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Introduction
Tuberculosis (TB), which ranges from asymptomatic infection 
to fatal disease, is an airborne infectious disease caused by 
Mycobacterium tuberculosis (MTB). Furthermore, it is estimated 
that these pathogenic bacteria have infected one-third of the 
world’s population, and more than 250 people die of TB daily.1 
The emergence of multidrug-resistant tuberculosis (MDR-TB) 
has exacerbated the situation, making the disease a top priority 
to be resolved globally.

The conventional drug discovery and development approach 
uses expensive methods that are time-consuming, complex, and 
only uncover a small number of potential targets.2 However, 
computational approaches leveraging Omics data analyses have 
been widely used in pharmaceuticals to identify and accelerate 
drug discovery with lower failure rates in clinical trials.3,4 The 
search for potential pharmacological targets has become more 
accessible due to the development of sequenced human and 
pathogen genomes accessible in public databases.

The current methods for discovering therapeutic targets are 
greatly based on non-homologous enzymes, chokepoint 

enzymes, critical genes unique to a pathogen, and genes linked to 
resistance and virulence.5 There is a previous report on MTB’s 
metabolic pathways and protein-protein interaction (PPI).6-8 
However, a deep gene ontology (GO) analysis to identify the 
putative targets has not been performed. These actions are essen-
tial because GO investigation paves the way for identifying sig-
nificant features, such as molecular function (MF) and cellular 
processes.9

The metabolic pathways of the pathogen and the host are 
compared to discover enzymes critical to the MTB’s sur-
vival. The procedure started with identifying host and path-
ogen metabolic pathways from the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) database. Subsequently, the 
specific pathways to the pathogen were compared by analyz-
ing the distinctive pathways of the extracted enzymes and 
submitted to an online platform for identification. The dis-
covered essential enzymes used as therapeutic targets are 
determined by the similarity of innovative drug targets 
(DT) using DrugBank, cellular localization, and GO 
analysis.
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Materials and Methods
Comparative analysis of host and pathogen 
metabolic pathways

The metabolic pathways for the host (Homo sapiens, KEGG 
ID: T01001) and the pathogen (MTB H37Rv-sensitive strain 
to anti-tuberculosis drugs, KEGG ID: T00015) were collected 
from the KEGG database (accessed on April 8, 2022) (https://
www.genome.jp/kegg/).10 The pathways were compared to 
identify the unique routes only present in MTB. Furthermore, 

the enzymes in shared and unique pathways of MTB were 
extracted from KEGG, and the protein sequences were 
retrieved in FASTA format from the NCBI (National Center 
for Biotechnology Information) database (Figure 1).

Identif ication of non-homologous essential proteins

The protein sequences were submitted to Geptop tool 2.0 
(http://guolab.whu.edu.cn/geptop/) to identify their essential-
ity in MTB.11 The webserver discovers essential genes of MTB 

Figure 1. A schematic representation of the methodology.

https://www.genome.jp/kegg/
https://www.genome.jp/kegg/
http://guolab.whu.edu.cn/geptop/
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by comparing their orthology and phylogeny with the crucial 
gene database and differential expression gene. These essential 
genes were searched against proteins from the human RefSeq 
protein database for non-homology using NCBI-BLASTP 
(https://blast.ncbi.nlm.nih.gov/).12 Proteins with identity 
below 35% and an E-value cut-off of 0.005 were selected as 
non-hosts.13

PPI network analysis

The PPI network of non-homologous proteins was analyzed 
using string analysis (https://string-db.org/) in Cytoscape 
v.3.9.0 (https://cytoscape.org/).14 The interaction of network 
data was examined by the network analyzer module.15 
Furthermore, the functional modules of non-homologous pro-
teins were detected using the Cytoscape plugin MCODE. The 
scores and parameters include the degree cut-off of 2, maxi-
mum depth of 100, k-core of 2, and node score cut-off of 0.2.16 
The uppermost hierarchical module was selected as the possi-
ble metabolic functional association of the interacting proteins 
and was assigned for further analysis.

