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Microglia are increasingly recognized as vital players in the pathology of a variety of
neurodegenerative conditions including Alzheimer’s (AD) and Parkinson’s (PD) disease.
While microglia have a protective role in the brain, their dysfunction can lead to
neuroinflammation and contributes to disease progression. Also, a growing body
of literature highlights the seven phosphoinositides, or PIPs, as key players in the
regulation of microglial-mediated neuroinflammation. These small signaling lipids are
phosphorylated derivates of phosphatidylinositol, are enriched in the brain, and have
well-established roles in both homeostasis and disease.Disrupted PIP levels and
signaling has been detected in a variety of dementias. Moreover, many known AD
disease modifiers identified via genetic studies are expressed in microglia and are
involved in phospholipid metabolism. One of these, the enzyme PLCγ2 that hydrolyzes
the PIP species PI(4,5)P2, displays altered expression in AD and PD and is currently being
investigated as a potential therapeutic target. Perhaps unsurprisingly, neurodegenerative
conditions exhibiting PIP dyshomeostasis also tend to show alterations in aspects of
microglial function regulated by these lipids. In particular, phosphoinositides regulate the
activities of proteins and enzymes required for endocytosis, toll-like receptor signaling,
purinergic signaling, chemotaxis, and migration, all of which are affected in a variety
of neurodegenerative conditions. These functions are crucial to allow microglia to
adequately survey the brain and respond appropriately to invading pathogens and
other abnormalities, including misfolded proteins. AD and PD therapies are being
developed to target many of the above pathways, and although not yet investigated,
simultaneous PIP manipulation might enhance the beneficial effects observed. Currently,
only limited therapeutics are available for dementia, and although these show some
benefits for symptom severity and progression, they are far from curative. Given the
importance of microglia and PIPs in dementia development, this review summarizes
current research and asks whether we can exploit this information to design more
targeted, or perhaps combined, dementia therapeutics. More work is needed to fully
characterize the pathways discussed in this review, but given the strength of the current
literature, insights in this area could be invaluable for the future of neurodegenerative
disease research.
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INTRODUCTION

Fifty million people worldwide currently present with
neurodegenerative conditions, with 60–70% of these suffering
from Alzheimer’s disease (AD) (World Alzheimer Report, 2015).
Microglia, tissue-specific macrophages that reside in the central
nervous system (CNS), are becoming increasingly recognized
as important in the development of numerous dementia
pathologies (Bachiller et al., 2018). Unlike most macrophages,
microglial precursors emerge from the embryonic yolk sac and
migrate into the CNS during the first trimester of development
before their final maturation (Kierdorf and Prinz, 2013).

During development, microglia have key roles in shaping
neuronal networks and modulating both the number of synapses
and the strength of synaptic transmission (Colonna and
Butovsky, 2017). Following CNS injury, microglial phagocytosis
of various substrates including microbes, dead cells, and
protein aggregates helps maintain healthy brain homeostasis
(Gabandé-Rodríguez et al., 2020). Furthermore, these cells
secrete messenger molecules such as cytokines, chemokines,
and neurotrophic factors (Lee et al., 2002). Cytokine secretion
regulates inflammatory responses, whilst chemokines initiate
chemotaxis and migration, stimulating microglia and other
immune cells to become activated andmigrate to the site of injury
(Lee et al., 2002). Both phagocytosis and cytokine/chemokine
secretion can be triggered via activation of microglial toll-like
receptors (TLRs), which promote inflammation in response to
activation by pathogen-associated molecular patterns (PAMPs)
and other stimuli (Fiebich et al., 2018). Microglia are also
key modulators of purinergic signaling, with activation of
these pathways influencing both inflammation and phagocytosis
(Calovi et al., 2019).

Phosphoinositides (PIPs), in brief, are acidic membrane
lipids derived from phosphatidylinositol. These lipids, known
to support key cellular functions in the brain, are increasingly
recognized as important in neurodegenerative processes and
microglial function (Raghu et al., 2019).

This review aims to summarize the role of microglia
in a variety of neurodegenerative conditions, as well as
known phosphoinositide disturbances within these conditions.
This will be followed by discussions on how alterations in
phosphoinositides and their regulatory enzymes could affect
specific microglial functions and thereby contribute to disease
progression. Finally, for each microglial function discussed, we
will explore how phosphoinositide-modifying therapies could
potentially be used to ameliorate disease phenotypes.

ROLES OF MICROGLIA IN DEMENTIA

Alzheimer’s Disease
AD, first characterized by Alois Alzheimer in 1907 (Alzheimer
et al., 1995), presents with widespread brain atrophy, amyloid
plaques (large extracellular deposits of amyloid-beta (Aβ) protein
aggregates), neurofibrillary tangles (consisting of phosphorylated
Tau), neuronal and synapse loss, and dystrophic neurites (Lane
et al., 2018). Clinically, these pathologies result in memory

loss, language difficulties, executive dysfunction, psychiatric
symptoms, and behavioral disturbances, along with general
difficulties managing activities of daily living (Burns and Iliffe,
2009). AD can be either familial (<0.5% of cases) or sporadic.
Familial cases arise following mutations in the genes encoding
either presenilin 1 (PSEN1), presenilin 2 (PSEN2), or amyloid
precursor protein (APP; Bateman et al., 2011).

Within AD, we know that 58–79% of sporadic cases are
linked to the patient’s genes (Gatz et al., 2006). Genetics
studies strongly suggest microglia as a leading driver of AD
pathology, with many of the implicated genes either largely
or solely expressed in microglia (McQuade and Blurton-Jones,
2019). The importance of microglia is supported by observations
of proliferation and activation of microglia around amyloid
plaques (Hickman et al., 2008). Whether this microglial response
reduces disease progression, enhances AD pathology, or both is
currently the subject of much debate. AD microglia elicit a range
of functional changes including increased cytokine/chemokine
production and inflammasome activation, increased synapse
engulfment, and phagocytosis of injured but functional neurons
(McQuade and Blurton-Jones, 2019). The role of microglia
in Aβ clearance within AD is also unclear. Whilst microglial
phagocytosis of Aβ appears crucial in clearing plaques (Simard
et al., 2006), other studies have shown that pharmacological
depletion of microglia prevents plaque formation in the first
place (Sosna et al., 2018).

Nitric oxide (NO) curative therapy currently exists for the
treatment of AD (Weller and Budson, 2018). This may be
due to a large research focus in the past on the ‘‘amyloid
hypothesis’’ which postulates that all AD pathologies arise due
to Aβ accumulation and plaque formation, and consequently
that the best way to treat the disease is to target Aβ directly
(Oxford et al., 2020).

Parkinson’s Disease
Parkinson’s disease (PD), first described by James Parkinson
in 1817 (Parkinson, 2002), is the second most common
neurodegenerative disease, affecting about 6.1 million people
worldwide (2018). PD patients experience rigidity, bradykinesia,
resting tremors, and postural instability (Gopalakrishna and
Alexander, 2015), with 30% also experiencing dementia
(Hanagasi et al., 2017).

Symptoms arise following the degeneration of dopaminergic
neurons in the substantia nigra, which produce the
neurotransmitter dopamine. Neuronal loss occurs following
the formation of intraneuronal ‘‘Lewy bodies’’ which consist
of aggregated bundles of misfolded α-synuclein (Lecours
et al., 2018). Variants in the SNCA gene, which encodes for
α-synuclein, present as the most well-established genetic risk
factor for PD (Campêlo and Silva, 2017). Around 5% of PD cases
are caused by mendelian gene changes (e.g., SNCA) and are
therefore classed as familial. The remainder of PD cases arises
following a complex interplay of aging, genetic susceptibility,
and environmental factors (Pang et al., 2019).

Within the PD brain, microglia are thought to lose beneficial,
whilst gaining detrimental, functions (Lecours et al., 2018).
Positron emission tomography (PET) studies in patients, as
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well as work by McGeer and colleagues on post-mortem
tissue, demonstrate increased microglial activation in PD
brains (McGeer et al., 1988; Ouchi et al., 2005; Gerhard
et al., 2006). Moreover, increased inflammatory cytokines,
released by microglia, are observed within the brains and
cerebrospinal fluid (CSF) of PD patients (Vawter et al., 1996;
Nagatsu et al., 2000). CSF from PD patients is toxic to
dopaminergic neurons; in part due to the aforementioned high
inflammatory cytokine concentration (Nagatsu and Sawada,
2005). Furthermore, and similarly to AD, PD microglia
appear to phagocytose injured but functional neurons, thereby
exacerbating neurodegeneration (Brown and Neher, 2012).
These microglial phenotypes seem to occur following exposure
to aggregated α-synuclein (Zhang et al., 2005).

3, 4-dihydroxy-L-phenylalanine, the precursor to dopamine,
acts as the ‘‘gold standard’’ PD treatment. Nevertheless, while this
drug ameliorates many PD-associated motor defects, long-term
use often results in debilitating dyskinesia and other motor
fluctuations (Lane, 2019).

Huntington’s Disease
Microglia have also been implicated in the pathology of
Huntington’s disease (HD; Yang H.-M. et al., 2017). HD
is an autosomal dominant trinucleotide repeat disorder
caused by an expansion in the Huntington protein (HTT;
MacDonald et al., 1993). More than 40 repeats result in disease,
characterized primarily by dysfunction and death of neurons
within the striatum of the brain. For patients, this results in
progressive motor, cognitive, and psychiatric disturbances
(Bates et al., 2015).

PET studies on human HD post-mortem brains have
demonstrated increased activation of microglia in HD compared
with controls (Pavese et al., 2006; Politis et al., 2012), with this
activation occurring up to 15 years before the predicted age
of onset (Tai et al., 2007). The degree of microglial activation
appears to correlate positively with the degree of cell death
within a given brain region, as well as symptom severity (Sapp
et al., 2001). Moreover, mutated Huntington protein (mHTT)
expression appears to impact microglial function directly (Yang
H.-M. et al., 2017). Effects include increased cytokine production
and transcriptional dysregulation (Crotti et al., 2014; Träger
et al., 2014; Miller et al., 2016). There are currently no curative
therapies available for HD (McColgan and Tabrizi, 2018).

Amyotrophic Lateral Sclerosis
Amyotrophic lateral sclerosis (ALS) is a degenerative disease
primarily characterized by muscle weakness and wasting, with
10–15% of patients also suffering from frontotemporal dementia
(FTD). FTD results in progressive degeneration of frontal
and anterior temporal lobes, with patients experiencing
behavioral changes alongside impairments in executive
functioning and, often, language. ALS is familial in 15% of
cases, where it is caused by changes in one of more than
20 currently identified genes (Masrori and Van Damme,
2020). The most common cause (of both ALS and FTD) in
North America and Europe is a hexanucleotide GGGGCC
expansion in the c9orf72 gene (Dejesus-Hernandez et al., 2011;

Renton et al., 2011). The function of the c9orf72 protein is
currently unknown, although it is suspected to be involved
in endocytic trafficking and autophagy (Braems et al., 2020).
Within cells, cytoplasmic aggregations of TDP-43 occur
in 95% of ALS patients (Masrori and Van Damme, 2020).
Sporadic ALS likely occurs following complex interactions
between risk loci—several of which have been identified
via genome-wide association studies (GWAS)—and the
environment (Ajroud-Driss and Siddique, 2015).

