Genetic Spectrum of Inherited Neuropathies in India

Shivani Sharma, Periyasamy Govindaraj³, Yasha T. Chickabasaviah, Ramesh Siram¹, Akhilesh Shroti¹, Doniparthi V. Seshagiri¹, Monojit Debnath², Parayil S. Bindu¹, Arun B. Taly¹, Madhu Nagappa¹

Departments of Neuropathology, ¹Neurology and ²Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, ³Laboratory of Human Molecular Genetics, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, Telangana, India

Abstract

Background and Objectives: Charcot-Marie-Tooth (CMT) disease is the commonest inherited neuromuscular disorder and has heterogeneous manifestations. Data regarding genetic basis of CMT from India is limited. This study aims to report the variations by using high throughput sequencing in Indian CMT cohort. **Methods:** Fifty-five probands (M:F 29:26) with suspected inherited neuropathy underwent genetic testing (whole exome: 31, clinical exome: 17 and targeted panel: 7). Their clinical and genetic data were analysed. **Results:** Age at onset ranged from infancy to 54 years. Clinical features included early-onset neuropathy (n=23), skeletal deformities (n=45), impaired vision (n=8), impaired hearing (n=6), facial palsy (n=8), thickened nerves (n=4), impaired cognition (n=5), seizures (n=5), pyramidal signs (n=7), ataxia (n=8) and vocal cord palsy, slow tongue movements and psychosis in one patient each. Twenty-eight patients had demyelinating electrophysiology. Abnormal visual and auditory evoked potentials were noted in 60.60% and 37.5% respectively. Sixty two variants were identified in 37 genes including variants of uncertain significance (n=34) and novel variants (n=45). Eleven patients had additional variations in genes implicated in CMTs/ other neurological disorders. The patients, no variations were detected. **Conclusion:** In this single centre cohort study from India, genetic diagnosis could be established in 87% of patients with inherited neuropathy. The identified spectrum of genetic variations adds to the pool of existing data and provides a platform for validation studies in cell culture or animal model systems.

Keywords: Charcot-Marie-Tooth Disease, genetic modifiers, MFN2, next-generation sequencing, novel variations, SH3TC2

INTRODUCTION

Inherited neuropathies are a heterogeneous group of diseases that predominantly affect the peripheral nerves but may be associated with other features such as spasticity, ataxia, global developmental delay, etc., resulting in complex syndromes.^[1] These are slow-progressive disorders characterized by distal symmetrical weakness of the limbs, hypo/areflexia, and skeletal deformities that are more pronounced in the lower limbs.^[2,3] They commonly begin in the first two decades of life, cause progressive disability, and impair quality of life.^[4,5] They are broadly categorized on the basis of electrophysiological studies as: (a) demyelinating with predominant involvement of peripheral myelin wherein nerve conduction velocities are reduced, and (ii) axonal with predominant involvement of peripheral nerve axons wherein amplitudes of compound muscle action potentials are reduced with normal or slightly reduced nerve conduction velocities.

Among the inherited neuropathies, the hereditary motor and sensory neuropathies (HMSNs) or Charcot-Marie-Tooth diseases (CMTs) constitute the most frequent genetically determined neuromuscular disorders.^[6] They are caused by mutations in genes encoding proteins involved in different peripheral nerve functions such as maintenance and compaction of myelin in Schwann cells, axonal transport, as well as mitochondrial metabolism and dynamics.^[7] Progress in the field of genomics with the advent of the next generation sequencing (NGS) technology has led to the identification of a number of genes involved in various subtypes of CMTs in different ethnic groups across the globe.^[3,8-10] Identifying the molecular genetic abnormality establishes the diagnosis as well as aids in the treatment and reproductive planning.

India is a home to about one-sixth of the world population which is ethnically diverse, and has a distinct genetic landscape. Hospital based audits suggest that hereditary neuropathies account for 4.8% of all neuropathies.^[11] Data on genetics of CMTs from India are rather limited.^[12,13] This study is aimed to identify variants in disease-associated genes using high throughput sequencing in a cohort of CMT from India.

PATIENTS AND METHODS

This study was carried out at the National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India.

Address for correspondence: Dr. Madhu Nagappa,
Additional Professor, Department of Neurology, National Institute of Mental
Health and Neurosciences (NIMHANS), Bengaluru - 560 029, Karnataka,
India.
E-mail: madhu_nagappa@yahoo.co.in

Submitted: 21-Mar-2022 Revised: 29-Apr-2022 Accepted: 30-Apr-2022 Published: 14-Jun-2022

For reprints contact: WKHLRPMedknow_reprints@wolterskluwer.com DOI: 10.4103/aian.aian_269_22

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

Probands were recruited from a single neurology unit between March 2017 and February 2020, after obtaining written informed consent. They included subjects with chronic progressive sensorimotor neuropathy of suspected genetic etiology who did not have evidence of alternative etiologies such as acquired, autoimmune, or metabolic causes. Patients with duplication or point mutations in the PMP22 gene were published earlier and have not been included in the present study.^[13] The clinical data included age, gender, symptom-duration, type of neuropathy, and sites of neuraxis affected. The functional/ambulatory status of the patients was objectively quantified using the CMT neuropathy score (CMTNS) and the modified Rankin Score (mRS).^[14,15] Nerve conduction studies were carried out using standard protocols at a laboratory temperature of 32-34°C (Neuropack S1 MEB-9400K, Nihon Kohden Corporation, Tokyo, Japan). Three motor nerves (median, ulnar, and common peroneal nerves) and three sensory nerves (median, ulnar, and sural nerves) were examined. Conduction blocks were considered if the ratio of the amplitudes of compound muscle action potentials following proximal and distal stimulation was <0.5, provided the distal amplitude was at least 20% of the lower limit of normal.^[16] Recordings of evoked potentials to visual and auditory stimuli were carried out wherever possible. The study was approved by the Institute Ethics Committee of NIMHANS.