Subcellular localization and identif ication of novel 
drug targets through PPI network analysis

Subcellular localization of the essential non-human proteins 
selected from network analysis was predicted by PSORTb 
v3.0.2 (https://www.psort.org/psortb/)17 and CELLO v2.518 
(http://cello.life.nctu.edu.tw/cello2go/).18 Transmembrane pro-
teins were identified by TMHMM-2.0 (https://services.health-
tech.dtu.dk/service.php?TMHMM-2.0) based on the hidden 
Markov model.19 The most probable topology of a membrane 
protein was determined using the N-best algorithm. Proteins 
with transmembrane helices estimated to have less than 50 
amino acid residues from the N terminus were extracted as pos-
sible candidates for signal peptides. Furthermore, when a cleav-
age site is predicted to be >0.5, the signal peptide was cleaved 
off, and the prediction was redone.19 The proteins selected as 
novel drug targets were cytoplasmic and transmembrane.20 The 
DrugBank database (https://go.drugbank.com/) was used to 
identify novel targets with an E-value of less than 10−5, sequence 
identity more significant than 35%, and score slightly greater 
than 100.21

Functional enrichment analysis

The Database for Annotation, Visualization, and Integrated 
Discovery (DAVID) v.6.8 (https://david.ncifcrf.gov/)22 was 
used to perform GO and KEGG enrichment analysis to 
investigate functional annotation and pathways involved in 
novel drug targets. The complete list of all selected proteins 
was sent to GO enrichment analysis under the headings of the 
cellular compartment (CC), biological process (BP), MF, and 
KEGG. Finally, the significance threshold was set at a P value 
<.05.

Results
Metabolic pathway analysis and identif ication of 
essential proteins

A total of 345 and 131 metabolic pathways of H sapiens (S1) 
and MTB (S2), respectively, were extracted from the KEGG 
pathway database. Furthermore, 43 of the 131 pathways of 
MTB were unique and comprised 548 enzymes. The essential-
ity of these enzymes for the pathogen was analyzed using 
Geptop 2.0, and it was discovered that 313 (S3) of them were 
predicted as essential genes. NCBI-Blastp was performed to 
identify the homology of the enzyme with human proteins. Of 
the 313 essential proteins, 197 proteins (S4) identified as 
human non-homologous protein.

PPI analysis

According to STRING analysis, 192 nodes and 1154 interac-
tion lines were analyzed from 197 essential proteins of MTB 
(S5). The PPI data originating from STRING into Cytoscape 
were further analyzed to explore the significance of proteins in 
the protein networks and the primary cluster using the 
MCODE plugin (S6). This was conducted due to the com-
plexity and originality of the network. The highest cluster with 
the lowest P value comprised 29 nodes and 194 edges and was 
selected as the possible metabolic functional association 
between identified proteins (Figure 2).

GO enrichment analysis

Because 1 protein-coding gene (uppP) is not mappable in the 
MCODE, we decided to use 28 proteins for further analysis. 
Gene ontology enrichment analysis was performed on these 28 
proteins (S7) to explore their underlying mechanisms in MTB 
using the DAVID tool (Figure 3). There were 13 GO enrich-
ment terms for BP. The top 5 enriched terms are cell cycle, cell 
division, shape regulation, peptidoglycan biosynthetic process, 
and cell wall organization (false discovery rate [FDR] = 0.0001). 
Only 2 CC items were obtained from GO enrichment cyto-
plasmic and an integral membrane component. There were 5 
GO terms for MF enrichment, and the most enriched 
(FDR < 0.0001) were transferase activity, transferring glycosyl 
group, and arabinosyltransferase activity. Moreover, KEGG 
analysis revealed 3 pathways correlated with the respected pro-
teins: vancomycin resistance, lysine biosynthesis, and pepti-
doglycan biosynthesis.

Prediction of subcellular localization and 
identif ication of novel drug targets

The subcellular localization of 28 proteins revealed that 12 
were cytoplasmic, 2 were extracellular, and 13 were transmem-
brane, with the exclusion of 1 protein that did not fulfill the 
requirements (number of predicted transmembrane helix <50 
amino acid residues and total probability of peptide cleavage 

https://blast.ncbi.nlm.nih.gov/
https://string-db.org/
https://cytoscape.org/
https://www.psort.org/psortb/
http://cello.life.nctu.edu.tw/cello2go/
https://services.healthtech.dtu.dk/service.php?TMHMM-2.0
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>0.5).19 Subsequently, the novel targets were queried against 
the DrugBank database. Proteins showing no matching hits 
against the DrugBank database at the threshold were nomi-
nated as novel drug targets. The results showed 12 proteins 
were uniquely involved in pathogen-specific unique pathways, 
and peptidoglycan and lysine biosynthesis (Table 1).

Discussion
This study focused on subtractive genome analysis, which 
resulted in identifying proteins that could serve as prospective 
drug targets against the pathogenicity of MTB. Developing a 
drug, particularly for non-homologous targets, does not affect 
the host’s biology and has a specific effect on the pathogen. 
Furthermore, 12 unique proteins from MTB were proposed, 
and 4 of them are cytoplasmic and 8 are transmembrane 
unique. Furthermore, 12 non-homologous proteins were dis-
covered in different pathways, such as arabinogalactan bio-
synthesis, lipoarabinomannan (LAM) biosynthesis, lysine 
biosynthesis pathway, and O-antigen nucleotide sugar 
biosynthesis.