As with other dementias, the role of microglia in ALS appears
to be highly complex. C9orf72 knock-out mice, while showing
no motor-neuron degeneration, show altered immune responses
in microglia and macrophages, highlighting the importance
of these myeloid cells in ALS pathogenesis (O’Rourke et al.,
2016). Furthermore, another ALS risk gene, TBK1, is involved
in the production of inflammatory cytokines (Ahmad et al.,
2016). Finally, microglia appear to be activated in ALS patients’
brains, with this activation occurring before the onset of
clinical symptoms (Geloso et al., 2017). More research must
be undertaken to fully elucidate the role of microglia in
ALS pathology.

Summary
Neurodegenerative conditions pose serious health and economic
costs to our society. If left unchecked, cases are expected to
triple by 2050 (Prince et al., 2013). At present, treatment is
limited by a lack of effective therapies for many forms of
neurodegenerative disease, despite decades of research aimed at
developing such therapies. It is becoming clear that microglia,
the primary mediators of neuroinflammation, play important
roles in the pathologies of many forms of neurodegeneration.
Further research exploring the roles of microglia to target them
therapeutically may well hold the key to releasing the deadlock
on treatment development.

ROLES OF PHOSPHOINOSITIDES IN
DEMENTIA

What are Phosphoinositides?
Phosphoinositides are signaling lipids derived from
phosphatidylinositol, which is comprised of diacylglycerol
(DAG) moiety linked to a D-myo-inositol ring via a
phosphodiester linkage. Specific kinases and phosphatases add
or remove phosphate groups from the 3, 4, or 5 positions
of the myo-inositol ring, generating seven PIP species.
These are monophosphorylated PI(3)P, PI(4)P, and PI(5)P;
bisphosphorylated PI(3,4)P2, PI(3,5)P2, and PI(4,5)P2; and
trisphosphorylated PI(3,4,5)P3 (Figure 1). These lipids are
enriched in the brain, with each residing on specific cellular
membranes (Figure 1). In brief, PI(4)P, PI(3,4,5)P3, PI(3,4)P2,
PI(5)P, and PI(4,5)P2 can be found on the plasma membrane,
PI(3)P and PI(3,5)P2 are concentrated within the endocytic
system, and PI(5)P is found within the nucleus. The distribution
of PIPs is both dynamic and highly regulated, allowing for
a rapid generation or reduction of specific species at precise
locations. This function is achieved via tight spatial and temporal
restrictions of the aforementioned PIP metabolism enzymes.
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FIGURE 1 | Structure, metabolism, and location of phosphatidylinositides (PIPs) within mammalian cells. (A) Structures of phosphatidylinositol (PI) and it is seven
phosphoinositide (PIP) derivatives, generated by phosphorylation of the inositol ring at positions 3, 4 or 5. PI consists of diaglycerol (DAG, blue) bound to a
D-myo-inositol ring (yellow) via a phosphodiester linkage (green). O, oxygen; H, hydrogen; P, phosphate; R, non-polar fatty acid tails. (B) Metabolic pathways
regulating the interconversion of PIP species. Lipid kinases (red) phosphorylate the inositol ring at points 3, 4, or 5 to generated more phosphorylated PIPs while lipid
phosphatases remove phosphate groups. MTM1, myotubularin1; MTMR, myotubularin-related protein; FIG4, Factor-Induced Gene 4; PTEN, phosphatase and
tensin homolog; OCRL, inositol phosphatase 5-phosphatase; SYNJ1, synaptojanin 1; INPP5D, Src homology 2 (SH2) domain containing inositol polyphosphatase
5-phosphatase 1. (C) Primary locations of the different PIPs within the cell are shown by the colored stars. CIE, clathrin independent endocytosis; CIV, clathrin
independent endocytic vesicle, CE, clathrin dependent endocytosis; EE, early endosome; RE, recycling endosome; SV, secretory vesicle; GA, golgi apparatus;
ER, endoplasmic reticulum; MVB/LE, multi-vesicular body/late endosome; LYSO, lysosome.
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Despite their low abundance, these lipids are involved in crucial
cellular functions, including signal transduction, cytoskeletal
reorganization, membrane dynamics, vesicular trafficking, and
cell death (Phan et al., 2019). Known functions of the different
PIP species in the brain are summarized in Table 1. All species
appear to be involved in endocytic trafficking events (e.g.,
autophagy and phagocytosis), whilst others exhibit key roles in
chemotaxis (PI(4,5)P2 and PI(3,4,5)P3), and synaptic function
(PI(3)P, PI(4,5)P2, PI(3,5)P2, PI(3,4,5)P3).

Perhaps unsurprisingly given their key roles in the brain, PIPs
have been implicated in a wide variety of dementia’s, including
AD, PD, HD, and ALS. Precise perturbances of PIP species and
their suspected effects on neurodegenerative disease are later
discussed and summarized in Table 1.

Phosphoinositide Dyshomeostasis in
Neurodegenerative Disease—General
Growing evidence suggests that phosphoinositide
dyshomeostasis plays a role in the development of a variety
of dementias. Phosphoinositides, which are relatively enriched in
the brain (Hawthorne and Pickard, 1979), regulate the activity of
several neurotransmitters and neuropeptides (Lo Vasco, 2018).
Furthermore, phosphoinositides have key roles in Ca2+ signaling
(Bezprozvanny, 2009) and autophagy (Palamiuc et al., 2020),
which are disrupted in numerous neurodegenerative conditions.

One key protein linking phosphoinositol metabolism
with several dementias is synaptojanin 1 (SYNJ1). This
phosphoinositide phosphatase hydrolyzes PI(4,5)P2, with
SYNJ1 knock-out mice showed increased PI(4,5)P2 in neurons
alongside defects in synaptic vesicle recycling (Cremona et al.,
1999). Overexpression of SYNJ1 has been seen in AD patients
(Miranda et al., 2018), and downregulating SYNJ1 increases
clearance of amyloid plaques while improving behavioral deficits
in AD mice (McIntire et al., 2012; Zhu et al., 2013). In addition
to roles in AD, mutations in SYNJ1 have been associated
with early-onset atypical-Parkinson’s disease, suggesting that
SYNJ1 manipulation may also prove beneficial in PD (Drouet
and Lesage, 2014; Ben Romdhan et al., 2018; Xie et al., 2019).

Another subset of phosphoinositide conversion enzymes
with key links to dementia is the phosphoinositide-3-kinases
(PI3K). PI3K promotes downstream signaling via AKT and
mTOR and activating these pathways plays a vital regulatory
role in the development of oxidative stress, in apoptosis, and
in autophagy (Chong et al., 2012). Within AD, excessive
activation of downstream PI3K signaling has been suggested to
be responsible for some neurodegenerative processes, whereas,
in PD, under-activation of these pathways has been observed to
influence pathology (Heras-Sandoval et al., 2014). Activation of
the Akt/PI3K signaling pathway is crucial to the initiation of
neuroinflammation by microglia in response to LPS (Cianciulli
et al., 2020). Although more work needs to be done to further
characterize signaling dysfunctions within these conditions,
targeting these pathways using established PI3K inhibitors and
activators could provide potential therapeutics in the future
(Yang et al., 2016, 2019).

Together, these studies demonstrate how disruptions
in phosphoinositide metabolism can be crucial to the

development of neurodegenerative phenotypes. The following
sections will go into more detail about phosphoinositide
dyshomeostasis in specific neurodegenerative conditions.
Table 2 summarizes the differing roles of PIP species in
neurodegenerative conditions.

Phosphoinositide Dyshomeostasis in
Alzheimer’s Disease
Quite a large body of research outlines phosphoinositide
dyshomeostasis in AD. The first study to highlight this was
published in 1987 by Stokes and Hawthorne. They revealed
reduced PIP4 and PI(4,5)P2 within the AD cortex when
compared with controls (Stokes and Hawthorne, 1987). Within
AD brains, studies have observed not only changes in PIP
levels but also changes in the expression of regulatory enzymes
(Lo Vasco, 2018).

Alterations in membrane phospholipid composition within
AD following PIP dysregulation could result in changes to
membrane structure and fluidity, which in turn is likely
to influence the development of various characteristic AD
pathologies (Zhu et al., 2015). Also, Aβ binding to the
cellular prion protein (PrPC) has been demonstrated to activate
mGlurR5 and phospholipase C (PLC) signaling pathways
(Um et al., 2013). These pathways are both regulated by
and regulate phosphoinositide levels, with PI(4,5)P2 being
the substrate of PLC enzymes. PLC activation leads to
downstream cytosolic Ca2+ increase, which contributes to
characteristic AD memory impairment (Berridge, 2013, 2014).
The above observations are supported by previous studies
in familial AD cortical neurons which demonstrated a clear
link between Aβ and PI(4,5)P2 metabolism, with Aβ addition
reducing PI(4,5)P2 levels, perhaps via activation of PLC
enzymes (Berman et al., 2008). This could also occur via
Aβ-mediated inhibition of the PI(4)P synthesis enzyme PI4K,
as PI(4)P often acts as a precursor for PI(4,5)P2 (Wu
et al., 2004; Figure 1B). Moreover, evidence suggests that
hyperphosphorylated tau, a key hallmark of AD, may be
generated by protein kinases known to be activated by PLC
enzymes (Ial and Grundke-Ial, 2005).

Finally, many known AD risk genes (e.g., Phospholipase C
Gamma 2 (PLCG2), inositol polyphosphate 5-phosphatase D
(INPP5D), Phospholipase D3 (PLD3), CD2-associated protein
(CD2AP), Phosphatidylinositol Binding Clathrin Assembly
Protein (PICALM), Sodium/potassium/calcium exchanger 4
(SLC24A4)) are involved in phospholipid metabolism (Tan
et al., 2019; Sims et al., 2020), providing further evidence of
the importance of these pathways in disease pathology. The
AD protective R522 mutation in PLCG2, which also protects
against dementia with Lewy bodies and FTD (van der Lee
et al., 2019), appears to protect via increased PLCγ2 activity
(Magno et al., 2019).

Phosphoinositide Dyshomeostasis in
Parkinson’s Disease
Several studies have highlighted the specific roles of
phosphoinositide dyshomeostasis in PD pathology. In one
of these studies, PD and control membranes were prepared
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TABLE 1 | Known functions of phosphoinositide (PIP) species within the brain and roles in neurodegeneration.

PIP species Known functions in the brain Roles in neurodegenerative disease References

PI(3)P Key regulator of endocytic trafficking,
fusion, and autophagy.

Regulates GABAergic neurotransmission at
inhibitory post-synapses.

Inhibiting PIP-4 kinase (phosphorylates
PI(3)P) reduces mHTT and rescues
neurodegeneration in HD drosophila.

Excess PI3K (generates PI(3)P) activity in
AD, reduced activity in PD.

Heras-Sandoval et al. (2014),
Al-Ramahi et al. (2017),
Papadopoulos et al. (2017) and
Raghu et al. (2019)

PI(4)P Potential roles in myelin formation.

Key role in multiple steps of phagocytosis
and other uptake systems.

Pathophysiological concentrations of Aβ

inhibit PI4K (generates PI(4)P) activity, both
in vitro and in vivo.

PI4K inhibition reduces brain pathology in
Drosophila models of AD.

VAPB, a causal gene for ALS, exerts
deleterious effects in the brain by altering
PI(4)P levels and distribution.

Reduced in AD cortex.

Stokes and Hawthorne (1987),
Wu et al. (2006), Levin et al.
(2017), Zhang X. et al. (2017),
Genevini et al. (2019) and Baba
et al. (2020)

PI(5)P Roles in AKT/mTOR signaling, autophagy,
and apoptosis.

Regulates chromatin function and
transcription in the nucleus.

Potential regulators of endosomal
trafficking.

Inhibiting PIP-4 kinase [phosphorylates
PI(5)P] reduces mHTT and rescues
neurodegeneration in HD drosophila.

