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In-depth proteomic analysis identifies key gene signatures 
predicting therapeutic efficacy of anti-PD-1/PD-L1 monotherapy 
in non-small cell lung cancer

Xiaoshen Zhang1#, Guanghui Gao1#, Qian Zhang1#, Songchen Zhao1, Xuefei Li1, Wei Cao2, Heng Luo1, 
Caicun Zhou1 

1Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China; 2Department of Breast, 

The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China

Contributions: (I) Conception and design: C Zhou, W Cao, H Luo, X Zhang; (II) Administrative support: C Zhou, W Cao, H Luo; (III) Provision of 

study materials or patients: G Gao, C Zhou; (IV) Collection and assembly of data: G Gao, X Zhang, Q Zhang, S Zhao, X Li; (V) Data analysis and 

interpretation: X Zhang, G Gao, Q Zhang; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. 
#These authors contributed equally to this work.

Correspondence to: Wei Cao, MD, PhD. Department of Breast, The International Peace Maternity and Child Health Hospital, School of Medicine, 

Shanghai Jiao Tong University, 1961 Huashan Road, Shanghai 200030, China. Email: 1918439255@qq.com; Heng Luo, MD, PhD; Caicun Zhou, 

MD, PhD. Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Road, Shanghai 

200433, China. Email: luoh978@163.com; caicunzhoudr@163.com.

Background: Immunotherapy has opened up a new era of individualized treatment for non-small cell lung 
cancer (NSCLC) with negative driver gene mutations. Anti-programmed cell death 1 (PD-1)/programmed 
cell death ligand 1 (PD-L1) antibodies have been the main options for immunotherapy over the past decade. 
Screening for predictive markers of anti-PD-1/PD-L1-responsive patients remains a focus in the field of 
immunotherapy, especially on the protein level in which relevant proteomic biomarkers are still lacking. 
Methods: We collected samples from 23 patients with NSCLC who received anti-PD-1/PD-L1 
monotherapy and were followed up for three years. The proteomic profile of the tumor was obtained by mass 
spectrometry (MS). Meanwhile, we combined the RNA sequencing (RNA-seq) data of 27 patients treated 
with anti-PD-1/PD-L1 therapy in a previous study to establish an integrated gene network. Weighted 
correlation network analysis (WGCNA) and elastic network were implemented to screen the top gene 
modules for predicting treatment-responsive patients. Gene expression related mutational patterns were also 
retrieved for validation in the Memorial Sloan-Kettering Cancer Center (MSKCC) cohort. 
Results: Our results showed the gene expression profile of MOXD1, PHAF1, KRT7, ANKRD30A, 
TMEM184A, KIR3DL1, and KCNK4 could better predict the durable response to anti-PD-1/PD-L1 
therapy, with the specificity and sensitivity of 0.76 and 0.6, respectively. Besides, the mutational gene profile 
associated with these genes also suggested an association with favorable response in the MSKCC cohort. 
Patient-specific protein-protein interaction (PPI) network also indicated strong correlation among KRT7, 
TMEM184A and ANKRD30A.
Conclusions: Our study indicated that key gene signatures identified by machine learning model could 
be utilized for clinical screening of patients who might benefit from anti-PD-1 therapy. Further mechanistic 
investigations around these genes are warranted. 
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Introduction

Lung cancer is a malignant tumor that seriously endangers 
human health (1,2). Non-small cell lung cancer (NSCLC) 
is the most common type and accounts for about 80–85% 
of lung cancer (3). With the introduction of immune 
checkpoint inhibitor (ICI) therapy, the programmed cell 
death 1 (PD-1)/programmed cell death ligand 1 (PD-L1) 
blockade prolongs 5-year survival rate from 4% to 16% in 
patients with pretreated advanced NSCLC (4). To date, anti-
PD-1/PD-L1 therapy has become the standard first-line 
option for driver gene-negative NSCLC (5). Although PD-
L1 is currently a widely accepted biomarker for predicting 
the efficacy of immunotherapy, relying solely on PD-L1 
as a single biomarker may not be sufficient to identify the 
suitable treatment population for immunotherapy due 
to the highly complex tumor microenvironment (TME). 
The comprehensive scoring system based on genomics 
mutation, such as tumor mutational burden (TMB) and 
T cell-inflamed gene expression profile (GEP), could be 
excellent supplements to efficacy prediction (6). However, 
more evidence on transcriptomic or proteomic level is still 
required to further confirm the immune status of patients 

since the routinely utilized predictive biomarkers or 
prediction models are still not accurate enough. 