Genomic DNA was extracted using standard phenol-chloroform method from about 6 mL of peripheral blood collected in an ethylenediaminetetraacetic acid (EDTA)-coated vacutainer. Genetic analysis was carried out using NGS (whole exome: 31, clinical exome: 17, and targeted panel: 7). The libraries were prepared, followed by enrichment as per manufacturer's instruction for sequencing with 80-100X denotes the coverage of the exonic regions. The sequences obtained were aligned to the human reference genome (GRCh37/hg19) and analyzed using Sentieon for removing duplicates, recalibration, and re-alignment of indels. Sentieon haplotype caller was used to identify variants relevant to the clinical phenotype.^[17] Common variants were filtered based on allele frequency in 1000Genome Phase 3, ExAC (v1.0), gnomAD (bv2.1), EVS, dbSNP (v151), and 1000 Japanese Genome.[18-21] The identified variants were interpreted based on the recommendations of American College of Medical Genetics and Genomics (ACMG).^[22] The pathogenicity of the identified variants was predicted using multiple tools namely PolyPhen-2, sorting intolerant from tolerant (SIFT), and mutation taster. The data were entered in a predesigned proforma and incorporated into a Microsoft Excel Spreadsheet for analysis.

RESULTS

The current cohort comprised of 55 patients. The age at evaluation ranged from 2 to 72 years. The clinical and electrophysiological characteristics of patients are summarized in Table 1. In the present study, 62 variants were identified in 37 genes in these 55 probands. They included pathogenic/likely pathogenic variants (n = 28) and variants

Table 1: Clinical and electrophysiological characteristics of the current cohort of inherited neuropathy (N=55)

Parameter	Observed value
Males:Females	29:26
Age at evaluation	2-72 years.
Children (≤18 years)	25
Age at onset	Infancy to 54 years
Early onset neuropathy (onset ≤ 10 years)	23
Consanguineous parents	16
Positive family history	22
Developmental delay	9
Global delay	3
Motor delay	6
Skeletal deformities	
Pes cavus	38
Hammer toes	30
Clawed fingers	19
Kyphoscoliosis	5
Pes planus	2
Dyschromatosis universalis hereditaria	1
Impaired vision	8
Ocular abnormalities	7
Optic atrophy	6
Retinitis pigmentosa	1
Cataract	1
Sensorineural hearing impairment	8
Facial palsy	8
Vocal cord palsy	1
Slow tongue movements	1
Thickened nerves	1
Intellectual disability or cognitive decline	5
Psychosis	1
Seizures	1
Pyramidal involvement	7
	8
Cerebellor	8
Sensory	-
Mixed	2
Functional mating goales	2
CMT representative score (mean SD)	15 49 6 0
Modified Parkin score (mean±SD)	13.46 ± 0.9
Flaatrophysiological tests	2.00±1.0
Demuslimating neuromethy (conduction valuation	26
of ulnar nerve <38 m/sec)	20
Conduction blocks	7
Abnormal visual evoked potentials*	20**
Prolonged P100 latency	18
Absent waveforms	2
Abnormal brainstem auditory evoked responses*	11***
All waveforms absent	5
Only waves I and III present	1
Only wave V present	5

*Testing for visual evoked potentials and brainstem auditory evoked responses was carried out in 33 patients. **Seven of these patients with abnormal visual evoked potentials were symptomatic for impaired vision. ***Six of these patients with abnormal brainstem auditory evoked responses were symptomatic for impaired hearing of uncertain significance (*n* = 34). There were 17 reported and 45 novel variants. Of these, eight patients had variants in more than one gene (*MFN2+SBF*, *SH3TC2+AARS*, *SH3TC2+JPH 1*, *SH3TC2+UBQLN2*, *FGD4+WNK1*, *MARS+SBF2*, *MPZ+DNMT1*, and *GARS+GAN*) implicated in the neuropathy phenotype. Three patients had additional variants in genes that so far have not been associated with neuropathy (*DCTN1+BLK*, *IGHMBP2+SLC12A6*, and *MFN2+VPS13D*). Ten patients did not have variants in neuropathy associated genes, but had variants in genes such as *ATM*, *SETX*, *COX15*, *MPV17*, *OPA1*, *SACS*, *C100RF2*, *APOB*, and *CDH23* which are implicated in other neurological disorders. In seven patients, no variants were detected [Tables 2 and 3]. *In silico* analysis showed that the detected variants were damaging [Supplementary Table 1].