Boal et al. (2015), Bulley et al.
(2015), Vicinanza et al. (2015),
Al-Ramahi et al. (2017) and
Jacobsen et al. (2019)

PI(3,4)P2 Involved in the maturation of late-stage
clathrin-coated pits and fast
endophilin-mediated endocytosis.

Roles in actin-mediated neurite initiation
and dendrite morphogenesis.

Mutations in the PI(3,4)P2 synthesis enzyme
INPP5D increase genetic AD risk.

Excess PI3K [generates PI(3,4)P2] activity in
AD, reduced activity in PD.

Lambert et al. (2013),
Heras-Sandoval et al. (2014),
Hawkins and Stephens (2016),
Jing et al. (2016), Zhang
S.-X. et al. (2017) and
Casamento and Boucrot (2020)

PI(4,5)P2 Electrical signaling at the plasma membrane
(including neurons).

Roles in the recycling of synaptic vesicles
and synaptic plasticity.

Many neurotransmitters utilize the G-protein
coupled PLC mediated hydrolysis of
PI(4,5)P2 as a key step in signal
transduction.

Regulates ∼100 ion channels and
transporters.

Regulates cytoskeletal function in neurons.

Key regulators of TLR and purinergic
signaling.

Key role in actin remodeling during
chemotaxis.

Key role in multiple steps of phagocytosis
and other uptake systems.

A genetic variant in PLCγ2, which breaks
down PI(4,5)P2, protects against AD.

Decreased PI(4,5)P2 metabolism via
PLCγ2 in PD, increased PI(4,5)P2 in PD
substantia nigra.

Overexpression of SYNJ1, which hydrolyzes
PI(4,5)P2, acts as a risk factor for AD and
appears to contribute to plaque pathology
and behavioral deficits in mouse models.

Mutations in SYNJ1 associated with
early-onset PD.

Wallace and Claro (1993),
McIntire et al. (2012), Zhu et al.
(2013), Drouet and Lesage
(2014), Sims et al. (2017),
Miranda et al. (2018), Sekar and
Taghibiglou (2018), Ben
Romdhan et al. (2018), Bernier
et al. (2013b), Le et al. (2014),
Hille et al. (2015), Dickson and
Hille (2019), Raghu et al. (2019),
Xie et al. (2019) and Desale and
Chinnathambi (2021)

PI(3,5)P2 Regulates membrane trafficking, endocytic
vesicle fission/fusion, organelle pH,
intracellular ion channel function.

Regulates synaptic strength.

The PI(3,5)P2 synthesis enzyme FIG4 acts
as a risk factor for ALS.

Chow et al. (2009), Dong et al.
(2010) and McCartney et al.
(2014)

(Continued)
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TABLE 1 | Continued

PIP species Known functions in the brain Roles in neurodegenerative disease References

PI(3,4,5)P3 Regulates neurotransmitter release.

Increased PI(3,4,5)P2 recruits protein
kinases (e.g., AKT) to the PM.

Regulates purinergic signaling.
Key role in actin remodeling during
chemotaxis.

Key role in multiple steps of phagocytosis
and other uptake systems

Excess PI3K [generates PI(3,4,5)P3] activity
in AD, reduced activity in PD.

Decreased in PD substantia nigra.
PTEN [degrades PI(3,4,5)P3] increased in
PD.

Bernier et al. (2013b), Khuong
et al. (2013), Heras-Sandoval
et al. (2014), Maekawa et al.
(2014), Schlam et al. (2015),
Sekar and Taghibiglou (2018),
Katan and Cockcroft (2020)
and Desale and Chinnathambi
(2021)

mHTT, mutant Huntington protein; AD, Alzheimer’s disease; HD, Huntington’s disease; PD, Parkinson’s disease; ALS, amyotrophic lateral sclerosis; Aβ, amyloidβ; VAPB, VAMP
associated protein B and C; AKT, Protein kinase B mammalian target of rapamycin; TLR, toll-like receptor; SYNJ1, synaptojanin 1; FIG4, Factor induced gene 4; PLC, phospholipase C.

TABLE 2 | The role of PIP species in different neuroinflammatory conditions.

Disease PIP Species Suspected roles in pathology References

Alzheimer’s disease PI(4)P Key role in uptake systems including
phagocytosis.

Stokes and Hawthorne
(1987), Wu et al. (2006),
Levin et al. (2017) and
Zhang S.-X. et al. (2017)

PI(3,4)P2 Mutations in the PI(3,4)P2 synthesis enzyme
INPP5D increase genetic AD risk.

Excess PI3K (generates PI(3,4)P2) activity in AD.

Lambert et al. (2013),
Hawkins and Stephens
(2016) and Jing et al. (2016)

PI(4,5)P2 A genetic variant in PLCγ2, which breaks down
PI(4,5)P2, protects against AD2, acts as a risk
factor for AD.

McIntire et al. (2012) and
Sims et al. (2017)

PI(3,4,5)P3 Excess PI3K (generates PI(3,4,5)P3) activity in
AD.

Heras-Sandoval et al.
(2014)

Parkinson’S disease PI(4,5)P2 Reduced PLC activity and PI(4,5)P2 metabolism
in PD cortex, perhaps following the
accumulation of α-synuclein which appears to
inhibit PLC enzymes. Increased PI(4,5)P2 in PD
patient substantia nigra.

Sekar and Taghibiglou
(2018)

PI(3,4,5)P3 Excess PI3K (generates PI(3,4,5)P3) reduced
activity in PD3) increased in PD.

Bernier et al. (2013b),
Sekar and Taghibiglou
(2018) and Katan and
Cockcroft (2020)

Huntington’S disease PI(3)P Inhibiting PIP-4 kinase (phosphorylates PI(3)P)
reduces mHTT and rescues neurodegeneration
in HD drosophila.

Al-Ramahi et al. (2017)

PI(5)P Inhibiting PIP-4 kinase (phosphorylates PI(5)P)
reduces mHTT and rescues neurodegeneration
in HD drosophila.

Al-Ramahi et al. (2017)

Amyotrophic lateral
sclerosis

PI(4)P ALS risk gene VAPB is proposed to affect
neurite extension during differentiation via
regulation of PI(4)P distribution.

Genevini et al. (2019)

PI(3,5)P2 Non-synonymous variants in the PI(3,5)P2

phosphatase FIG4 found in 1–2% of ALS
patients. LOF leads to reduced levels of
PI(3,5)P2 and is suspected to affect autophagy.

Chow et al. (2007, 2009)
and Nguyen et al. (2019)

Aβ, amyloid β; AD, Alzheimer’s disease; INPP5D, Src homology 2 (SH2) domain containing inositol polyphosphatase 5-phosphatase 1; PLCγ2, phospholipase C γ 2;
SYNJ1, synaptojanin 1; PD, Parkinson’s disease; PTEN, phosphatase and tensin homolog; mHTT, mutated Huntington protein; HD, Huntington’s disease; ALS, amyotrophic lateral
sclerosis; VAPB, vesicle-associated membrane protein-associated protein B; FIG4, Factor induced gene 4; LOF, loss of function.

from the post-mortem prefrontal cortex and incubated with
PI(4,5)P2 before the addition of dopamine to activate PLC. These
membranes demonstrated reduced PLC activity, characterized

by decreased PI(4,5)P2 metabolism, within the PD samples
(Wallace and Claro, 1993). A major characteristic of PD
and other neurodegenerative diseases, including AD, is the
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accumulation of α-synuclein containing inclusions in the
brain (Visanji et al., 2019). α-synuclein has been shown to
preferentially localize to PI(4,5)P2 containing membranes, where
it appears to inhibit PLC enzyme activity and subsequent Ca2+

release (Narayanan et al., 2005), potentially explaining the results
of the earlier research by Wallace and Claro (1993).

In addition to altered PLC signaling, levels of phosphatase and
tensin homolog (PTEN), another phosphoinositide phosphatase,
are also altered in PD. Interestingly, in this same study,
PI(3,4,5)P3 was found to be decreased, and PI(4,5)P2 increased,
in substantia nigra samples from PD patient brains compared
to age-matched controls (Sekar and Taghibiglou, 2018). Within
PD, changing phosphoinositide levels could potentially be
mediated by the aforementioned α-synuclein inhibition of
PI(4,5)P2 degrading PLC enzymes, as well as upregulation of the
PI(3,4,5)P3 degradation enzyme PTEN.

Phosphoinositide Dyshomeostasis in
Huntington’s Disease
Phosphoinositide dyshomeostasis has also been observed in HD.
For one, HTT and mHTT can be seen to interact with a variety
of PIPs at membranes (Kegel et al., 2005). Interestingly, HTT
interacts primarily with PI(3,4)P2, PI(3,5)P2, and PI(3,4,5)P3,
whilst mHTT associates more strongly with PI(3,5)P2 than the
wild-type HTT, whilst also binding to PI(3)P, PI(4)P, PI(5)P,
and PI(4,5)P2. Changing binding affinities affects the recruitment
of the Huntington protein to specific cellular membranes where
distinct PIP species are located. This is likely to affect the
formation of growth factor signaling complexes within mHTT
cells (Kegel et al., 2009).

Studies by Al-Ramahi et al. (2017) further highlighted the
roles of PIPs in HD and even demonstrated the potential of
PIP regulation as a therapeutic target. This work focused on the
enzyme PIP4 kinase, which phosphorylates PI(5)P and PI(3)P
(Figure 1). They found that inhibiting this enzyme reduces
mHTT in both patient fibroblasts and neuronal cell models.
Moreover, this same study demonstrated how inhibition of
PIP4 kinase rescued mHTT-induced neurodegeneration in two
Drosophila HD models. This protective effect was speculated
to occur via increased PI(3,5)P2. PI(5)P, PI(3)P, and PI(3,5)P2
all have key roles in autophagy, known to be affected in HD
(Al-Ramahi et al., 2017).

Phosphoinositide Dyshomeostasis in
Amyotrophic Lateral Sclerosis
Several studies have highlighted a potential role for
phosphoinositol dyshomeostasis in the pathogenesis of ALS.
Firstly, non-synonymous variants in the PIP phosphatase Factor-
Induced Gene 4 (FIG4) appear in 1–2% of all ALS patients (Chow
et al., 2009). FIG4 regulates PI(3,5)P2 homeostasis, with loss
of function leading to a considerable reduction in the levels of
this phospholipid (Chow et al., 2007). This has been speculated
to affect autophagic function (Nguyen et al., 2019). Another
ALS risk gene linked to PIP homeostasis is vesicle-associated
membrane protein-associated protein B (VAPB; Genevini
et al., 2019). Through its various binding partners, this crucial
ER adaptor protein has roles in lipid exchange, membrane

traffic, Ca2+ signaling, cytoskeletal organization, autophagy,
mitochondrial function, and neurite extension. When mutated
in ALS, VAPB aggregates, forming intracellular inclusions which
greatly affect ER structure. VAPB depletion appears to disrupt
neurite extension during differentiation via reduced PI4P,
presumably following its key roles regulating PI4P distribution
(Genevini et al., 2019).

Summary
Phosphoinositides have key roles in the brain, and therefore
it should come as no surprise that both their levels and
distribution are affected by a wide variety of neurodegenerative
diseases. In several cases, this dyshomeostasis has been directly
linked to disease pathology, thereby highlighting the potential
of phosphoinositide-based therapies when looking to treat these
devastating and often incurable conditions.

Having discussed both the function of microglia and PIPs in
neurodegenerative disorders, the next section will explore the
potential outcomes of PIP dyshomeostasis on specific microglial
functions. The functions covered are TLR signaling, purinergic
signaling, endocytosis, chemotaxis, and migration.

