion of new blood vessels, representative animals from each

group received tail vein injections of 0.2 ml of 0.5% (w/v) Evan’s

Blue dye or 70 kD Texas-red dextran (25 mg/ml) in sterile saline.

Gross images of perfused vessels were obtained using a Wild M400

Stereomicroscope and SPOT Insight digital camera. For whole

mount immunofluorescence analysis of Texas-red dextran tracer-

filled vasculature, skin samples were fixed in 4% paraformalde-

hyde for 4 hr, dehydrated with a graded series of ethanol solutions

(50–100%) and cleared with methyl salicylate, mounted in

immersion oil, and viewed with a Bio-Rad MRC-1024 Confocal

Microscope equipped with an Argon-Krypton Laser. Four-six

fields per sample were visualized using x10 objective. For

histology, Matrigel implants together with associated skin were

fixed for 1 hour in 10% buffered formalin and embedded in

paraffin. Immuno-histochemical staining of ECs with CD31

antibody was performed as described [16]. Neovascular density

and lumen area were traced through freehand selections on digital

images and measured with NIH ImageJ software. EC density was

measured through freehand point selections with NIH ImageJ

software.

Vascular architecture was also analyzed with Microfil perfusion.

The entire vascular tree of the mouse was filled with Microfil MV-

122 (Flow Tech; Carver, MA) [58]. The Microfil was allowed to

polymerize for 24 h at 4uC. Specimens of flank skin were cleared

by dehydration in a graded series of glycerin solutions (50–100%)

and photographed using a Wild M400 Stereomicroscope and

SPOT Insight digital camera. Blind ends and polygons (closed

vascular loops) were quantified through freehand point selections

with NIH ImageJ software.

Finally, for experiments with calpain inhibitor-I (ALLN),

angiogenesis assays were performed as above but without

retroviral packaging cells. ALLN was administered daily i.p. at

10 mg/kg in saline vehicle unless indicated otherwise.

MVEC Isolation, Cell Culture, and Retroviral Transduction
of MVECs

Human dermal MVECs were isolated from neonatal foreskins

[59] and cultured [16] in the continuous presence of 20 ng/ml

VEGF165. All experiments were performed with cells at the fourth

to seventh passage. MVECs at passage 5 or less were transduced

with retroviruses according to a previously established, efficient

method [60]. The transduction procedure was repeated three

times on consecutive days before subjecting cells to selection with

300 micrograms/ml G418. This method yields100% transduction

as indicated with GFP vectors [15,16]. Cells were used within one

week after selection for experiments.

Capillary Morphogenesis Assays with MVECs In Vitro;
Quantification of Parameters

Capillary morphogenesis assays were performed by ‘‘overlay-

ing’’ and ‘‘sandwiching’’ confluent cell monolayers with rat tail

collagen-I (BD Biosciences [15,16]. The sandwich-type assay was

performed in 12-well plates with 1.0 mg/ml collagen-I in full

medium. Where applicable, calpain inhibitors were added for

overnight incubation, prior to adding the upper layer of collagen-I.

Capillary morphogenesis was allowed to proceed for 16 h; the

assay plates were fixed with 10% formalin for one hour and

stained for F-actin with fluorescent Oregon Green-conjugated

phalloidin (Invitrogen, final concentration 0.5 units/ml) and

subsequently photographed. For the ‘‘overlay’’ assay, calpain

inhibitors were added and incubated with cells in 24-well plates

overnight. The next day, each well was overlaid with 300

microliters of collagen-I at a concentration of 0.5 mg/ml in

serum-free medium together with inhibitors as indicated. Capillary

morphogenesis was allowed to proceed for 4 h. For capillary

morphogenesis assays involving taxol or nocodazole, cords first
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were allowed to form for 3 h and then these agents were added,

where indicated, for the final hour of the assay. In all cases, cells

were fixed in 10% formalin for 10 minutes, permeabilized for one

minute with 0.02% Triton-X100 in PBS and stained for F-actin (as

above). Cells were photographed with a Nikon inverted fluorescent

microscope and digital camera. In all cases, cord length, blind

ends, and polygons were quantified using NIH ImageJ software.

Cord length was traced and measured through freehand line

selections; cords were traced from one edge of the microscopic

frame to another, following the least circuitous route. Moreover,

cord length was traced and determined independently of

intersecting cords. Blind ends and polygons were determined with

point selections. Measured parameters correspond to actual areas

of 0.4 mm2. Statistical analyses were performed as described

below.

Analyses of Cytoskeletal Proteins, Rho Activity, and VEGF
Expression

MVECs transduced with DN or WT calpain-I or empty vector

were grown to confluence in full medium. Where indicated,

calpastatin peptide (200 nM) was added 24 hours before harvest.