DISCUSSION

This study led to the identification of pathogenic/likely pathogenic variants in 87.3% cases, in addition to a number of novel variants as well as variants of uncertain significance (VUS). However, in other cohorts the detection rates ranged from 24% to 87% based on high throughput sequencing.^[38-40] The clinical, demographic, and genetic features in various cohorts of CMT are compared with the present study [Supplementary Table 2].^[87] Previous studies have shown that variants in *PMP22*, *GJB1*, *MPZ* and *MFN2* genes account for vast majority of the CMTs.^[9,41] Variants in other genes though individually rare, constitute a large number, with nearly 100 genes being implicated in the pathogenesis of CMT.^[42] Given the large number of genes implicated in CMT,

it may be difficult to precisely pinpoint the genetic abnormality based on the phenotype, because of significant overlapping clinical features. For instance, vocal cord palsies have been described in both axonal and demyelinating neuropathies due to MFN2, GDAP1, TRPV4, SH3TC2, and MTMR2 mutations.^[43] Sensorineural hearing loss (SNHL) has also been reported in demyelinating and axonal CMT due to PMP22, GJB1, MPZ, PRPS1, and SH3TC2 mutations, among others.^[44-47] We used NGS to identify the genetic basis in patients of Indian origin with suspected inherited neuropathies in whom the PMP22 variants had been excluded. The most frequent abnormality in the present study was in the MFN2 gene (all pathogenic/ likely pathogenic), which is similar to that noted in the previous studies. MFN2 is reported to be the commonest cause of axonal CMT followed by MORC2.[48] In the present study, no variants in MORC2 were identified. Variants in SH3TC2 were the second most frequent abnormality in the present cohort (pathogenic/likely pathogenic = 3, VUS = 4), which is reported to be the commonest cause of recessively inherited demyelinating CMT.^[49,50] Variants in GJB1 and MPZ were identified in four and two patients, respectively. An interesting finding in the present cohort is that a proportion of patients had conduction blocks on electrophysiological testing. Classically, demyelination in CMT is considered to be uniform and conduction block is generally not expected in electrophysiological testing. However, while in the "pre-genetic" era it was believed that inherited neuropathies have uniform reduction in conduction parameters, there is growing evidence that some of the CMTs may exhibit non-uniform conduction abnormalities as well as conduction

	······ ·······························
Parameter	Number
Total number of genes identified with variations	37
Total number of variants	62
Missense	46
Intronic	1
Insertion	0
Deletions	1
Frameshift	8
Nonsense	4
Splice site	2
Zygosity	
Homozygous (pathogenic/likely pathogenic/VUS)	23 (6/6/11)
Heterozygous (pathogenic/likely pathogenic/VUS)	36 (4/9/23)
Hemizygous (pathogenic/likely pathogenic/VUS)	3 (1/2/0)
Genes involved in patients with early onset neuropathy	APOB, C100RF2, CDH23, COX6A1, FGD4, GDAP1, HK, HSPB8, IGHMBP2, JPH1, MTMR2, OPA1, SBF1, SLC12A6, UBQLN2, WNK1
Genes involved in patients with late onset neuropathy	AARS, ATM, BLK, COX15, DCTNI, DNMTI, GARS, LRSAMI, MARS, MME, MPV17, MPZ, NAGLU, SACS, SETX, VPS13D
Genes involved in patients with early and late onset neuropathy	GAN, GJB1, MFN2, SBF2, SH3TC2
Genes involved in patients with axonal neuropathy	APOB, BLK, C100RF2, CDH23, COX15, COX6A1, DCTN1, GDAP1, LRSAM1, MME, MPV17, MTMR2, SBF1, VPS13D
Genes involved in patients with demyelinating neuropathy	AARS, ATM, DNMT1, FGD4, GAN, GARS, GJB1, HK, HSPB8, IGHMBP2, JPH1, MPZ, NAGLU, OPA1, SACS, SBF2, SH3TC2, SLC12A6, UBQLN2
Genes involved in patients with axonal and demyelinating neuropathy	MARS, MFN2, SETX, WNK1

Table 2: Summary of genetic analysis of patients with inherited neuropathy included in the present cohort