PIP EFFECTS ON MICROGLIAL
FUNCTIONS AND IMPLICATIONS FOR
NEURODEGENERATION

Role of PIPs in TLR Signaling
TLR Signaling in Microglia
Toll-like receptors (TLRs) recognize conserved pathogen-
associated molecular patterns (PAMPs) of bacteria, viruses,
yeast, fungi, and parasites (Takeuchi et al., 2002). The human
genome encodes 9 TLRs (TLR1–9), all of which are expressed
in microglia (Bsibsi et al., 2002; Olson and Miller, 2004; Zhang
et al., 2013). Within the brain, TLR expression is highest in
glial cells (Lehnardt et al., 2002; Babcock et al., 2006), further
demonstrating the importance of these signaling pathways
regarding microglial function. TLR2 and 4 have been most
studied in and appear to have the most relevance regarding
neurodegenerative disease (Azam et al., 2019).

Upon activation, TLRs dimerize and recruit toll/interleukin
1 (TIR)-domain-containing adaptor proteins. These adaptor
proteins are myeloid differentiation primary response protein
88 (MyD88, TLRs 1–2 and 4–9), TIR-domain containing
adaptor protein (TIRAP, TLR 2 and 4), TIR domain-
containing adaptor-interferon β (TRIF, TLR3 and 4), and
TRIF-related adapter molecule (TRAM, TLR4; Takeda et al.,
2003; Yamamoto et al., 2003a; Le et al., 2014). Following
activation, MyD88 allows the nuclear translocation of NF-κB
via recruitment of tumor-necrosis-factor-receptor-associated-
factor 6 (TRAF6) and members of the IL-1R-associated kinases
(IRAK) family. This results in proinflammatory cytokine and
cyclooxygenase-2 (COX-2) production (Zhang et al., 1999;
Takeda and Akira, 2004; Broad et al., 2007; Kawai and Akira,
2010). TLR-mediated TRIF and TRAM activation result in
the induction of interferon-inducible genes, NF-κB dependent
signaling pathways, and chemokine production (Schafer et al.,
1998; Fitzgerald et al., 2003; Melchjorsen and Paludan, 2003;
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Yamamoto et al., 2003b; Pålsson-McDermott and O’Neill,
2004). In addition to the activation of inflammatory pathways,
TLR signaling has been suggested to enhance phagocytosis
(Tricker and Cheng, 2008).

Roles of Phosphoinositides in TLR Signaling
Phosphoinositides, in particular PI(4,5)P2, have been shown to
act as key regulators of TLR4 signaling (Le et al., 2014). TLR4 is
important in the immune response to LPS, heat-shock proteins,
extracellular matrix proteins, and various neurodegeneration-
related protein aggregates (Azam et al., 2019). Activation and
subsequent dimerization of TLR4 induce the formation of a
MyD88 and TIRAP protein complex (Yamamoto et al., 2002).
TIRAP requires PI(4,5)P2 binding to its N-terminal region
to initiate translocation to the plasma membrane, allowing
for downstream signal transduction and cytokine production
(Kagan and Medzhitov, 2006). This activation also results
in increased PI(4,5)P2 at the plasma membrane (Kagan and
Medzhitov, 2006), and conversely depleting PI(4,5)P2 stifles
downstream TLR4 signaling (Wan et al., 2010). In primary
microglia, BV2 microglia-like cells and primary astrocytes, this
appears to occur via upregulation of the PI(4,5)P2 synthesis
enzyme PIP-5 kinase following TLR4 activation (Jou et al.,
2006; Lee et al., 2010a,b; Nguyen et al., 2013). In this
way, phosphoinositide dyshomeostasis in neurodegenerative
conditions could have substantial effects on TLR activity.

In addition to modulating adaptor protein localization,
PI(4,5)P2 can also have indirect effects on TLR signaling.
Activated TLR4 is subsequently internalized via clathrin-
and dynamin-mediated endocytosis, where it initiates further
downstream signaling pathways within early endosomes (Kagan
et al., 2008). Endocytosis is tightly regulated by plasma
membrane PI(4,5)P2 levels (Bohdanowicz and Grinstein, 2013),
and studies have demonstrated how PI(4,5)P2 degradation by
PLCγ2 is critical for TLR4 endocytosis (Zanoni et al., 2011;
Schappe et al., 2018). In this way, changing PI(4,5)P2 levels in
the context of various neurodegenerative disorders will affect
TLR4 internalization and consequent signaling activation.

Furthermore, TLR9 can be seen to induce
autophagosome/lysosomal fusion—a key event in
autophagy—via the PI(4,5)P2 phosphatase oculocerebrorenal
syndrome of lowe (ORCL). TLR9 signaling activates ORCL in
lysosomes, which in turn reduces PI(4,5)P2 levels. PI(4,5)P2
is an inhibitor of TRPML1: an ion channel responsible for
autophagy induction (De Leo et al., 2016). Via this mechanism,
TLR9 dyshomeostasis, which has been observed in several
neurodegenerative diseases including AD and PD (Fiebich et al.,
2018), could result in altered PI(4,5)P2 levels, and perhaps result
in autophagy dyshomeostasis. Substantial evidence demonstrates
autophagy dysregulation in both AD and PD (Liu and Li, 2019;
Hou et al., 2020).

TLR Signaling Within the Neurodegenerative Disease
Aging, a key risk factor for numerous neurodegenerative diseases
(Hou et al., 2019), results in TLR dysregulation, characterized
by both impaired signaling and inappropriate activation (Shaw
et al., 2011). TLRs have highly established roles in numerous
neurodegenerative conditions (Fiebich et al., 2018). For one,

TLRs are upregulated in AD (Liu et al., 2005), ALS (Casula
et al., 2011; Lee et al., 2015), and PD brains (Kouli et al., 2019).
Furthermore, within human and mouse AD brains, upregulation
of TLRs (TLR 2, 4, 5, 7, 9) has been observed within microglia
surrounding amyloid plaques (Liu et al., 2005; Walter et al., 2007;
Jana et al., 2008; Letiembre et al., 2009). Also, neurodegeneration-
related proteins like Aβ (Jana et al., 2008; Richard et al., 2008;
Caldeira et al., 2017) and α-synuclein (Beraud et al., 2011; Daniele
et al., 2015) have been demonstrated to increase microglial
TLR expression.

When closely examining links between TLRs and
neurodegenerative disease, it quickly becomes apparent that the
relationship between signaling and pathology is often complex.
Increasing or decreasing the expression of various TLRs can
have both protective and detrimental outcomes in a wide
variety of neurodegenerative conditions (Rietdijk et al., 2016;
Azam et al., 2019).

The importance of TLR signaling in preventing the
development of AD is highlighted by studies demonstrating
how activation of TLR 2, 4, and 9 signaling can reduce
brain pathology and plaque build-up (Tahara et al., 2006).
Furthermore, TLR 4 and 2 knock-out mice demonstrate
increased amyloid plaque burden and cognitive decline (Song
et al., 2011; Zhou et al., 2019). The above affects appear to
occur via reduced microglial phagocytosis of amyloid plaques.
Conversely, TLR4 polymorphisms which reduce receptor
signaling have been observed to be protective against LOAD
(Minoretti et al., 2006). Moreover, numerous studies have
demonstrated how downregulating TLR signaling (2, 4, 6) can
protect against AD development (Chen et al., 2016; Rietdijk
et al., 2016; Zhang et al., 2016; Rangasamy et al., 2018; Long
et al., 2019). The observed discrepancies in outcome when
modulating TLR signaling in AD may reflect differences in
disease progression at the time of treatment. TLR signaling
inhibition to prevent excess neuroinflammation may be more
effective at later stages of the disease, whilst activation to prevent
the initial build-up of amyloid plaques appears to be beneficial at
earlier stages (Go et al., 2016; Pourbadie et al., 2018).

Numerous studies demonstrate upregulated TLR signaling
within PD. TLR upregulation within the PD brain is suspected to
be responsible for the observed α-synuclein-induced microglial
activation (Kouli et al., 2019). Within the HD field, however, so
far only one study has examined the role of TLR signaling in
disease pathogenesis. This study demonstrated how homozygous
deficiency of TLR2 or 3 or heterozygous deficiency of TLR4 was
able to extend lifespan in an HD mouse model (Griffioen et al.,
2018). Although preliminary, this data suggests that further
research into TLR signaling in HD, and perhaps investigating
TLR inhibitors, would be a promising research avenue. In
contrast to observations in PD and HD, TLR signaling in ALS
appears to slow disease progression, with myD88 KO/ALS mice
showing accelerated disease onset and reduced survival (Kang
and Rivest, 2007). Another study demonstrated the importance
of the TRIF pathway in protecting motor neurons within the
ALS brain (Komine et al., 2018). These observations suggest
that perhaps activating TLRs in ALS could provide some
therapeutic benefit.
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Targeting TLRs to Treat Neurodegenerative
Disease—Focus on TLR4/PI(4,5)P2
Having summarized the well-characterized roles of TLRs
and phosphoinositols in neurodegenerative conditions, the
next question is whether we can exploit this knowledge
when considering potential therapeutics. As TLRs have
been implicated in the pathology of numerous diseases,
both neurodegenerative and otherwise, many studies have
characterized the effects of both natural and synthetic
TLR agonists and antagonists (Gambuzza et al., 2014;
Ain et al., 2020). Given the particular importance of
phosphoinositides, namely PI(4,5)P2, in TLR4 signaling,
this review will focus on TLR4 as a therapeutic target for
neurodegenerative disease.

TLR4 activation to increase engulfment of misfolded protein
could act as a promising treatment strategy within the early-AD
brain. Potential candidates to activate TLR4 include the
non-toxic LPS derivative monophosphoryl lipid A (Yousefi et al.,
2019). As previously discussed, during later disease stages it
is likely that inhibiting effects of TLR4 can protect against
further neurodegeneration. Potential TLR4-pathway inhibitors
that have shown promise against early AD phenotypes include
the omega-3-polyunsaturated fatty acid alpha-linolenic acid (Ali
et al., 2020), geniposidic acid (Zhou et al., 2020), and Alpinia
oxyphylla-Schisandra chinensis (Qi et al., 2019). TLR4 inhibitors
have also been investigated to treat PD. One such compound
is vinpocetine, which appears to reduce TLR expression and
improve the cognition of PD patients; although whether or not
this improvement occurs specifically via effects on TLR signaling
is yet to be determined (Ping et al., 2019).

As TLR signaling, particularly TLR4 signaling, is highly
influenced by changing PI(4,5)P2levels, it may be possible
to boost any protective effects by combining TLR-targeting
and PI(4,5)P2 manipulating compounds. This could involve
co-treating with drugs to increase PI(4,5)P2 levels when
activating TLR4 and reducing PI(4,5)P2 when inhibiting TLR4.
There are several options available for manipulating PI(4,5)P2
levels (Idevall-Hagren and De Camilli, 2015). One way would
be by activating or inhibiting PLCγ2: the enzyme that breaks
down PI(4,5)P2.

To conclude this section, TLR signaling, a key function
of microglia, is dysregulated in numerous neurodegenerative
conditions. This potentially allows for the possibility of using the
same drug to treat multiple disorders. TLR signaling has strong
links to phosphoinositide metabolism, another function known
to be disrupted in the same conditions. These links could be
exploited when investigating potential therapeutics.