The immune state is dynamic, whereas genetic mutations 
at the DNA level are relatively stable. Nonetheless, proteins 
can reflect the changes in the immune system over a period 
of time, so as to more dynamically track the real-time 
status of patients. Screening for proteins that can affect 
the anti-tumoral environment may therefore be the key to 
exploring biomarkers of therapeutic response to ICIs. To 
date, some studies have been conducted to investigate such 
biomarkers at the protein level, including tumor neoantigen 
and immune checkpoint proteins (ICPs) in the TME. The 
prediction of neoantigens mainly depends on gene mutation 
burden (7). In terms of ICPs, similar to PD-L1, they can 
be utilized to evaluate cellular components or immune 
status in the TME, but a large number of clinically relevant 
genes are still neglected (8,9). Therefore, it is imperative to 
investigate the protein components in the TME through 
proteomics to identify the potential therapeutic biomarkers 
of ICIs.

In this study, data were obtained from 50 patients 
with NSCLC who were treated with anti-PD-1/PD-L1 
monotherapy and subjected to high-throughput proteomic/
transcriptomic profiling. Among them, the data of 23 
NSCLC patients were from our institution, and their 
primary lung lesions were examined by protein mass 
spectrometry (MS) (SHFK cohort). Data for the remaining 
27 patients were from GSE135222 with the RNA-seq 
analysis data (GSE135222 cohort) (10). By combining 
differential gene screening and weighted correlation 
network analysis (WGCNA), a total of 43 gene modules 
positively correlated to efficacy were screened. Secondly, 
the elastic network, a machine learning model, was used to 
screen the input variables and three key gene modules were 
obtained. By using gene expression-mutation association 
analysis, 59 mutated genes coexisting with our selected 
genes were located. Finally, investigation of the Memorial 
Sloan-Kettering Cancer Center (MSKCC) ICI cohort 
confirmed that patients with these gene signatures had 
prolonged progression-free survival (PFS), indicating a 
durable clinical response (11,12). Moreover, our patient-
specific protein network further confirmed the practically 
significant protein-protein interaction (PPI) of selected 
gene panels. We present this article in accordance with the 
TRIPOD and REMARK reporting checklists (available at 
https://tlcr.amegroups.com/article/view/10.21037/tlcr-23-
713/rc).

Highlight box

Key findings
• The proteomic gene expression profile of MOXD1, PHAF1, 

KRT7, ANKRD30A, TMEM184A, KIR3DL1, and KCNK4 could 
better predict the durable response to anti-programmed cell death 
1 (PD-1)/programmed cell death ligand 1 (PD-L1) therapy among 
non-small cell lung cancer (NSCLC) patients.

What is known and what is new? 
• PD-L1 is currently a widely accepted biomarker for predicting the 

efficacy of immunotherapy. Nonetheless, relying solely on PD-L1 
as a single biomarker may not be sufficient to identify the suitable 
treatment population for immunotherapy due to the highly 
complex tumor microenvironment of NSCLC patients.

• Immunotherapy efficacy-based proteomic gene panel could further 
improve prediction accuracy for the efficacy of PD-1/PD-L1-based 
immunotherapy among NSCLC patients.

What is the implication, and what should change now? 
• The rationale for using proteomics to develop proteomic 

gene signatures in predicting NSCLC patients suitable for 
immunotherapy has been established in this study.