Table 3	3: Genetic abnormalitic	ss identified in the	present c	ohort of patients with inherit	ted neuropathies $(n=55)$				
Patient No	Clinical phenotype in addition to neuropathy	Demyelinating electrophysiology	Gene	Disease associated with genetic variant	Nucleotide change/Amino acid change/Zygosity	Inheritance	Classification	Reference	rsID
-	Facial weakness, pyramidal signs	No	MFN2	CMT2A	c. 281G>A/p.Arg94Gln/2Het	AD	Pathogenic	Reported ^[23]	rs28940291
2	Thickened nerves	No	MFN2	CMT2A	c. 605G>A/p.Gly202Asp/Het	AD	Likely pathogenic	Novel	Not available
			VPS13D	Spinocerebellar ataxia 4	c. $3005G>A/p.Gly 1002Asp/Het$	AR	NUS	Novel	Not available
б	Mild SNHL	No	MFN2	CMT2A	c. 281G>A/p.Arg94Gln/Het	AD	Pathogenic	Reported ^[23]	rs28940291
4	Seizures, intellectual disability, pyramidal signs	No	MFN2	CMT2A	c. 833T>C/p.Met278Thr/Het	AD	Likely pathogenic	Novel	Not available
5	ı	No	MFN2	CMT2A	c. 371C>T/p.Ser124Phe/Homo	AR	Likely pathogenic	Novel	Not available
9	ı	No	MFN2	CMT2A	c. 334G>A/p.Val112Met/Homo	AR	Likely pathogenic	Novel	rs757937208
٢	Pyramidal signs	No	MFN2	CMT2A	c. 334G>A/p.Val112Met/Homo	AR	Likely pathogenic	Novel	rs757937208
8		No	MFN2	CMT2A	c. 310C>T/p.Arg104Trp/Het	AD	Pathogenic	Reported ^[24]	rs119103268
6	I	No	MFN2	CMT2A	c. 752C>G/p.Pro251Arg/Het	AD	Likely pathogenic	Reported ^[23]	rs1557525153
			SBFI	CMT 4B3	c. 2335C>G/p.Leu779Val/Het	AR	VUS	Novel	Not available
10	ı	Yes	SH3TC2	CMT4C, mild mononeuropathy of median nerve	c. 1105C>T/p.Arg369Cys/Het	AR/AD	SUV	Novel	rs569974719
			AARS	CMT2	c. 2053G>A/p.Val685Met/Het	AD	VUS	Novel	Not available
11	ı	Yes	SH3TC2	CMT4C, mild mononeuropathy of median nerve	c. 1412del/p. Leu471TrpfsTer53/Homo	AR	Pathogenic	Novel	Not available
			IHHI	CMT 2K	c. 803C>T/p.Pro268Leu/Het	AR/AD	NUS	Novel	rs756049890
12	Moderate SNHL, cerebellar and sensory	Yes	SH3TC2	CMT4C, mild mononeuropathy of median nerve	c. 3152G>A/p.Gly1051Glu/ Homo	AR	NUS	Novel	Not available
	ataxia		UBQLN2	ALS-15 with or without frontotemporal dementia	c. 1573C>T/p.Pro525Ser/Het	X-linked	NUS	Reported ^[25]	rs369947678
13	Facial weakness	Yes	SH3TC2	CMT4C, mild mononeuropathy of median nerve	c. 69del/p.Lys24ArgfsTer10/ Homo	AR	Pathogenic	Novel	Not available
14	Thickened nerves	Yes	SH3TC2	CMT4C, mild mononeuropathy of median nerve	c. 3511C>T/p.Arg1171Cys/Het	AR/AD	Likely pathogenic	Reported ^[26]	rs759785462
			SH3TC2	CMT4C, mild mononeuropathy of median nerve	c. 2028G>C/p.Leu676Phe/Het	AR/AD	SUV	Novel	Not available
			SH3TC2	CMT4C, mild mononeuropathy of median nerve	c. 254A>T/p.Asp85Val/Het	AR/AD	SUV	Novel	Not available
15		Yes	GJBI	CMT1, HNPP	c. 548G>A/p.Arg183His/Het	X-linked	Pathogenic	Reported ^[27]	rs1555937233
16		Yes	GJB1	CMT1	c. 65G>A/p.Arg22Gln/Hemi	X-linked	Likely pathogenic	Reported ^[28]	rs1060501002

Sharma, et al.: CMT in India

410

	rsID	Not available	rs587777876	Not available	Not available	Not available	Not available	Not available	rs786205591	Not available	Not available	Not available	Not available	Not available	Not available	Not available	Not available	Not available	Not available
	Reference	Reported ^[29]	Reported ^[30]	Novel	Novel	Novel	Novel	Novel	Novel	Novel	Novel	Novel	Novel	Novel	Reported ^[31]	Novel	Novel	Novel	Novel
	Classification	Pathogenic	Likely pathogenic	Likely pathogenic	NUS	NUS	NUS	NUS	Likely pathogenic	Likely pathogenic	NUS	SUV	VUS	VUS	Likely pathogenic	NUS	Pathogenic	NUS	NUS
	Inheritance	X-linked	X-linked	AR	AD/AR	AD/AR	AD/AR	AR/AD	AR/AD	AR	AR	AR	AR	AD	AD	AR	AR	AR	AD
	Nucleotide change/Amino acid change/Zygosity	c. 217del/p.His73MetfsTer11/ Hemi	c. 77C>T/p.Ser26Leu/Hemi	c. 1062_1063insT/p. Tyr355LeufsTer2/Homo	c. 7526C>A/p.Ser2509Tyr/ Homo	c. 2500G>A/p.Gly834Arg/Het	c. 4501+96C>A/Nil/Het	c. 197C>G/p.Pro66Arg/Het	c. 431C>T/p.Pro144Leu/Het	c. 3127_3128insA/p. Arg1043fs/Homo	c. 7195A>T/p.Ile2399Phe/ Homo	c. 4852C>T/p.Arg1618Ter/Het	c. 6899G>T/p.Trp2300Leu/Het	c. 918_919del/p. Tyr307SerfsTer6/Het	c. 2209C>T/p.Arg737Trp/Het	c. 3110G>A/p.Arg1037His/ Homo	c. 5345_5354del/p. Asp1782ValfsTer10/Homo	c. 1270G>A/p.Gly424Arg/ Homo	c. 223G>T/p.Asp75Tyr/Het
	Disease associated with genetic variant	CMT1	CMT1	CMT4H	HSAN2, pseudohypoaldosteronism type 2	HSAN2, pseudohypoaldosteronism type 2	HSAN2, pseudohypoaldosteronism type 2	CMT 2K	CMT 2K	Spinocerebellar ataxia-1, spinocerebellar ataxia with axonal neuropathy 2, ataxia with oculomotor apraxia, Juvenile AIS-4	Spinocerebellar ataxia-1, spinocerebellar ataxia with axonal neuropathy 2, ataxia with oculomotor apraxia, juvenile AIS-4	Ataxia telangiectasia	Ataxia telangiectasia	CMT2U	CMT2U	CMT4B	CMT4B	CMT2T	CMT1B, CMT2J, CMT 2I, CMT with hearing loss and pupillary abnormalities
	Gene	GJBI	GJBI	FGD4	WNKI	WNKI	WNKI	GDAPI	GDAPI	SETX	SETX	ATM	ATM	MARS	MARS	SBF2	SBF2	MME	ZdW
	Demyelinating electrophysiology	Yes	Yes	Yes		Yes		No	No	No	Yes	Yes		No	Yes		Yes	No	Yes
Contd	Clinical phenotype in addition to neuropathy	1	ı	Facial weakness		ı				Slow tongue movements, cerebellar ataxia	Facial weakness	1		OA, moderate SNHL, cerebellar ataxia, psychosis			Cognitive decline, thickened nerves	ı	
Table 3:	Patient No	17	18	19		20		21	22	23	24	25		26	27		28	29	30