MVECs were harvested in lysis buffer (20 mM Tris-HCl, 150 mM

NaCl, 10% Glycerol, 1% Nonidet P-40, 3 mM MgCl2, 1 mM

EDTA, 1 mM EGTA, 5 mM Na3VO4, 150 mM sodium pyro-

phosphate, plus a cocktail of proteases inhibitors containing 4-(2-

aminoethyl)benzenesulfonyl fluoride (AEBSF), pepstatin A, E-64,

bestatin, leupeptin, and aprotinin. Lysate (20 mg protein) was

subjected to electrophoresis with SDS PAGE on a 4–20% gradient

gel. Gels were electrophoretically transferred to PVDF Membrane

(BIO-RAD) and stained with antibodies (as indicated). Total

Erk1/Erk2 served as loading controls; we have found these

proteins to be particularly suitable and preferable as loading

controls because they are invariant in MVECs under a variety of

experimental conditions [61,62]. Protein bands were detected with

ECL Western blotting substrate. Active GTP-Rho (16107 ECs/

sample) was measured with an established ‘‘pull-down’’ assay

followed by immunoblotting [63]. Blots were stained with rabbit

polyclonal antibody to RhoA (#SC-179, Santa Cruz Biotechnol-

ogy, Santa Cruz, CA). Active Rho was quantified with a digital

scanner. To assay for any effects of retroviral transduction or

calpain inhibitor-I on VEGF expression, VEGF165-SK-MEL2

cells were transduced with the various calpain retroviruses

(described above) or treated continuously with calpain inhibitor-I

(0.2 mM, 2.0 mM). Medium was harvested daily for 8 days, and

VEGF165 was concentrated with heparin-Sepharose chromatog-

raphy [64] followed by electrophoresis and immunoblotting with

VEGF-specific antibody [65] and quantification with a digital

scanner.

Calpain Fluorometric Assay
Calpain activity was measured in live dermal MVECs with an

established fluorescent calpain substrate 7-amino-4-chloromethyl-

coumarin, t-BOC-L-leucyl-L-methionine amide (CMAC, t-BOC-

Leu-Met; from Invitrogen) [66]; and calpain inhibitors, as

indicated, were used to establish specificity. Cells were incubated

with 20 mM for 15 min at 37 degrees C; cleavage product was

measured with a SpectraMax M5 fluorescent plate reader

(excitation/emission 351/430) with SoftMax Pro5 software

(Molecular Devices, Sunnyvale CA).

Statistical Analyses
All data are presented as mean 6 S.E.M. Statistical analyses

were performed with InStat 3 software for Macintosh, employing

the two-tail Mann-Whitney test and assuming unequal variances

between the two groups under comparison. In all cases, an

individual experimental group was compared with the appropriate

control group; and calculated p-values are based on direct

comparisons between the two groups, unless indicated otherwise.

Supporting Information

Figure S1 Angio-architecture of VEGF neovessels as viewed in

whole mounts and in cross sections. Tx-Red dextran: Whole

mount fluorescent images of the dermal vasculature perfused with

TX-Red dextran confirm enhancement in vessel interconnectivity

by DN capain-1 and disruption of network integration by WT

calpain-I in comparison with Empty Vector control (scale bar

= 100 mm). CD31 Stain: Staining of ECs in cross section with

CD31 antibody (brown color) illustrates that DN calpain-I

improved lumen formation (red arrowheads) relative to Empty

Vector control, whereas WT calpain-I almost completely abol-

ished lumen formation. Scale bar = 50 mm. See Fig. 1 in the text

for higher power views of CD31 staining. S = skeletal muscle, V

= region of neovascularization, M = Matrigel.

Found at: doi:10.1371/journal.pone.0013612.s001 (9.70 MB TIF)

Figure S2 Survey of potential calpain substrates in dermal

MVECs. Unfractionated lysates from equal numbers of MVECs

transduced with DN calpain-I, WT calpain-I or empty vector

(Ctrl); and control cells treated with calpastatin peptide 24 h prior

to harvest were subjected to immuno-blotting and stained with

antibodies, as indicated. At the protein level, measurable changes

in levels of proteins paxillin, talin, vinculin, or the cytoskeletal

proteins vimentin and a-tubulin were not detected. Total Erk1/

Erk2 served as loading controls (see Methods).

Found at: doi:10.1371/journal.pone.0013612.s002 (2.86 MB TIF)

Figure S3 Calpain regulation of Rho activity and actin stress

fibers in dermal MVECs. (A) MVECs treated with calpastatin

peptide (200 nM, 24 h prior) exhibited modest but significant

increases in Rho activity, consistent with the increase in stress

fibers (p,0.05; n = 7). (B) MVECs treated with calpastatin peptide

(200 nM, 24 h prior) or transduced with DN calpain-I exhibited

increased actin stress fibers relative to Empty Vector controls, as

determined with phalloidin staining. In contrast, cells transduced

with WT calpain-I exhibited no stress fibers with actin confined to

the cell periphery. Bar = 25 mm. (C) Calpain regulation of the

actin cytoskeleton during formation of capillary cords. In all

panels, equal numbers of transduced MVECs were stimulated to

undergo capillary morphogenesis with collagen-I, and F-actin was

stained with phalloidin. Calpastatin peptide and DN calpain-I

improved organizational alignment of large actin cables (arrows)

and improved formation of capillary cords; in contrast, WT

calpain-I disrupted actin organization (arrows) and retarded

collagen-induced cord formation. Bar = 25 mm. (D) Measured

lengths of adjoining actin cables in cords; n.19. DN calpain-I vs.

control (p,0.001), WT calpain-I vs. control (p,0.003).

Found at: doi:10.1371/journal.pone.0013612.s003 (5.92 MB TIF)
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