• Future proteomic analyses with larger sample size should be 
conducted to further confirm the clinical application value of 
proteomic gene panels in predicting the efficacy of immunotherapy 
among NSCLC patients.

https://tlcr.amegroups.com/article/view/10.21037/tlcr-23-713/rc
https://tlcr.amegroups.com/article/view/10.21037/tlcr-23-713/rc
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Methods

Patients

This work was carried out in accordance with Declaration 
of Helsinki (as revised in 2013), and was approved by ethics 
committee of Shanghai Pulmonary Hospital (No. L20-
337Y). Written consents were obtained from all enrolled 
participants. Twenty-three patients included in this study 
were diagnosed as NSCLC without targetable driver 
gene mutations, and received anti-PD-1 or anti-PD-L1 
monotherapy as second-line or above therapy (Table S1). 
Samples were collected before immunotherapy. All samples 
were paraffin-embedded or stored at −80 ℃. Patients were 
hospitalized regularly during treatment for the assessment 
of therapeutic efficacy and physical status. The response 
to immunotherapy was determined according to Response 
Evaluation Criteria in Solid Tumors version 1.1 (RECIST 
V.1.1) (13). Durable clinical benefit (DCB) was defined 
as patients with complete response (CR), partial response 
(PR) or stable disease (SD) for at least six months. PFS was 
calculated as the time from the first follow-up to the first 
imaging evidence of disease progression or death.

Protein sample preparation and MS analyses

All lung lesions were collected by fine needle biopsy 
under computed tomography (CT) guidance and 
pathologically confirmed. All samples were processed in 
the same proteomic platform with different pre-processing 
procedure. For paraffin-embedded sections, samples were 
de-paraffinized using xylene, and sequentially hydrated for 
three times with anhydrous ethanol, 90% and 75% ethanol. 
The frozen samples were rinsed twice with iced phosphate 
buffer saline (PBS) and grounded in liquid nitrogen. The 
lysis solution with protease inhibitor (0.1 M Tris-HCL, 
PH 8.0, 0.1 M DTT) was mixed with sample grinds or de-
paraffinized samples, and homogenized on ice. Sodium 
dodecyl sulfate was added until a final concentration of 4%, 
followed by incubation at 99 ℃ for 1 h. The supernatant was 
centrifuged and added to acetone, followed by incubation 
at −20 ℃ overnight. The protein samples were re-dissolved 
using 8 M urea, followed by reductive alkylation. The 
samples were then lysed with protease at 37 ℃ for 16 h. 
After termination, the samples were desalted using C18 
columns and lyophilized for quantification. All samples were 
assayed using hybrid trapped ion mobility spectrometry 
(TIMS) coupled with quadrupole time-of-flight MS. MS 
data were searched in the Swiss-prot database. 

Screening for differential genes and construction of a 
WGCNA network

The WGCNA network was  constructed and the 
differentially expressed genes were analyzed in the SHFK 
and GSE135222 cohorts, respectively. The protein 
expression matrix was column-wise normalized before 
computation. For the construction of gene network, genes 
with missing expression levels or zero variance were deleted. 
Hierarchical clustering was performed for the samples and 
outliers were removed. PFS was used to associate with the 
gene modules in the weighted network to construct the 
gene-clinical feature correlation matrix. Since the PFS of 
patients in the GSE135222 cohort was not available, the 
DCB and non-durable clinical benefit (NDB) of patients 
were used as surrogate endpoints. The number 1 was used 
to represent patients with DCB, indicating a possibly 
longer PFS. Differentially expressed genes were analyzed 
by comparing DCB and NDB in each cohort. Genes with 
an absolute value of LogFC equal to or greater than 1.5 
and P-adj less than 0.1 were considered as significantly up-
regulated or down-regulated genes. We compared and 
matched these genes with gene modules, and filtered out 
the unmatched genes. The R package deseq2 (1.38.3) and 
WGCNA (1.72-1) were used for analysis.

Gene module screening and The Cancer Genome Atlas 
(TCGA) cohort validation

A total of 43 gene characteristic modules obtained from the 
WGCNA network were integrated with seven immune-
related genes from the literature (14). The Gene Set 
Variation Analysis (GSVA) scores of 50 samples were 
calculated in the cohort, and used as the independent 
variable to build the elastic network. With the finding of the 
minimum α value, a stable model was built to predict the 
efficacy. Three independent gene modules that contributed 
the most to DCB were selected as the efficacy-dependent 
variables. The cut-off value was calculated in the cohort. 
Then, GSVA values were calculated for the TCGA-lung 
adenocarcinoma (LUAD)/lung squamous cell carcinoma 
(LUSC) cohort with the above three selected gene modules, 
followed by survival analysis. At the same time, through 
Gene Set Cancer Analysis (GSCA) analysis of the three 
modules, the correlation between the three modules and 
main signal pathway or immune cell components was 
calculated (15). Finally, gene modules without statistically 
significant differences in hazard ratio (HR) were filtered out 

https://cdn.amegroups.cn/static/public/TLCR-23-713-Supplementary.pdf
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by Cox regression analysis. We also screened gene modules 
closely relevant to T cells, B cells, cytotoxic T cells and 
other immune cells promoting anti-tumor immunity.