Table 3	3: Contd								
Patient No	Clinical phenotype in addition to neuropathy	Demyelinating electrophysiology	Gene	Disease associated with genetic variant	Nucleotide change/Amino acid change/Zygosity	Inheritance	Classification	Reference	rsID
31	Facial weakness, moderate SNHL	Yes	MPZ	CMT IB	c. 207_212delGCCCGA/p. Pro70_Glu71del/Het	AD	VUS	Novel	Not available
			DNMTI	HSAN 1E, AD cerebellar ataxia, CMT	c. 1018G>A/p.Ala340Thr/Het	AD	SUV	Novel	rs529074384
32	Cognitive decline, thickened nerves	No	LRSAMI	CMT 2P	c. 2120C>T/p.Pro707Leu/Het	AD	Likely pathogenic	Novel	rs797044913
			LRSAMI	CMT 2P	c. 49C>T/p.Arg17Cys/Het	AD	VUS	Novel	rs368646898
33	I	No	DCTNI	dHMN VIIB, Perry syndrome, ALS	c. 3746C>T/p.Thr12491le/Het	AD	Likely pathogenic	Reported ^[32]	rs72466496
			BLK	Maturity onset diabetes of young type 11, systemic scleroderma, rheumatoid arthritis	c. 211G>A/p.Ala71Thr/Het	AD	SUV	Reported ^[33]	rs55758736
34	ı	No	COX15	Leigh syndrome due to cytochrome c oxidase deficiency	c. 520G>A/p.Gly174Ser/Homo	AR	Likely pathogenic	Novel	rs763842058
35	Pyramidal signs	No	COX6A1	Intermediate CMTD	c. 247-7_247-3del (3' proximal splice site)/Homo	AR	Pathogenic	Reported ^[34]	rs58777783
36	Facial weakness	Yes	GARS	CMT 2D, dHMN VA	c. 1172G>A/p.Arg391His/Het	AD	VUS	Novel	rs370057212
			GAN	Giant axonal neuropathy 1	c. 944C>G/p.Pro315Arg/Het	AR	VUS	Reported ^[35]	rs144486241
37		Yes	GAN	Giant axonal neuropathy 1	c. 444C>G/p.His148Gln/Homo	AR	VUS	Novel	Not available
38	Intellectual disability, facial weakness, seizures	Yes	НК	Russe type of HMSN	c. 19C>T/p.Arg7Ter/Homo	AR	Pathogenic	Novel	rs779250530
39	Sensory ataxia, pyramidal signs	No	IGHMBP2	CMT2S, AR distal SMA1, dHMN	c. 1523C>T/p.Ser508Leu/ Homo	AR	Likely pathogenic	Reported ^[36]	rs754465226
			SLC12A6	Hartnup disease, Andermann syndrome	c. 1625T>C/p.Ile542Thr/Homo	AR	SUV	Novel	Not available
40		No	2IAdW	Mitochondrial DNA depletion syndrome-6	c. 280G>T/p.Gly94Trp/Homo	AR	SUV	Novel	Not available
41	Facial weakness, vocal cord palsy	No	MTMR2	CMT4B	c. 484C>T/p.Arg162Ter/Homo	AR	Pathogenic	Novel	rs756723587
42		Yes	NAGLU	CMT2V	c. 325C>T/p.Arg109Cys/Het	AD	VUS	Novel	Not available
43	OA, RP, cataract, cerebellar ataxia	No	OPAI	Optic atrophy plus syndrome	c. 1045C>T/p.Arg349ter/Het	AD	Pathogenic	Novel	Not available
44	Mild SNHL	Yes	SACS	Spastic ataxia of Charlevoix-Saguenay type	c. 8980C>T/p.Pro2994Ser/ Homo	AR	SUV	Novel	Not available
45	Severe SNHL, sensory ataxia	No	CI00RF2	Mitochondrial DNA depletion syndrome-7	c. 876delT/p. Ala293ProfsTer33/Het	AR	Likely pathogenic	Novel	rs772683219
46	Pyramidal signs	Yes	HSPB8	CMT 2L, dHMN	c. 71 C>T/p.Ser24Phe/Het	AD	VUS	Novel	rs781475312
47	OA, seizures, cerebellar ataxia	No	APOB	Familial hypercholesterolemia, familial	c. 13441G>A/p.Ala4481Thr/ Homo	AR	SUV	Reported ^[37]	rs1801695
				hypobetalipoproteinemia					