Roles of PIPs in Purinergic Signaling
Purinergic Signaling in Microglia
The purinergic signaling system has wide-ranging implications
for CNS function. This system consists of enzymes, transporters,
receptors, and other proteins which facilitate the recognition,
secretion, and degradation of extracellular nucleotides and
nucleosides. Within the CNS, nucleotides [such as adenosine
triphosphate (ATP), adenosine diphosphate (ADP), and uridine

diphosphate (UDP)] are released from cells in exosomes. ATP
is often released from damaged cells following CNS injury
(Neary et al., 1994). Following the release, nucleotides are
rapidly degraded by ectonucleotidases, generating both other
nucleotides and adenosine. Adenosine binds to P1 purinergic
receptors (A1, A2A, A2B, and A3), which are widely expressed
across the CNS. Adenosinergic signaling within microglia has
key roles regarding activation. Nucleotides bind to ionotropic
P2X(P2X1–7) and metabotropic P2Y (P2Y1, 2, 4, 6, 11–14)
receptors, which are again widely expressed, and act as
key mediators in neuronal-glial signaling networks. ATP
binding to P2X receptors opens a non-selective Na+, K+, and
Ca2+ cation pore. P2Y receptors are activated by a variety
of nucleotides and share the seven-transmembrane-domain
topology of G-protein coupled receptors. Activated P2Y 1,
2, 4, 6, and 11 receptors use Gq/G11 to activate PLC and
initiate Ca2+ release from the ER, which in turn induces store-
operated Ca2+ entry via Orai1 and TRPC (Lim et al., 2017).
P2Y 12–14 couple to Gi/0, which activate G protein-gated,
inwardly rectifying potassium (GIRK) channels to modulate
downstream ion channels (Abbracchio et al., 2009; Erb and
Weisman, 2012).

Microglia express the P1 receptors A1, A2A and A3 (Haskó
et al., 2005), and the P2 receptors P2X4, P2X7, P2Y6, P2Y12, and
P2Y13 (Calovi et al., 2019). A1R expression on microglia appears
to reduce activation; A2AR expression occurs in response to
immune-stimuli, results in cytokine and nitric oxide (NO)
release, and affects neuronal survival; A3R expression promotes
chemokine release (Boison et al., 2010). Increased P2X7R
expression in microglia leads to microgliosis, NO and reactive
oxygen species release, ATP release, NLRP3 inflammasome
assembly, caspase-1 cleavage, chemokine, and cytokine release
(Choi et al., 2007; Takenouchi et al., 2009; Shieh et al.,
2014; He et al., 2017; Munoz et al., 2017; Yue et al., 2017).
Persistent P2X7 activation also leads to the formation of a large
non-selective pore that appears to reduce microglial viability and
increase cytotoxicity (Seeland et al., 2015; Monif et al., 2016).
Effects of P2X4R expression in microglia are not particularly
well understood, although it also appears to promote activation
and inflammation (Calovi et al., 2019). Furthermore, prolonged
P2X4 activation appears to result in a large non-selective
pore in a similar way to P2X7, although this pore appears
non-cytotoxic (Bernier et al., 2012a). P2Y12R is established
as a marker for healthy, ramified microglia (Mildner et al.,
2017), is downregulated during activation (Haynes et al., 2006),
and has key roles in cell migration and chemotaxis (Ohsawa
et al., 2010). The roles of P2Y12R in chemotaxis will be
further explored in a later section. Moreover, P2Y12R, alongside
P2Y13R, have roles in inflammatory cytokine production and
release from microglia (Liu et al., 2017). P2Y6, via UDP,
initiates microglial phagocytosis (Neher et al., 2014), whilst
also promoting neuroinflammation via cytokine (Yang X. et al.,
2017), chemokine (Kim et al., 2011; Morioka et al., 2013), and
NO production (Quintas et al., 2014).

The above information demonstrates the crucial
role of purinergic signaling regarding a wide variety of
microglial functions.
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Roles of Phosphoinositides in Purinergic Signaling
All known P2X channels (except P2X5) have been demonstrated
to be regulated by phosphoinositide signaling, with PIPs proving
crucial cofactors for channel activity (Bernier et al., 2013b). This
review will discuss in detail only P2X4 and P2X7 regulation
by PIPs, as these are the P2X channels expressed in microglia
(Calovi et al., 2019).

PI(4,5)P2 and PI(3,4,5)P3 have been demonstrated to increase
P2X4 channel activity. Activity, including P2X4-mediated Ca2+

entry, can be stopped by depleting either PI(4,5)P2 or PI(3,4,5)P3
and rescued by intracellular injection of these lipids (Bernier
et al., 2008). As previously mentioned, prolonged ATP-mediated
P2X4 stimulation leads to the formation of a highly permeable
pore, and this process is also inhibited by PI(4,5)P2 depletion
(Bernier et al., 2012a). PIP binding appears to affect P2X activity
by inducing a conformational change that affects channel gating
(Bernier et al., 2008, 2012b). Specific lysine residues of the P2X4
C-terminal region appear crucial for PIP-P2X4 interactions, with
mutation of these residues inhibiting PI(4,5)P2 and PI(3,4,5)P3
binding. The seemingly non-specific nature of the P2X binding
site within the P2X4R means that it is likely regulated by a host
of PIP species (Bernier et al., 2013b).

Pharmacological inhibition of PI(4,5)P2 synthesis has been
demonstrated to reduce P2X7R current density (Zhao et al.,
2007). Similar to P2X4, specific positively charged residues
within P2X7R were found to be directly responsible for this
PI(4,5)P2 mediated receptor activation (Zhao et al., 2007),
although in this case interactions may be indirect (Bernier et al.,
2012b). Indirect interactions of PI(4,5)P2 and other PIP-sensitive
receptors via linker proteins has previously been characterized,
and P2X7R has been shown to interact with α-actinin (Kim et al.,
2001): a known linker protein which facilitates the interaction
between PI(4,5)P2 and glutamate receptors (Kim et al., 2008).

Increasing evidence suggests the PI(4,5)P2 degradative
enzyme PLCγ2 as an indirect regulator of numerous P2X
channels via modulation of PI(4,5)P2 levels (Bernier et al.,
2013b). This enzyme-driven channel regulation via PIP
synthesis/degradation has been demonstrated for several
other types of receptor, for example, PIP degradation by PLC
modulates TRPM7, GIRK, and KCNQ channel activity (Caulfield
et al., 1994; Kobrinsky et al., 2000; Runnels et al., 2002; Cho
et al., 2005; Brown et al., 2007). Moreover, stimulating PLCγ2-
mediated PI(4,5)P2 hydrolysis via activation of platelet-derived
growth factor receptor led to reduced P2X7R activity, with
PI(4,5)P2 addition reversing this effect in macrophages (Zhao
et al., 2007). This theory is further supported by observations that
UDP-mediated activation of P2Y6 leads to PLC activation within
microglia, followed by reduced P2X4R activity, presumably
due to falling PI(4,5)P2 levels (Bernier et al., 2013a). As P2Y
receptors often signal via PLCγ2, which is in turn regulated
by PI(4,5)P2 levels (Erb and Weisman, 2012), P2Y signaling is
also likely to be tightly linked to phosphoinositide homeostasis
within microglia.

In addition to interaction with P2X channels, ATP and
PI(4,5)P2 binding has been demonstrated to co-regulate key
intracellular signaling proteins. This includes focal adhesion
kinase, which has been demonstrated to impact microglial

mobility (Choi et al., 2015). Furthermore, ATP-sensitive
potassium channels or KATP channels, which have key roles
regarding initiation of inflammation by microglia (Rodriguez
et al., 2013), are also co-regulated by PI(4,5)P2 binding
(Li et al., 2017).

The above evidence demonstrates a clear regulatory function
of phosphoinositide species, particularly PI(4,5)P2, with regards
to purinergic signaling. This means that PIP dyshomeostasis
within neurodegenerative disease will likely have substantial
implications regarding microglial purinergic signaling and
downstream phenotypes.

Purinergic Signaling and Neurodegenerative Disease
Purinergic signaling has well-established roles within numerous
neurodegenerative disorders including AD, PD, HD, and ALS
(Puchaowicz et al., 2014).

P1 receptors are seen to be upregulated early in disease
progression within the most affected areas of PD patient
brains (Villar-Menéndez et al., 2014). Also, two polymorphisms
in the A2A receptor appear to reduce PD risk (Popat
et al., 2011). This dysregulation is also seen in AD, with
increased A2A receptor expression observed in the cortex and
hippocampal microglia in post-mortem brains (Angulo et al.,
2003). Following these observations, many clinical trials are
currently underway investigating A1 receptor antagonists as a
therapeutic target for Parkinson’s disease, with some showing
promise (Tóth et al., 2019). In vitro and in vivo studies
suggest similar neuroprotective effects of A1 modulators in
AD, with antagonism of A2ARs appearing to reduce amyloid
plaque formation (Woods et al., 2016). One such A2A receptor
antagonist is caffeine (Fredholm et al., 1999): known to
reduce the risk of a variety of neurodegenerative conditions
(Eskelinen and Kivipelto, 2010). Within ALS however, activation
of A2A receptors appears protective, with caffeine negatively
affecting neurological phenotypes, although this effect is
stage-dependent (Sebastião et al., 2018). A similar effect,
alongside downregulation of the A2A receptor, is seen in HD
(Blum et al., 2018).

P2X receptors are also acknowledged to play important
roles in neurodegenerative disease development. P2X7R is the
most widely studied regarding its roles in neurodegeneration,
following observations that it is upregulated in microglia from
a variety of conditions including AD and PD (McLarnon et al.,
2006; Durrenberger et al., 2012).Within AD, increasedmicroglial
purinergic signaling via the P2X7R appears to contribute to both
altered Aβ metabolism, a heightened inflammatory response,
and synaptotoxicity (Woods et al., 2016). Though not as well
studied as P2X7, P2X4 also appears to be dysregulated in
the AD brain and is seen to increase following exposure to
Aβ (Varma et al., 2009). These observations, alongside known
roles of the P2X4R in eliciting inflammatory responses (Calovi
et al., 2019), suggest potential roles in AD pathology. Within
PD, P2X7 receptors are thought to contribute to pathology
via increased synaptotoxicity, neurotoxicity, and gliosis (Carmo
et al., 2014). Though current research on purinergic signaling
in PD has focused on P2X7, P2X4 has also been implicated
in PD pathology. Altered P2X4 signaling in PD is thought to
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interfere with dopaminergic signaling, therefore contributing
to observed difficulty with motor control and sensorimotor
gating in PD mouse models (Khoja et al., 2016). P2X7R
expression is also increased within HD mouse brains, and
treating with a P2X7R antagonist inhibits neuronal loss while
improving motor coordination (Díaz-Hernández et al., 2009).
Within ALS, in contrast to that observed in AD, PD, and
HD, P2X4, and P2X7 expression appear to protect against
neurodegeneration (Oliveira-Giacomelli et al., 2018). Indeed,
allosteric P2X4 activation increases the lifespan of ALS-mice
(Andries et al., 2007) and P2X7R knock-out ALS mice show
accelerated neurodegeneration (Apolloni et al., 2013).