Association analysis of gene expression and mutations and 
further validation in MSKCC ICI cohort

The relationship between gene expression and gene 
mutations was verified. By using TCGA cohort, the 
cohort with genes mutation status was first subdivided and 
the expression differences were determined between the 
mutant/wild type of these screened genes, by the means 
of muTarget method (16). Then, the mutant genes in the 
group of highly expressed genes screened were selected as 
the gene panel for subsequent MSKCC cohort validation 
(11,12). Also, these mutation genes were further screened 
and verified in the MSKCC cohort according to the 
mutation rates. Data and visualization were acquired via 
cbioportal (accessed in December 2022).

Patient-specific PPI network construction and modification

Individualized PPI network was constructed to demonstrate 
the differences between DCB and NDB cohorts, using PPI 
Cytoscape 3.7.1. TME involves inter-individual differences, 
and the correlation between each gene pair indicates 
individual proximity. Briefly, each gene pair between DCB 
and NDB cohorts was determined by calculating the Pearson 
correlation index (PCI), as previously reported (17). If the 
PCI perturbation was significant, we considered that we 
obtained a solid gene pair. This process was repeated for 
each gene, eventually yielding a patient-specific network. 
According to this analysis, a patient-specific protein-
pair network was generated for every DCB sample. Each 
PPI network was curated by proved/existing protein 
interactions. Four databases of protein interactions were 
utilized (STRING, PROPER, PREPPI and Biogrid, 
downloaded in June 2022). Briefly, patients’ gene pairs were 
compared with the curated PPI datasets. Gene pairs with 
existing PPI were remained, while others were removed for 
unknown protein-level interactions. 

Statistical analysis and bioinformatics methods

In this study, R (4.1.0) was used for statistical analysis and 
plotting. Unless otherwise stated, a P value of less than 0.05 
was considered statistically significant in this study. 

Results

Forty-three gene modules were obtained through joint 
screening of gene modules

The designed data analysis flow is depicted in Figure 1A. 
Through WGCNA network and differential gene analysis, 
a total of 43 differential gene-modules were obtained from 
two cohorts (tables are available at https://cdn.amegroups.
cn/static/public/tlcr-23-713-1.xlsx; https://cdn.amegroups.
cn/static/public/tlcr-23-713-2.xlsx; https://cdn.amegroups.
cn/static/public/tlcr-23-713-3.xlsx,  Figure 1B,1C,  
Figure 2A,2B). Among these differential genes, the 
correlation between gene modules and PFS could be 
inferred by correlation coefficient (Figure 1B,1C). Gene 
modules were mapped with differentially expressed 
genes, and only matched genes remained. Of note, in the 
GSE135222 cohort, due to the lack of PFS corresponding 
to the original data, the DCB and NDB of patients were 
used as surrogate endpoints that the corresponding PFS of 
the DCB and NDB groups were set to 1 and 0, respectively. 
Therefore, we could approximate the coefficients related to 
PFS. In the subsequent elastic network modeling, the gene 
modules negatively related to PFS were not eliminated, 
because the inclusion of all these relevant gene modules was 
conducive to further analysis.