Sharma, et al.: CMT in India

Table 3	3: Contd								
Patient No	Clinical phenotype in addition to neuropathy	Demyelinating electrophysiology	Gene	Disease associated with genetic variant	Nucleotide change/Amino acid change/Zygosity	Inheritance	Classification	Reference	rsID
48	OA, severe SNHL	No	CDH23	Usher syndrome, non-syndromic hearing loss, age-related hearing loss	c. 1589-7C>T/Homo	AR		Novel	Not available
49		Yes	Nil						
50		No	Nil						
51	Pyramidal signs	No	Nil						
52		Yes	Nil						
53	Mild SNHL, seizures	Yes	Nil						
54	OA	No	Nil						
55	Cognitive decline, OA, cerebellar and sensory	No	Nil						
	ataxia								
AD: Aut with liab	tosomal dominant, ALS: Am oility to pressure Palsy, Home	yotrophic lateral sclero: o: Homozygous, HSAN	sis, AR: Auto I: Hereditary	ssomal recessive, dHMN: distal hered sensory autonomic neuropathy	litary motor neuronopathy, Hemi: l	hemizygous, He	et: heterozygous, F	INPP: heredita	y europathy

blocks. In fact, conduction block and non-uniform slowing can form the basis for targeted genetic testing (e.g., X-linked CMT).^[51]

In the present study, in addition to the common genes (GJB1, MPZ, and MFN2), variants were identified in a number of genes implicated in various cellular functions such as growth and differentiation (SBF1, DCTN1), endocytosis (SH3TC2, LRSAMI), tRNA synthetases (AARS, MARS, GARS), intracellular calcium homeostasis (JPH 1), ubiquitin-proteasome system (UBQLN2, GAN), actin cytoskeleton regulation (FGD4), DNA repair (SETX, ATM), transcriptional regulation (IGHMBP2, DNMT1), protein homeostasis (MME, HSPB8), mitochondrial function including dynamics and maintenance (MPV17, COX6A1, COX15, VPS13, OPA1, C10ORF2), and ion transport (SLC12A6). Besides these, alterations in endoplasmic reticulum structure (TFG, ATL1), membrane or vesicle trafficking (LITAF, SBF1, DNM2, FIG4), myelin structural organization (PRX), axonal cytoskeleton maintenance (NEFL, NEFH), and axonal transport (KIF1, DCTN1, SPG11) have been reported from other cohorts of HMSN.[66,67]

The CMTs may follow autosomal or X-linked, dominant or recessive pattern of inheritance. Homozygous or compound heterozygous variants in the "dominantly" inherited genes resulting in recessive CMTs with early onset and more severe disability have been reported. For example, MFN2 is usually linked to autosomal dominant (AD) inheritance but autosomal recessive (AR, homozygous or compound heterozygous variants) pattern is also reported where the proband inherits one mutation from each parent. The heterozygous parents can be asymptomatic or may manifest with late-onset milder phenotype, in contrast to early-onset severe phenotype in the proband bearing two mutations.^[68,69] We also report two homozygous variants in MFN2 in three subjects with early-onset neuropathy [Patients 5-7, Table 3]. In contrast to compound heterozygous variants that occur in trans, distantly spaced double variants in cis have also been reported uncommonly in MFN2.^[70,71] Likewise, LRSAM1 variants are dominantly inherited and are associated with CMT2 phenotype with onset in the second decade of life and moderate disability.^[72] In the present study, patient 32 had early-onset neuropathy with severe disability and two heterozygous variants in LRSAM1. The presence of two variants might have contributed to the increased disease severity. This phenomenon may be comparable to severe phenotypes associated with homozygous/compound heterozygous mutations in MFN2.

The present study identified variants in multiple genes in 11 patients. There are a few reports highlighting co-occurrence of variants of multiple genes in the same individual with CMT.^[73-78] Such variants are often inherited not only from heterozygous carrier parents, but can also occur *de novo*. High throughput sequencing permits unbiased analysis of several genes and helps in identifying all the variants which could have been missed in sequential analysis. Traditional

413

sequencing of genes in tandem does not extend testing for other genes once a genetic variant that explains the phenotype is identified. Using NGS one can identify multiple genetic variants in different combinations: (a) more than one CMT-associated genes, or (b) CMT-associated gene(s) implicated in other neurodegenerative disorders. Two variants identified in different neuropathy-related genes may cause mild phenotype when they occur in isolation, but when present together may have additive effect on severity of symptoms by causing pathology at different sites. The non-neuropathy related genetic variants may act as modifier when present together with another gene known to cause neuropathy.^[77] The most common cause of demyelinating CMT, that is, PMP22 duplication has been reported with additional dose of PMP22 (triplication) resulting in more severe clinical phenotype.^[79,80] There are reports on PMP22 mutation along with other related genes like LITAF, SMN2, DCTN1, GJB1, FSHD, and ABCD1 [Supplementary Table 3].[73-76] Coexistence of variants in MFN2 and GDAP1 in axonal CMT has also been reported. The two variants act in a synergistic manner resulting in major mitochondrial defects as each gene is involved in mitochondrial bioenergetics either for adenosine triphosphate (ATP) production or respiratory chain complex I activity.^[81-84] Apart from PMP22 and MFN2, there are selected reports on other gene combinations such as JPH 1/GDAP1 and EGR2/GJB1.[55,77,85] Increased genetic "burden" arising from this combination of genetic mutations may contribute to phenotypic variability including age at onset and disease severity.^[78] Based on the available literature, we hypothesize that the co-occurence of multiple genetic variants may have impacted the clinical phenotype including the severity in the present cohort. However, we did not establish the synergy between the multiple variants and their impact on the phenotypes by using in vitro studies or animal models. This is a limitation of the present study.