P2Y receptors are also dysregulated in a variety of
neurodegenerative conditions. Within AD microglia, P2Y
signaling can be seen to affect microglial migration, chemokine
and cytokine production, endocytosis, phagocytosis, Aβ

metabolism, and oxidative stress responses (Erb et al.,
2015). UDP-mediated P2Y6 signaling appears to increase
phagocytosis of viable neurons by activated microglia. Perhaps
unsurprisingly given the above observations, the P2Y6R
has been suggested to contribute to microglial activation,
inflammation, and phagocytosis of viable neurons in PD.
P2Y6R appears to increase in PD models, and antagonists
of this receptor appear to delay neuronal death following
inflammation (Yang X. et al., 2017; Oliveira-Giacomelli et al.,
2019). To our knowledge, no research has been done currently
investigating UDP/P2Y6R signaling in AD models, although
this would likely be a fruitful avenue in future studies. P2Y12,
alongside its roles in chemotaxis, has been suggested to be
important for synaptic plasticity and synaptic pruning (Sipe
et al., 2016). As increased synaptic pruning is emerging as a
key phenotype of neurodegenerative diseases, including AD
and PD, this receptor may have roles in the pathology of a
variety of neurodegenerative disorders (Lee and Chung, 2019).
Microglial P2Y13R expression has been shown to induce
astrocyte proliferation, which could also have implications for
neurodegeneration, although no studies have specifically looked
at this in this receptor context of neurodegenerative diseases
(Quintas et al., 2018).

Whist more work needs to be done to thoroughly characterize
the roles of microglial purinergic signaling in neurodegenerative
disease, these signaling pathways have clear implications
regarding dementia pathology.

Targeting Purinergic Signaling to Treat
Neurodegenerative Disease
Drugs targeting purinergic signaling are showing
great promise regarding the treatment of a variety of
neurodegenerative disorders.

Several A2A receptor antagonists have been characterized
and investigated in clinical trials on PD patients, showing
various degrees of success. So far, however, despite the
benefits of A2A antagonism seen in vivo and in vitro in AD
models, no compounds have moved to clinical trials as of
yet for this condition. Several P2Y receptor antagonists exist,
although to date none have been investigated as potential
treatments for neurodegenerative diseases (Von Kügelgen and

Hoffmann, 2016). A variety of A2A receptor agonists are
available, although many appear to have adverse side effects
(Guerrero, 2018).

P2X7 antagonists appear to reduce pathologies in several
neurodegenerative disorders, including AD and PD (Burnstock
and Knight, 2018). Many have been previously tested in
clinical trials for the treatment of non-neurological disorders,
such as rheumatoid arthritis and Crohn’s disease (Cao et al.,
2019). Following its promise as a potential wide-ranging
therapeutic target, numerous highly potent, stable, centrally
penetrant P2X7R antagonists are currently being developed
and tested for a wide range of conditions (Rech et al., 2016).
P2X4 antagonists have proved harder to generate, although some
are now available and are likely to be investigated in future
studies for beneficial effects on neurodegenerative disorders
(Stokes et al., 2017).

Given the potential of P2XR7 and P2XR4 inhibition as
potential therapeutic targets for neurodegenerative disorders,
and that these channels are activated by PIPs, it may be
the case that dual P2X and PIP synthesis inhibition could
act as a potential therapeutic. As mentioned in the previous
section on TLR signaling, there are several options available
for modulating PIP levels (Idevall-Hagren and De Camilli,
2015). Moreover, given that PLCγ2 hydrolysis of PI(4,5)P2
can be seen to modulate P2X activity (Bernier et al.,
2013b), potentially activating PLCγ2, alongside direct purinergic
signaling modulation, could be protective against neurological
disease progression.

In summary, purinergic signaling, a key regulator
of microglial function, is dysregulated in numerous
neurodegenerative disorders. This process has strong links
to phosphoinositide metabolism. These links could be exploited
when investigating potential therapeutics.

Role of PIPs in Microglial Endocytosis
Endocytic Systems in Microglia
Microglia, like all tissue-resident macrophages, are dedicated
phagocytes tasked with immune surveillance and the elimination
of pathogens. These cells can recognize, engulf and destroy
foreign bodies. In addition to their immuno-protective role,
microglia also perform important housekeeping tasks such
as removing apoptotic cells and mediating synaptic pruning
during development (Wake et al., 2011). Microglia survey
their environment by constantly patrolling a set region for
indications of danger or damage (Madry et al., 2018). Large
particles are internalized via phagocytosis, whilst other endocytic
uptake methods (e.g., micro and macro-pinocytosis) are utilized
for the uptake of fluid-phase material and soluble antigens
(Solé-Domènech et al., 2016). Micropinocytosis includes
receptor-mediated uptake methods, such as clathrin-mediated
and caveolae-mediated endocytosis (Mettlen et al., 2018;
Li et al., 2019).

During phagocytosis and macropinocytosis, large vacuoles
are known as phagosomes, and macropinosomes form via actin
rearrangement (May andMachesky, 2001). These vacuoles engulf
the target material following the invagination of the plasma
membrane. The vacuole is then brought into the cytoplasm
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where it fuses with the lysosome, which degrades the captured
material (Gray et al., 2016). Phagocytosis and macropinocytosis
can be artificially divided into two phases. First the formation
of the vacuole, and then its progression and maturation through
the endocytic pathway. Similar molecular machinery is involved
in phagocytic and macropinocytic systems. These processes
involve complex signaling cascades, which lead to cytoskeletal
reorganization and membrane remodeling. Both systems begin
with Rho GTPase activation and the extension of actin-driven
membrane protrusions (West et al., 2000), followed by activation
of PI3K which results in large-scale membrane remodeling
(Araki et al., 1996).

Clathrin-mediated endocytosis is the major entry route for
extracellular hormones and signaling factors and serves to
regulate the internalization of transmembrane receptors as well
as the recycling of pre-and postsynaptic membrane proteins
(Le Roy and Wrana, 2005). Caveolae are invaginations of
the plasma membrane generated by caveolins, proteins with
a membrane-integral hairpin anchor, and cavins, cytoplasmic
proteins that are required for the stabilization of caveolae (Parton
and del Pozo, 2013). Following their internalization, caveolae
display multiple additional roles within the cell, participating
in mechano-sensing, compartmentalized signaling, and lipid
metabolism (Del Pozo et al., 2020).

The following sections discuss the role of PIPs in the above
described endocytic processes and speculated involvement of
these lipids is summarized in Table 3.

Roles of Phosphoinositides in Phagocytosis
When microglia initially encounter phagocytic targets,
extracellular signals must be conveyed across the plasma
membrane to initiate the complex cellular behaviors that
culminate in uptake. It is becoming increasingly apparent
that PIPs play a prominent role in relaying this information.
Indeed, both the detection of ligands by transmembrane
phagocytic receptors and the ruffling of membranes during
macropinocytosis are accompanied by local changes in PIP
composition (Gillooly et al., 2001). PIPs also coordinate
phagosome maturation, whereby membrane fusion and
fission events lead to the acquisition of degradative properties
(Vieira et al., 2002).

PI(4,5)P2 and its metabolites (Figure 2) are pivotal to
the control of numerous events in phagocytosis including
the rearrangement of the actin cytoskeleton (Rohatgi et al.,
2000), receptor mobility (Jaumouillé and Grinstein, 2011),
integrin activation (Martel et al., 2001), and ion channel activity
(Suh and Hille, 2005). To control these disparate events it
is important that PI(4,5)P2 levels change only locally during
phagocytosis and that each event occurs in discrete locations
(Kutateladze, 2010). Work by Botelho et al. (2000) characterized
an accumulation of PI(4,5)P2 in emerging pseudopods during
the early stages of phagosome formation, followed by a
drop in levels at the base of the phagocytic cup as the
pseudopodia extend. Following phagosome sealing and severing,
phagosomal PI(4,5)P2 decreases precipitously and is no longer
detectable by fluorescence microscopy (Botelho et al., 2000).
This decrease appears to initially occur via PI3K-mediated

phosphorylation of PI(4,5)P2 into PI(3,4,5)P3. PI3K also serves
as a signal for the recruitment of PLCγ, which then acts as
the predominant method for reducing PI(4,5)P2levels within
phagosomes (Falasca et al., 1998).

PI(4,5)P2 promotes the activation of several actin-regulatory
proteins which encourage filament assembly and inhibit
disassembly (Saarikangas et al., 2010). This leads to an increase
in the number of barbed ends and also induces de novo
actin nucleation by activating nucleation-promoting factors
(Miki et al., 1996). Also, ezrin, radixin, and moesin (ERM)
proteins, which link the cytoskeleton to the plasma membrane,
are known to be partially controlled by PI(4,5)P2 levels
(Bretscher et al., 2002). As such the localized increase in
PI(4,5)P2 that occurs after the activation of phagocytic receptors
results in reorganization of the actin cytoskeleton, driving the
extension of pseudopodia around the surface of phagocytic
targets (Coppolino et al., 2002). Blocking this local increase in
PI(4,5)P2 appears to prevent the formation of phagocytic cups
and therefore inhibits phagocytosis (Coppolino et al., 2002).
Interestingly, dismantling of actin at the base of the cup and
particle internalization are also blocked if high PI(4,5)P2 levels
are sustained by promoting PIP5K-mediated synthesis or by
inhibiting PLCγ-driven degradation (Scott et al., 2005). This
suggests that the reduction of PI(4,5)P2 is linked to actin
disassembly, which is in turn required for the completion
of phagocytosis.

In addition to the consequences that PI(4,5)P2 metabolism
has on cytoskeletal dynamics, the breakdown of this PIP to
its secondary metabolites also has important ramifications in
the phagocytic process. PLCγ-mediated hydrolysis of PI(4,5)P2
leads to the formation of DAG and Ins(1, 4, 5)P3 (IP3). DAG
generation coincides in space and time with the disappearance of
PI(4,5)P2. Interestingly, though neither DAG nor IP3 is essential
for particle engulfment, inhibition of PLCγ blocks the phagocytic
response (Botelho et al., 2000; Scott et al., 2005). This suggests
that it’s the disappearance of PI(4,5)P2, rather than the formation
of its metabolites that is required for phagocytosis. However,
DAG recruitment of PKC isoforms and increased Ca2 levels
in the cytoplasm is required for later stages of phagocytosis
(Ueyama et al., 2004; Nunes et al., 2012; Schlam et al., 2013;
Bengtsson et al., 1993).

Like other 3-polyphosphoinositides, PI(3,4,5)P3 levels are
scarce in unstimulated cells. However, PI(3,4,5)P3 is quickly
generated following activation of immune receptors. The
metabolism of PI(3,4,5)P3 is strictly and dynamically regulated,
and in general restricted to the cytosolic side of the cell
membrane (Palmieri et al., 2010). During phagocytosis, the
spatiotemporal dynamics of PI(3,4,5)P3 synthesis mirror those
of PI(4,5)P2 breakdown, consistent with a role for class I
PI3K in mediating the conversion of PI(4,5)P2 to PI(3,4,5)P3.
PI3K is recruited to and activated at sites of phagocytosis
following particle engagement (Marshall et al., 2001). Synthesis
of phagosomal PI(3,4,5)P3 is detectable shortly after phagocytic
targets are engaged, and this PIP continues to accumulate as the
phagocytic cup progresses. While PI(3,4,5)P3 is still detectable
after sealing, its presence in the phagosomal compartment
is short-lived, and its concentration declines sharply within
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TABLE 3 | Suspected involvement of PIP species in various forms of endocytosis.

Type of endocytosis PIP species involved Mechanism References

Phagocytosis PI(4,5)P2 Increase following target recognition allows
the formation of pseudopodia.

Later reduction essential for the completion
of phagocytosis.

Coppolino et al. (2002) and
Scott et al. (2005)

PI(3)P The transient increase allows maturation
and sealing of phagosomes.

Vieira et al. (2001)

Macropinocytosis PI(4,5)P2 Enriching this PIP in membrane ruffles
stimulates macropinocytosis.