Three gene modules related to DCB could better predict 
response to ICI 

Through the model of elastic network, three gene modules 
with highest coefficients related to the durable response of 
ICI were identified, including rna_lightcyan, rna_grey60, 
and rna_black (Figure 2C,2D). These three gene modules 
were the first three modules with the largest coefficients in 
the model, all of which were from the GSE135222 cohort. 
All three gene modules had positive LogFC values, and 
were positively related to the DCB group (Figure 2E). The 
GSVA values of these three gene modules were calculated 
for both cohorts, and the results showed that these three 
indicators could predict the therapeutic response. Among 
them, the rna_grey60 module had the maximum area under 
the curve (AUC) (Figure 2F). Furthermore, the molecular 
functions of the signaling pathway corresponding to the 
three gene modules were confirmed. The signaling pathway 
enrichment showed that the black and lightcyan modules 
had significant correlations with the main signaling pathway 
modules (Figure 3A). In the immune cell enrichment 
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Figure 2 Three gene modules related to DCB predicted response to immunotherapy. (A,B) Cluster dendrogram of SHFK cohort or 
GSE135222 cohort. Genes were clustered in color modules. (C,D) Elastic net model was built to screen valid input gene modules. DCB =1 
or NDB =0 was labeled as the dependent variable. The minimal α was searched for model fitting. The input gene modules originated from 
SHFK cohort (labeled as “pro_XXX”) or GSE135222 cohort (labeled as “rna_XXX”). (E) The top 5 gene modules as the coefficient of the 
elastic net. Genes with positive logFC were in favor of DCB. Top 3 modules (rna_grey60, rna_lightcyan, and rna_black) were selected. (F) 
The GSVA scores of rna_grey60, rna_lightcyan, and rna_black were calculated in the combined SHFK cohort and GSE135222 cohort, and 
the ROC curve was drawn. For rna_black, the cutoff value was 0.0939, and the specificity and sensitivity were 0.92 and 0.6, respectively. For 
rna_grey60, the cutoff value was 0.248, and the specificity and sensitivity were 0.8 and 0.72, respectively. For rna_lightcyan, the cutoff value 
was 0.211, and the specificity and sensitivity were 0.76 and 0.6, respectively. SHFK, Shanghai Fei Ke; DCB, durable clinical response; FC, 
fold-change; NDB, non-durable clinical response; AUC, area under the curve; GSVA, Gene Set Variation Analysis; ROC, receiver operating 
characteristic. 
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Figure 3 The pathways and immune cell components related to these three gene modules. (A) GSCA pathway enrichment of three gene 
modules in the LUAD and LUSC cohorts. (B) GSCA immune cell components enrichment of three gene modules in the LUAD and LUSC 
cohorts. Lightcyan module was positively related to CD4 T cells, CD8 T cells, NKT cells, macrophage and infiltration score in the LUAD 
and LUSC cohorts, indicating a possible enrichment of tumoricidal immune cells. LUAD, lung adenocarcinoma; LUSC, lung squamous cell 
carcinoma; EMT, epithelial-mesenchymal transition; AR, androgen receptor; ER, estrogen receptor; RTK, receptor tyrosine kinase; TSC, 
tuberous sclerosis complex; mTOR, mammalian target of rapamycin; DC, dendritic cells; MAIT, mucosal-associated invariant T cells; NK, 
natural killer; NKT, natural killer T.
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analysis, the lightcyan module was positively related to B 
cells, CD4+ T cells, memory cells, natural killer (NK) cells, 
natural killer T (NKT) cells, and macrophages (Figure 3B). 
Therefore, from the perspective of molecular function, 
the anti-tumor immune functions corresponding to the 
lightcyan gene module were more meaningful and effective.

Three gene modules were not related to survival and 
prognosis

Through the TCGA-NSCLC cohort (LUAD + LUSC), 
we further confirmed that these three gene modules 
were not factors affecting the survival of patients. By 
comparing the patient cohorts, the difference in overall 
survival was not statistically significant between the high-
expression group and low-expression group of these three 
genes modules (Figure S1A-S1C). Further Cox regression 
analysis indicated that these three gene modules did not 
possess significant HRs for the model, but the lightcyan 
gene module had a relatively smaller confidence interval  
(Figure S1D). Based on the above results, the lightcyan 
module was selected for further exploration.

Investigation of the mutated genes related to lightcyan 
gene module

By exploring the mutated genes associated with high 
expression of the gene module, the accuracy of gene module 
in predicting the therapeutic response to ICI was further 
verified. Based on the muTarget method and TCGA-
LUAD/LUSC cohort, the corresponding mutated genes 
were identified through the high expression of these module 
genes (tables are available at https://cdn.amegroups.cn/
static/public/tlcr-23-713-4.xlsx; https://cdn.amegroups.
cn/static/public/tlcr-23-713-5.xlsx). For example, in the 
comparison of mutant type and wild type of DSTYK gene, 
the results showed that the expression of ANKRD30A was 
significantly higher in mutant type of DSTYK gene, and 
then DSTYK gene would be included into further analysis. 