Kushwaha et al used a similar strategy to identify therapeu-
tic targets in MTB. Subsequently, 18 prospective drug targets 
were identified using metabolic pathway and chokepoint anal-
ysis.7 However, this study is more refined as GO and non-
homology analysis, as well as druggability, functionality, 
essentiality, and cellular localization, were included. These pro-
vided detailed information, such as their location in the cell, 
about the drug targets.

Phosphatidylinositol mannoside acyltransferase (patA) is an 
essential enzyme involved in the biosynthesis of phosphatidyl-
myo-inositol mannosides (PIMs), which are vital components 
of glycolipids/glycoglycans of the mycobacterial cell envelope.23 
Phosphatidyl-myo-inositol mannosides are an important viru-
lence factor during MTB infection and have been shown to be 
an important enzyme in both in vitro and in vivo growth.24,25 
Defects in these proteins do not directly affect the life of the 

pathogenic bacteria but reduce the integrity of the cell wall. 
Therefore, these results suggest that patA is a promising drug 
target candidate.25,26

Galactan 5-O-arabinofuranosyltransferase, terminal beta-
(1→2) arabinofuranosyltransferase, and decaprenylphosphate 
N-acetylglucosamine phosphotransferase are involved in arabi-
nogalactan and LAM biosynthesis, which are essential compo-
nents of the MTB cell wall. The mycobacterial cell wall is the 
most frequently adopted target for anti-TB drugs due to the 
fundamental nature of its synthesis and assembly.26 This intri-
cating structure, which consists of 3 separate layers of pepti-
doglycan, arabinogalactan, and mycolic acid, enhances cell 
proliferation, virulence, and antibiotic resistance.27 Targeting 
the enzymes for synthesizing and assembling the arabinan 
domains of arabinogalactan and LAM presents opportunities 
for new therapies.

Diaminopimelate epimerase is an important enzyme for 
lysine biosynthesis, a significant component in the bacterial 
peptidoglycan cell wall.28 It plays an essential role in converting 
LL-DAP into meso-DAP in the lysine biosynthesis pathway 
in bacteria by converting LL-DAP into meso-DAP. The prod-
ucts of this pathway, namely, meso-DAP and l-lysine, are 
involved in cross-linking of the peptidoglycan cell wall of 
gram-negative and gram-positive bacteria.15 The l-lysine bio-
synthesis pathway is considered an attractive target for anti-TB 
drugs due to its unavailability in animals.29

N-acetylglucosamine-1-phosphate uridyltransferase 
(GlmU) is a bifunctional enzyme with uridyltransferase and 
acetyltransferase activities catalyzed by the N-terminal and 
C-terminal domains, respectively.30 It plays a crucial role in syn-
thesizing UDP-N-acetylglucosamine, a fundamental precursor 
of the cell wall peptidoglycan of MTB.31,32 A study by Soni et al 
showed that GlmU depletion led to decreased MTB survival.30 
TPSA, a GlmU inhibitor, was reported to impair the cell wall 
and membrane integrity of MTB.33 Therefore, this bifunctional 
enzyme could be a promising target for new TB drugs.31

Figure 2. Protein-protein interaction of 29 proteins from non-host essential proteins from Mycobacterium tuberculosis.
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Figure 3. Gene ontology analysis of 28 proteins from non-host essential proteins from MTB. Analysis of the proteins under the headings of biological 

process, molecular function, cellular compartment, and pathways. The x-axis shows significantly enriched categories of the proteins, and the y-axis 

shows the terms (P < .0001).
KEGG, Kyoto Encyclopedia of Genes and Genomes; MTB, Mycobacterium tuberculosis.
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There are some limitations based on this study. Several drug 
targets were identified, but not all were in pharmacological 
activity; hence, they could potentially miss the medication tar-
get (undruggable). In addition, functional studies and clinical 
trials are still required to confirm the safety and efficacy of the 
drugs.

Conclusions
The availability of complete genome sequences and computer-
aided analysis to discover potential anti-TB drug targets has 
become a new trend. This study performed comparative meta-
bolic pathways to identify the probable anti-TB targets. These 
results highlight an innovative method to discover therapeutic 
targets for treating MTB infection. Twelve novel drug targets 
were reported in this research and are involved in different 
pathways, including arabinogalactan biosynthesis, LAM bio-
synthesis, lysine biosynthesis pathway, and O-antigen nucleo-
tide sugar biosynthesis. These results can be further exploited 
for rational drug design for MTB.
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