Donaldson (2003)

PI(3)P Participates in vacuole formation. Yoshida et al. (2009)

Clathrin-mediated endocytosis PI(4,5)P2 Required for the invagination of
clathrin-coated vesicles.

Antonescu et al. (2011)

Caveolae-mediated endocytosis PI(4,5)P2 Accumulates at the rim of caveolae vesicles. Nunes and Demaurex (2010)

FIGURE 2 | Roles of PI(4,5)P2 in early phagocytosis. (A) When a target is detected by a phagocytic cell PI(4)P is converted to PI(4,5)P2by PIP5K. PIP5K associates
with the plasma membrane along its positively charged surface. PI(4,5)P2 mediates linkage of actin networks (red) to integral plasmalemmal proteins through
intermediary ezrin, radixin, and moesin (ERM) proteins. (B) When the phagosome sealing begins depletion of PI(4,5)P2 from the base of the cup leads to the removal
of actin filaments. PI(4,5)P2 is converted by kinases (PI3K), phosphatases (OCRL), and phospholipases (PLCγ). This allows the movement of the closed vacuole into
the cell.

1–2 min. Notably, SHIP accumulates at the phagosomal
membrane (Marshall et al., 2001), where it promotes the
breakdown of PI(3,4,5)P3 to PI(3,4)P2 (Marshall et al., 2001;
Kamen et al., 2007). Perhaps unsurprisingly given its key and
early role in the phagocytic process, near-complete inhibition of
phagocytosis is seen in macrophages treated with PI3K inhibitors
(Cox et al., 1999).

Though its cellular concentration is comparatively low, the
PIP PI(3)P is also critically involved in the maturation of
phagosomes. In mammalian cells, PI(3)P is found mainly at
the cytoplasmic leaflet of early endosomes and in intraluminal
vesicles of multivesicular bodies (Kaminska et al., 2016).
However, sealing of the phagosome and its internalization
is followed by a striking yet transient accumulation of
this PIP, which lasts for about 10 min and coincides

with the centripetal movement of the phagosomal vacuole
(Vieira et al., 2001).

Roles of Phosphoinositides in Other Forms of
Endocytosis
A central role for PIPs as spatial landmarks for membrane
trafficking in other forms of endocytosis has emerged (Cremona
and De Camilli, 2001; De Matteis and Godi, 2004). Despite
only constituting <10 % of the total cellular phospholipids, PIPs
act as key regulators of intracellular membrane traffic and cell
signaling. Together with their corresponding vesicle adaptors
and transmembrane cargo proteins, phosphoinositides can be
seen as part of a system for directing membrane trafficking
pathways (Wenk and De Camilli, 2004). PI(4,5)P2is required
for the invagination of clathrin-coated vesicles (CCVs), the
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fusion of secretory granules with the plasmalemma, and for
macropinocytosis. Other PIPs have been localized to distinct
intracellular membranes and it now seems that many of the
key proteins involved in vesicle formation, fusion, and fission
are important targets of these lipids. For one, the formation
of PI(4,5)P2-enriched membrane ruffles by overexpression of
Arf6-GTP stimulates clathrin-independent macropinocytosis
(Donaldson, 2003). Several enzymatic activities appear to
contribute to PI(4,5)P2 degradation, which is required for
the uncoating of CCVs (Cremona et al., 1999). Among
these are PLCδ, inositol 5-phosphatases including synaptojanin,
SHIP, OCRL, 5-phosphatase II, and proline-rich inositol
polyphosphate 5-phosphatase. Moreover, PI(4,5)P2 is the
precursor for PI(3,4,5)P3 synthesis following activation of PI3K
by ligand-bound cell signaling receptors (De Matteis and Godi,
2004). How exactly the interplay between PI kinases and
phosphatases is regulated is unclear.

Several studies have documented the presence of PI(3,4)P2 in
macropinosomes. This PIP appears to be generated by SHIP2 and
broken down by INPP4B (Hasegawa et al., 2011; Welliver and
Swanson, 2012; Maekawa et al., 2014). PI(3)P can also be found
within early macropinosomes in myeloid cells (Yoshida et al.,
2009). Unlike during phagocytosis, where PI(3)P is believed to
be important for vesicle maturation, during macropinocytosis
PI(3)P has been proposed to participate in vacuolar formation.
Additionally, inhibiting PI(3)P synthesis by knocking down
INPP4B impairs micropinocytosis (Maekawa et al., 2014).

Whilst the core components of caveolae are not known
to associate with PIPs directly, the dynamin-related ATPase
EHD2 binds PI(4,5)P2-rich membranes before recruitment to
caveolae containing vesicles (He et al., 2004). EHD2 functions as
a negative regulator of caveolae internalization by retaining this
protein at the plasma membrane and this function require lipid-
binding (Cheng et al., 2007). Interestingly, Nunes and Demaurex
(2010) labeled PI(4,5)P2 bound to the PH-domain of PLCδ

on freeze-fractured plasma membrane leaflets and reported the
accumulation of PI(4,5)P2 at the rim of caveolae vesicles. The
precise significance of the role of PIPs in caveolin-mediated
endocytosis thus remains elusive, yet caveolae do appear to be
regulated by PI(4,5)P2.

Endocytosis and Neurodegenerative Disease
One of the principal roles of microglia in neurodegeneration
is the clearance of protein aggregates, myelin debris, and
apoptotic cells in an attempt to maintain healthy brain
homeostasis. Many neurodegenerative conditions present with
increasing accumulation of toxic extracellular proteins such
as Aβ plaques in AD, and increased apoptosis of cells such
as the loss of dopaminergic neurons in PD. It is therefore
clear that alterations in microglial phago and endocytosis
would have important implications regarding the progression of
neurodegenerative conditions.

FcR-mediated phagocytosis and complement activation play
a critical role in the removal of plaques from the AD brain
(Lee and Landreth, 2010). Furthermore, monocyte chemotactic
protein-1 (MCP-1/CCL2), coupled with its binding receptor
CC-chemokine receptor 2, appear crucial mediators of the

neuroinflammatory response that drives the disease process
in a mouse model of AD (Kiyota et al., 2009, 2013; Bose
and Cho, 2013). CCL2-deficient AD mice (APP/PSEN1 mice)
showed decreased microglial phagocytosis of both monomeric
and oligomeric Aβ42 and accelerate Aβ deposition (Kiyota
et al., 2013). Moreover, GWAS studies (Sims et al., 2017)
have found several AD disease risk factors that are linked to
both phagocytosis and phosphoinositides including a hyper-
functional protective variant of PLCγ2 which hydrolyzes
PI(4,5)P2 (Magno et al., 2019). Knockout of PLCγ2 has been
shown to reduce phagocytosis in microglia (Andreone et al.,
2020). Similarly, AD-GWAS variants in TREM2, an upstream
receptor in this pathway, have been shown to affect phagocytosis
both positively and negatively (Kim et al., 2017). Abi3, another
risk factor for AD, is linked to actin polymerization and may
also have a role in phagocytosis (Moraes et al., 2017; Conway
et al., 2018). It is important to note however that despite
the observed protective roles of microglial phagocytosis in the
neurodegenerative brain increasing phagocytosis in microglia
may not always improve brain pathology. AD microglia have
been shown to display disrupted microglia-mediated synaptic
pruning, which correlates with decreased cognitive ability
(Brucato and Benjamin, 2020).

In addition to observations in AD, in vitro studies of
microglia treated with monomeric α-synuclein as a model of
PD exhibit enhanced phagocytosis (Park et al., 2008). Using
proteomic technology, Liu et al., have shown that a variety
of types of membrane proteins were potentially involved in
microglial internalization of α-synuclein (Liu et al., 2007). In
particular, clathrin was demonstrated to play a critical role
in the endocytosis of aggregated α- synuclein, probably in
a receptor-ligand sequestration-related manner, although the
exact mechanism requires further study (Liu et al., 2007). In
Huntington’s disease extracellular mHTT is cleared bymicroglial
phagocytosis (Crotti and Glass, 2015). Moreover, within FTD
and ALS, mutations in phagocytosis-associated genes expressed
by microglia in the CNS have been identified as risk factors.
These genes include missense mutations in TREM2 (Cady
et al., 2014; Kleinberger et al., 2014). Also, mutations in PFN1,
encoding Profilin, have been identified as a causative mutation
in ALS. Profilin is important for the regulation of actin dynamics
(Wu et al., 2012; Fil et al., 2017).

Targeting Microglial Endocytosis to Treat
Neurodegenerative Disease
As discussed in the previous section, microglial phagocytosis
plays an important role in the neuroimmune response to
neurodegenerative conditions. As such it presents a tempting
target for therapeutic intervention. However, it is worth
remembering one of the clinical symptoms of AD is the chronic
loss of synapses caused by microglial phagocytic engulfment
(McQuade and Blurton-Jones, 2019). Moreover, AD and PD
microglia can be seen to contribute to neurodegeneration via
phagocytosis of injured but functional neurons (Brown and
Neher, 2012; McQuade and Blurton-Jones, 2019). As such simply
upregulating phagocytosis may not be useful. Ongoing genetics-
based studies however may suggest a more effective route
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allowing a more targeted approach. There is a significant amount
of work to still be done in this area before any therapies can be
brought to the clinic. Given the importance of PIPs throughout
the phagocytic process, possibly the future therapeutics targeting
phagocytosis would benefit from co-manipulation of PIP levels.

Role of PIPs in Microglial Chemotaxis and
Migration
Chemotaxis and Migration in Microglia
Cell migration is crucial to the function of microglia, allowing
them to patrol their region of interest and respond to sites
of damage. Microglia react rapidly to damage signals with a
positive chemotactic response. Upon detection of these signals,
microglia undergo complex molecular and cytoskeletal changes
that polarize the cell towards the direction of the damage site.
Once stimulated to migrate, cells form a coordinated outgrowth
of protrusions and adhesions, which results in translocation
of the cell body by contraction towards the adhering zones.
Finally, the adhesions are disassembled and the rear of the
cell is retracted (Smolders et al., 2019). As a cell advances,
newly extended protrusions adhere to the extracellular substrate
using integrins. Integrins are attached to interacting myosin
II and actin filaments (F and G type) via adaptor proteins,
which allows for the generation of traction force (Lauffenburger
and Horwitz, 1996). Previous studies have demonstrated that
primary rat microglia (P0–P2) do not demonstrate classic
types of adhesions during migration (which uses cell adhesion
molecules such as cadherins), but instead form podosomes.
These are 0.4–1 µm multimolecular structures with an F-actin
core surrounded by a ring of adhesion and structural proteins.
Through Ca2+ signaling in these podosomes, microglia are
able to adhere to and degrade fibronectin substrates using
matrix metalloproteinases. This allows them to transverse the
extra cellular matrix (Siddiqui et al., 2012; Vincent et al.,
2012).

Microglia mobility can be broadly divided into two main
functional modes; surveillance and chemotaxis. Both these
systems involve altering the cytoskeletal structure of the
microglia using the high amounts of filamentous actin in
motile bundles present in microglial cells (Capani et al., 2001;
Lambrechts et al., 2004). In vivo and in situ studies using
genetically targeted microglia have demonstrated that microglial
tissue surveillance in the healthy CNS is almost exclusively
performed by their long, thin, and highly branched processes,
which extend and retract at average velocities of 2.5 µm/min
(Davalos et al., 2005; Nimmerjahn et al., 2005; Wu et al., 2007;
Li et al., 2012). Their high process motility (as well as their
high cell density in the brain) allows microglia to scan the
entire brain parenchyma once every few hours (Nimmerjahn
et al., 2005). The mechanism of this surveillance is not fully
understood but is thought to be monitored in part via signaling
by astrocytes (Cotrina et al., 2000; Xiong et al., 2018) and
neurones (Nimmerjahn et al., 2005; Fontainhas et al., 2011;
Li et al., 2012; Gyoneva and Traynelis, 2013; Dissing-Olesen
et al., 2014) as well as by fractalkine signaling (Zujovic et al.,
2000; Cardona et al., 2006; Liang et al., 2009). However, it has

been demonstrated that unlike chemotaxis, surveillance is not
regulated by P2Y12 receptors (Haynes et al., 2006).