Mutated gene panel predicted durable therapeutic response 
to ICI in MSKCC cohort

Furthermore, the existence of these 396 mutated genes was 
further verified in the MSKCC cohort. The list of mutated 
genes was screened, and the genes without mutation or were 
related to NDB were removed, finally yielding the list of 
59 genes (tables are available at https://cdn.amegroups.cn/

static/public/tlcr-23-713-4.xlsx; https://cdn.amegroups.cn/
static/public/tlcr-23-713-5.xlsx). Patients with mutations 
in this gene panel had a longer PFS after ICI treatment, 
compared with patients with the wild type (Figure 4A). In 
fact, these mutations were also accompanied by mutations 
in other conventional genes, such as TP53, TTN, KRAS, etc. 
(Figure 4B). Compared with patients with this wild-type gene 
panel, those with the mutant type had significantly increasing 
mutation load and TMB. Meanwhile, the neoantigen burden 
in the mutant population was significantly higher than that 
in the wild-type population (Figure 4C-4F). Therefore, the 
mutant gene panel associated with the expression profile 
in the lightcyan gene module could effectively predict 
the therapeutic response to ICI, which also validated the 
predictive effect of this gene module.

Lightcyan gene module showed interaction network of 
multiple genes in patient PPI network

The genes in the lightcyan module were introduced into the 
individualized gene interaction network of DCB patients, in 
which KRT7, TMEM184A and ANKRD30A were enriched 
(Figure 5A-5C). With these three genes as the center, an 
interaction network was formed. These interacting genes 
were closely related to the three module genes and the 
durable response to ICI treatment. 

Discussion

NSCLC stands at the frontline of precision oncology. For 
patients with negative driver gene mutations, anti-PD-1-
based immunotherapy is a promising option. Nevertheless, 
the heterogeneity of cancer patients results in various therapy 
efficacies and deciding whether to receive ICI is momentous. 
Previous studies reported that high expression levels of PD-
L1 and TMB were related to better response to ICI for 
NSCLC populations (18,19). However, protein components 
in TME also play a crucial role in ICI for malignant cancers. 
Previous prediction models based on clinical characteristics 
or pathological information of tumors had restrained 
generalization performance. Consequently, to identify key 
proteomic gene signatures affecting the efficacy of anti-PD-1/
PD-L1 treatment in NSCLC patients, we combined and 
analyzed the multi-omics data from two clinical cohorts based 
on the machine learning model, including transcriptomic data 
from GSE135222 cohort and proteomic data from SHFK 
cohort. We demonstrated that the prediction model with seven 
genes, including MOXD1, PHAF1, KRT7, ANKRD30A, 

https://cdn.amegroups.cn/static/public/TLCR-23-713-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TLCR-23-713-Supplementary.pdf
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Figure 4 Mutated gene panel related to lightcyan gene module predicted durable therapeutic response to immunotherapy in MSKCC 
cohort. (A) In the MSKCC cohort, patients with mutations/alterations in the gene panel (altered group) had statistically significantly 
prolonged PFS than wild-type patients (unaltered group). (B) Genes alterations occurred in both altered and unaltered groups. *, indicated 
a significant difference between the groups. (C-F) Mutation counts, nonsynonymous mutation burden, TMB and predicted neoantigen 
burden were statistically significant higher in the altered group. TMB, tumor mutational burden; MSKCC, Memorial Sloan-Kettering 
Cancer Center; PFS, progression-free survival. 
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TMEM184A, KIR3DL1, and KCNK4, could better predict 
the durable response to anti-PD-1/PD-L1 therapy, which were 
also validated in the MSKCC ICI cohort, further indicating its 
clinical application value.