The present study identified a number of novel variants and VUS which require to be validated for confirming their pathogenicity. Previous studies have also reported a large number of VUS, ranging from 10 to as high as 215 in a single cohort.^[56,86] Reporting of VUS is dependent on the ACMG guidelines. Validating individual variants in various genes may not be an efficient approach given the low frequency of individual genetic variants other than PMP22, MPZ, GJB, and MFN2 genes. Due to the prevailing high levels of genetic heterogeneity, narrowing down to common cellular pathways through network biology approach and forming "disease modules" may prove to be more useful in understanding the pathobiology even in patients who are "negative" for genetic abnormalities by whole exome sequencing (WES). Various genes reported in the context of hereditary neuropathies act on interconnected pathways and share common proteins to carry out the overlapping biological functions. The peripheral nervous tissue being highly metabolically active needs constant maintenance of a pool of proteins and other molecular interactors. Mutations in any one of the associated genes resulting in abnormal protein can have a cascading effect on the protein interactome and may fail to maintain the cellular homeostasis. This effect is propagated along the nerve function adding to disease pathology. These networks of proteins and their molecular partners can be exploited further to understand the disease pathogenesis and further translated for drug development and therapeutics.^[52]

In conclusion, we report the NGS findings in a fairly large cohort of patients with inherited neuropathies from India and highlight the spectrum of genetic abnormalities. This study brings out a number of novel variants and VUS. Establishing an accurate genetic diagnosis is important not only for genetic counseling but also in the perspective of including patients for upcoming therapeutic trials. NGS identified variants in several genes, including those that have pathobiological significance in neuropathy and other non-neuropathic disorders. The functional validation of novel variants and the impact of their interactions with other molecular partners remain to be established in future studies.

Financial support and sponsorship

The study was funded by a grant to Dr Madhu Nagappa from the Indian Council of Medical Research (BMS/TF/ Trans-Neuro/2014-3389/July-15/16/KA/Govt dated 25th July 2016).

Conflicts of interest

There are no conflicts of interest.

REFERENCES

- Rossor AM, Carr AS, Devine H, Chandrashekar H, Pelayo-Negro AL, Pareyson D, *et al.* Peripheral neuropathy in complex inherited diseases: An approach to diagnosis. J Neurol Neurosurg Psychiatry 2017;88:846-63.
- Klein CJ, Duan X, Shy ME. Inherited neuropathies: Clinical overview and update. Muscle Nerve 2013;48:604-22.
- Hoebeke C, Bonello-Palot N, Audic F, Boulay C, Tufod D, Attarian S, et al. Retrospective study of 75 children with peripheral inherited neuropathy: Genotype-phenotype correlations. Arch Pediatr 2018;25:452-8.
- Taniguchi JB, Elui VM, Osório FL, Hallak JE, Crippa JA, Machado-de-Sousa JP, *et al.* Quality of life in patients with Charcot-Marie-Tooth disease type 1A. Arq Neuropsiquiatr 2013;71:392-6.
- Cordeiro JL, Marques W, Hallak JE, Osório FL. Charcot-Marie-Tooth disease, psychiatric indicators and quality of life: A systematic review. ASN Neuro 2014;6:185-92.
- Saporta MA, Shy ME. Inherited peripheral neuropathies. Neurol Clin 2013;31:597-619.
- 7. Saporta MA. Charcot-Marie-Tooth disease and other inherited neuropathies. Continuum (MinneapMinn) 2014;20:1208-25.
- Cortese A, Wilcox JE, Polke JM, Poh R, Skorupinska M, Rossor AM, et al. Targeted next-generation sequencing panels in the diagnosis of Charcot-Marie-Tooth disease. Neurology 2020;94:e51-61.
- Milley GM, Varga ET, Grosz Z, Nemes C, Arányi Z, Boczán J, et al. Genotypic and phenotypic spectrum of the most common causative genes of Charcot-Marie-Tooth disease in Hungarian patients. Neuromuscul Disord 2018;28:38-43.
- Sun B, Chen Z, Ling L, Yang F, Huang X. Clinical and genetic spectra of Charcot-Marie-Tooth disease in Chinese Han patients. J PeripherNerv Syst 2017;22:13-8.