Microglia detect damage (via activation of P2Y12 purinergic
receptors or fibrinogen-sensing CD11b/CD18 receptors) and
immediately extend processes toward the site of injury, where
they converge in less than 30 min to form a spherical shield
preventing further spread (Davalos et al., 2005; Hines et al.,
2009). As previously mentioned in this review, in vitro studies
have established a key role for extracellular nucleotides like
ATP/ADP as potent inducers of microglial chemotaxis (Honda
et al., 2001; Franke et al., 2007; Orr et al., 2009). These
nucleotides, as well as other signals like NO, are known to leak
from damaged cells and so act as a signal of damage (Neary
et al., 1994). Microglia use ionotropic P2X and metabotropic
P2Y and P1 receptors to respond to extracellular nucleotides and
nucleosides (Haynes et al., 2006; Koizumi et al., 2007; Wu et al.,
2007; Avignone et al., 2008; Orr et al., 2009). Within cultured
rat microglia, increasedmembrane ruffling and chemotaxis upon
ADP stimulation appears to occur via the purinergic P2Y12R.
ATP/ADP-induced chemotaxis, dependent on Gi-coupled P2Y
receptors, was first described in cultured microglia and later
in vivo (Honda et al., 2001; Davalos et al., 2005), and knock-out of
ADP-activated Gi-coupled P2Y12 greatly decreases chemotaxis
(Haynes et al., 2006). Expression of the P2Y12 receptor on the
surface of ramified microglia in vivo (Haynes et al., 2006) is
particularly enriched at the tips of the leading processes during
chemotaxis (Dissing-Olesen et al., 2014). ATP/ADP-induced
P2Y12 receptor activation leads to PLC and Ca2+dependent
phosphorylation of the serine/threonine kinase Akt, as well as
PI3K-mediated Akt phosphorylation (Irino et al., 2008).

Role of Phosphoinositides in Chemotaxis and
Migration
In vitro PI3K appears to act as one of the major signaling
components of chemotaxis by allowing cells to establish polarity
(Fan et al., 2017). PI3K is selectively localized at the leading edge
of the membrane after exposure to a chemoattractant gradient.
This creates a spatially restricted production of PI(3,4,5)P3 from
PI(4,5)P2, which induces F-actin polymerization at the front of
migrating cells (Parent et al., 1998; Haugh et al., 2000; Rickert
et al., 2000). PTEN, which localizes away from the leading edge,
acts reciprocally to PI3K by converting PI(3,4,5)P3 to PI(4,5)P2
(Wu et al., 2014; Figure 3).

P2Y12R has also been reported to be linked to a potassium
channel, and ATP/ADP-induced activation of P2Y12R elicits
an outward potassium current in microglia (Swiatkowski et al.,
2016). Blocking this current abolishes chemotaxis to ATP,
suggesting that this current plays an important role in the
regulation of microglial motility.

Interaction with PIP species is crucial regarding actin
assembly, with these lipids facilitating the crosslinking and
linking of actin to the plasma membrane by binding with
several different actin-binding proteins (ABPs; Figure 3). The
ABP gelsolin is a key regulator of actin filament assembly
and disassembly. Gelsolin caps to the barbed ends of G and
F actin filaments, where it prevents monomer exchange (end-
blocking or capping; Weeds et al., 1986), promotes nucleation
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FIGURE 3 | Functional role of phosphoinositides in cell migration. The binding of a chemoattractant to G-protein coupled receptors (e.g., P2Y12R) in the cell
membrane releases the Gα heterodimer from the heterotrimeric Gα proteins. Dissociated Gα proteins stimulate PI(3,4,5)P3 production from PI(4,5)P2 via
phosphoinositide 3-kinase (PI3K) and lead to membrane translocation of PI(3,4,5)P3-binding actin-binding proteins (ABPs) such as myosin. This allows remodeling of
the actin cytoskeleton at the leading edge, which is required for the formation of novel cell protrusions. Away from the leading edge PI(3,4,5)P3 is converted back to
PI(4,5)P2 via phosphatase and tensin homolog (PTEN). PI(4,5)P2 then inhibits actin assembly by binding capping proteins.

(the assembly of monomers into filaments) and severs existing F-
actins. Gelsolin binds PI(4,5)P2 and PI(3,4,5)P3 in vivo through
two regions that contain clusters of basic residues. Overlapping
binding sites means that PIP binding inhibits gelsolin from
binding to the G/F-actin (Xian and Janmey, 2002). Gelsolin not
only binds to charged regions on PIPs but also interacts with the
fatty acid side chains and thus pulls out phospholipids from lipid
bilayers. Through this mechanism, gelsolin may modulate PIP
density in the plasma membrane (Liepina et al., 2003).

Cofilin proteins are a family of ABPs which are structurally
and functionally related to gelsolin. These proteins bind to
both G and F-actin and cause depolymerization at the minus
end of filaments, thereby preventing their reassembly. Both
PI(4,5)P2 and PI(3,4,5)P3 bind to cofilin and inhibit its activity
(Ojala et al., 2001).

α-Actinin belongs to the spectrin gene superfamily. This
protein connects actin filaments to integrins and serves as a
scaffold to integrate signaling components at adhesion sites and
promote bundling of actin filaments (Otey and Carpen, 2004).
These proteins contain a PIP-binding site within the calponin
homology domain (CH1 and CH2), close to the actin-binding
site. α-actinin binds to both PI(4,5)P2 and PI(3,4,5)P3 with
equal affinity. In vivo studies show that PI(3,4,5)P3 disrupts the
connection between α-actinin and F-actin, although interestingly
the opposite is seen in in vitro studies. Furthermore, the elevation
of PI(3,4,5)P3 appears to disrupt the link between actin and
integrins, which allows for the redistribution of focal adhesion
points in migrating cells (Fraley et al., 2005).

The Ezrin/radixin/moesin (ERM) protein family provides
a regulated linkage between the plasma membrane and the
underlying actin cytoskeleton (Tsukita and Yonemura, 1997).
Several studies have indicated that the binding of ERM proteins

to PI(4,5)P2 and phosphorylation of a threonine residue in the
F-actin binding site causes the dissociation of activated ERM
proteins (Crepaldi et al., 1997; Naba et al., 2008).

Septins are a group of highly conserved GTP-binding proteins
that assemble into filaments and are increasingly recognized as
a crucial component of the cytoskeleton (Mostowy and Cossart,
2012). Septins act as a scaffold, allowing the recruitment of
many proteins. In vitro studies have shown that purified septins
bind phospholipids and that they display particular affinities
for PI(4,5)P2 and PI(3,4,5)P3 (Tanaka-Takiguchi et al., 2009).
Depletion of PI(4,5)P2 and PI(3,4,5)P3 in vivo disrupts septin
filaments in 3T3 cells (Gilden and Krummel, 2010).

Myosin I is a monomeric, actin-based motor protein with
ATPase activity that has been shown to function in the
membrane–cytoskeletal interactions, including vesicle transport
along actin filaments and regulation of plasma membrane
tension. Myosin I molecules have a tail homology (TH) domain
that contains a putative phospholipid-binding PH domain.
Previous studies have shown that the TH domain preferentially
binds to acidic phospholipids such as phosphatidylserine and
PI(3,4,5)P2. These phospholipids are relatively abundant in
biological membranes and their concentrations do not appear
to change a great deal in response to intracellular signaling. In
contrast, PI(3,4,5)P3 levels are highly regulated and function as
signaling mechanisms for myosin (Chen et al., 2012).

Microglial Chemotaxis and Migration Within the
Neurodegenerative Disease
Many neurodegenerative conditions present with alterations in
microglial migration and distribution. Microglia follow gradients
of chemokines towards damaged and dying cells, which by
definition are present in these disorders.
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The net migration of microglia induced by deposits of Aβ

in AD is well documented. This process acts to concentrate
microglia around Aβ deposits in an attempt to neutralize or
prevent further damage. Increased levels of a wide range of
chemokines have been reported in AD patients (Koenigsknecht-
Talboo and Landreth, 2005). One example is MCP-1. Levels
of MCP-1 within CSF increase throughout AD and levels
correlate with disease severity (Galimberti et al., 2006). Other
chemokines including IL-18, VEGF, and Fractalkine have also
been shown to be elevated in patients with AD (Kalaria et al.,
1998; D’Andrea et al., 2004; Franciosi et al., 2005). In PD α-
synuclein aggregates released from neurons activate microglia
and act as chemoattractants that direct microglial migration by
acting onNADPH oxidase and several other specific downstream
proteins (Wang et al., 2015). In HD mutant mHTT protein
has been shown to impair immune cell migration by disrupting
actin remodeling (Kwan et al., 2012). Notably, PI3K signaling,
via inhibition of the Akt/Erk signaling cascade, has been shown
to significantly contribute to the pathogenesis of AD, PD, and
HD (Rai et al., 2019). Within ALS, microglia appear to be less
mobile than controls in cellular models when using MCP-1 as a
chemoattractant (Yamasaki et al., 2010).

Targeting Microglial Chemotaxis and Migration to
Treat Neurodegenerative Disease
Targeting chemotaxis to treat neurodegeneration represents a
very nuanced problem. While microglia do have a protective role
in many forms of neurodegenerative disease, they also have a
detrimental role. While an increased number of microglia may
be able to reduce damage and clear extracellular proteins they
can also initiate a large, potentially damaging neuroinflammatory
response. As such promoting chemotaxis to encourage microglia
response to damage may be counterproductive while at the same
time reducing the neuroimmune response is also unadvised.
A few therapies linked to chemotaxis have been investigated,
however. TREM2 is a receptor upstream of PLCγ2 in microglia.
Sequence variations in TREM2 have been demonstrated to
increase the risk of AD (Sims et al., 2017, 2020). TREM2 is
currently being investigated as a target for AD therapies (Long
et al., 2019) and dysregulation of TREM2 has been shown
to reduce chemotaxis (Mazaheri et al., 2017). TGFbeta has

been shown to downregulate microglia chemotaxis (Huang
et al., 2010) and has been investigated as a treatment of
AD (Chao et al., 1994). Given the key roles of PIPs in
chemotaxis, perhaps co-manipulation of these lipids could
enhance therapeutic effects.

CONCLUSION

The microglial function is severely impaired in a variety of
ways within neurodegenerative conditions, with these cells
typically showing heightened activation states from early
stages of disease development, often before symptom onset.
Alongside disturbances in microglial homeostasis, disruptions
in phosphoinositide levels and metabolism are also seen in
many of these same conditions. These PIPs appear to play
important roles in the regulation of numerous key microglial
functions. Together, these observations suggest that the observed
microglial dysfunction may arise in part as a result of this
lipid dyshomeostasis.

Further research into both the role of microglia and PIP
dyshomeostasis within neurodegenerative disease could provide
us with much-needed therapeutics for treating these presently
incurable conditions. It may be that co-manipulating microglial
functions alongside PIP levels could allow us to boost the
effectiveness of targeted therapeutics, thus bringing us closer to
the ultimate goal of a world without dementia.
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