To date, the predictive value of PD-L1 expression or 
TMB has been very limited. Due to the heterogeneity of 

NSCLC, a single efficacy predictor can only summarize 
the characteristic of TME and potential therapeutic effect 
from one dimension. In clinical practice, some patients 
have very high PD-L1 expression (or high TMB levels) 
but do not have a good response to anti-PD-1/PD-L1 
therapy. Conversely, some patients are not positive for these 
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biomarkers but achieve a better response to treatment. 
Therefore, the detection of immunotherapeutic markers 
should be further improved. On the translational level, 
many proteins in the TME are related to anti-tumor 
immunity, including other immune checkpoints, immune-
activating molecules, and other membrane proteins 
associated with antitumor activity. Molecular markers at the 
protein level are of practical interest, both for evaluating 
immune components in the TME and for guiding the 
therapy combined with other ICIs. In this study, we 
identified three gene modules that mostly related to 
therapeutic response from all 43 gene modules obtained by 
joint screening of proteomic profile and RNA-seq data from 
two cohorts. Among them, the black and lightcyan modules 
had significant correlations with the main signaling pathway 
module while the lightcyan module was found to be further 
positively related to B cells, CD4+ T cells, memory cells, 
NK cells, NKT cells and macrophages in the immune cell 
enrichment analysis. Further investigation centering on 
the lightcyan module demonstrated that mutated genes 
related to lightcyan gene module could effectively stratify 
the PFS among patients receiving ICI treatment in the 
MSKCC cohort, exhibiting positive associations with 
mutation counts, nonsynonymous mutation burden, TMB 
and predicted neoantigen burden. Furthermore, the PPI 
network analysis showed strong correlation between KRT7, 
TMEM184A and ANKRD30A in the lightcyan gene module 
and an interaction network around them was constructed. 

Overall, our evidence supported that the lightcyan 
module, including the expression profile of MOXD1, 
PHAF1, KRT7, ANKRD30A, TMEM184A, KIR3DL1, and 
KCNK4, has illustrated its great potential in predicting the 
response of anti-PD-1 treatment among NSCLC patients, 
with support by its biological association with immune-

related signaling pathways, mutation load, TMB and 
neoantigen burden. It is of practical significance to explore 
the biomarkers of ICI treatment from the translational and 
transcription levels. These ICI-benefits related proteomic 
gene-signature in lightcyan model primarily enriched 
in a variety of immune-related cells, including B cells, 
CD4+ T cells, memory cells, NK cells, NKT cells and 
macrophages, etc. Immune cells in the TME are important 
during cancer development, and their biological functions 
change dynamically with tumor progression. As for specific 
gene among the module, KRT7 in tumors is involved in 
metastasis, proliferation and drug resistance, and is closely 
related to anti-tumor immunity (20). TMEM184A is closely 
related to heparin-binding signaling pathway and tumor 
necrosis factor-related pathway (21). ANKRD30A is related 
to transcription factors and can promote tumor growth 
and proliferation (22). For these genes, subsequent studies 
should further explore their functions, which will contribute 
to an in-depth understanding of the mechanism and 
signaling pathway underlying the durable response of PD-
1-positive tumor. Of note, the sample size was still small 
in the present study, which also limited further subgroup 
analyses, such as the comparison of different anti-PD-1/
PD-L1 inhibitors. More studies are needed to focus on 
biomarkers that predict the efficacy of anti-PD-1/PD-L1 
therapy and explore their mechanisms. More therapeutic 
strategies will be developed for the combination therapy of 
NSCLC with the investigation of immune-related targets.

Conclusions

By combing the multi-omics data from two clinical cohorts, 
our proteomic gene signature-based prediction model 
based on machine learning algorithms could estimate 

A B C

Figure 5 Lightcyan gene module showed interaction network of multiple genes in patient PPI network. (A-C) Network enrichment of 
KRT7, TMEM184A and ANKRD30A displayed extensive protein interactions in the patient-specific PPI network. Only the first neighbors 
of the central node were presented. PPI, protein-protein interaction. 
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the prognosis of patients treated with anti-PD-1/PD-
L1 monotherapy in NSCLC. We demonstrated that 
immunotherapy efficacy-based proteomic gene panel could 
improve prediction accuracy and our results provided a 
rationale for using proteomic gene to develop ICI-specific 
proteomic gene signatures in predicting patients suitable for 
immunotherapy.
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