- Trivedi S, Pandit A, Ganguly G, Das SK. Epidemiology of peripheral neuropathy: An Indian perspective. Ann Indian Acad Neurol 2017;20:173-84.
- 12. Khadilkar SV, Patil ND, Kadam ND, Mansukhani KA, Patel BA. Clinico-electrophysiological and genetic overlaps and magnetic resonance imaging findings in Charcot-Marie- tooth disease: A pilot study from Western India. Ann Indian Acad Neurol 2017;20:425-9.
- Nagappa M, Sharma S, Govindaraj P, Chickabasaviah YT, Siram R, Shroti A, Debnath M, Sinha S, Bindu PS, Taly AB. PMP22 Gene-associated neuropathies: Phenotypic spectrum in a cohort from India. J Mol Neurosci 2020;70:778-89.
- Haberlová J, Seeman P. Utility of Charcot-Marie-tooth neuropathy score in children with type 1A disease. Pediatr Neurol 2010;43:407-10.
- Bonita R, Beaglehole R. Modification of Rankin scale: Recovery of motor function after stroke. Stroke 1988;19:1497-500.
- American Association of Electrodiagnostic Medicine, Olney RK. Guidelines in electrodiagnostic medicine. Consensus criteria for the diagnosis of partial conduction block. Muscle Nerve Suppl 1999;8:S225-9.
- Freed D, Aldana R, Weber JA, Edwards JS. The Sentieon genomics tools-A fast and accurate solution to variant calling from next-generation sequence data. BioRxiv. 2017:115717. doi: 10.1101/115717.
- 1000 Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, *et al.* A global reference for human genetic variation. Nature 2015;526:68-74.
- Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 2016;536:285-91.
- Nagasaki M, Yasuda J, Katsuoka F, Nariai N, Kojima K, Kawai Y, et al. Rare variant discovery by deep whole-genome sequencing of 1,070 Japanese individuals. Nat Commun 2015;6:8018. doi: 10.1038/ ncomms9018.
- Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, et al. dbSNP: The NCBI database of genetic variation. Nucleic Acids Res 2001;29:308-11.
- 22. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American college of medical genetics and genomics and the association for molecular pathology. Genet Med 2015;17:405-24.
- Züchner S, Mersiyanova IV, Muglia M, Bissar-Tadmouri N, Rochelle J, Dadali EL, *et al.* Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat Genet 2004;36:449-51.
- Høyer H, Braathen GJ, Busk ØL, Holla ØL, Svendsen M, Hilmarsen HT, et al. Genetic diagnosis of Charcot-Marie-Tooth disease in a population by next-generation sequencing. Biomed Res Int 2014;2014:210401. doi: 10.1155/2014/210401.
- Deng HX, Chen W, Hong ST, Boycott KM, Gorrie GH, Siddique N, et al. Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature 2011;477:211-5.
- Jerath NU, Mankodi A, Crawford TO, Grunseich C, Baloui H, Nnamdi-Emeratom C, *et al.* Charcot-Marie-Tooth disease type 4C: Novel mutations, clinical presentations, and diagnostic challenges. Muscle Nerve 2018;57:749-55.
- Niu J, Dai Y, Liu M, Li Y, Ding Q, Guan Y, *et al.* GJB1 mutation-A disease spectrum: Report of case series. Front Neurol 2020;10:1406. doi: 10.3389/fneur. 2019.01406.
- Ionasescu V, Searby C, Ionasescu R. Point mutations of the connexin32 (GJB1) gene in X-linked dominant Charcot-Marie-Tooth neuropathy. Hum Mol Genet 1994;3:355-8.
- 29. Nelis E, Van Broeckhoven C, De Jonghe P, Löfgren A, Vandenberghe A, Latour P, *et al.* Estimation of the mutation frequencies in Charcot-Marie-Tooth disease type 1 and hereditary neuropathy with liability to pressure palsies: A European collaborative study. Eur J Hum Genet 1996;4:25-33.
- Yoshimura T, Ohnishi A, Yamamoto T, Fukushima Y, Kitani M, Kobayashi T. Two novel mutations (C53S, S26L) in the connexin32 of Charcot-Marie-Tooth disease type X families. Hum Mutat 1996;8:270-2.
- 31. Sagi-Dain L, Shemer L, Zelnik N, Zoabi Y, Orit S, Adir V, et al.

Whole-exome sequencing reveals a novel missense mutation in the MARS gene related to a rare Charcot-Marie-Tooth neuropathy type 2U. J Peripher Nerv Syst 2018;23:138-42.

- 32. Münch C, Sedlmeier R, Meyer T, Homberg V, Sperfeld AD, Kurt A, *et al.* Point mutations of the p150 subunit of dynactin (DCTN1) gene in ALS. Neurology 2004;63:724-6.
- Borowiec M, Liew CW, Thompson R, Boonyasrisawat W, Hu J, Mlynarski WM, *et al.* Mutations at the BLK locus linked to maturity onset diabetes of the young and beta-cell dysfunction. Proc Natl Acad Sci U S A 2009;106:14460-5.
- 34. Tamiya G, Makino S, Hayashi M, Abe A, Numakura C, Ueki M, et al. A mutation of COX6A1 causes a recessive axonal or mixed form of Charcot-Marie-Tooth disease. Am J Hum Genet 2014;95:294-300.
- Bruno C, Bertini E, Federico A, Tonoli E, Lispi ML, Cassandrini D, et al. Clinical and molecular findings in patients with giant axonal neuropathy (GAN). Neurology 2004;62:13-6.
- 36. Karakaya M, Storbeck M, Strathmann EA, Delle Vedove A, Hölker I, Altmueller J, *et al.* Targeted sequencing with expanded gene profile enables high diagnostic yield in non-5q-spinal muscular atrophies. Hum Mutat 2018;39:1284-98.
- Meng QH, Pajukanta P, Ilmonen M, Schuster H, Schewe CK, Andersson LC, *et al.* Analysis of novel apolipoprotein B mutations using a modified U937 cell line LDL binding assay. Clin Chim Acta 1996;256:27-36.
- Bacquet J, Stojkovic T, Boyer A, Martini N, Audic F, Chabrol B, *et al.* Molecular diagnosis of inherited peripheral neuropathies by targeted next-generation sequencing: Molecular spectrum delineation. BMJ Open 2018;8:e021632. doi: 10.1136/bmjopen-2018-021632.
- 39. Hartley T, Wagner JD, Warman-Chardon J, Tétreault M, Brady L, Baker S, *et al*. Whole-exome sequencing is a valuable diagnostic tool for inherited peripheral neuropathies: Outcomes from a cohort of 50 families. Clin Genet 2018;93:301-9.
- Padilha JPD, Brasil CS, Hoefel AML, Winckler PB, Donis KC, Brusius-Facchin AC, *et al.* Diagnostic yield of targeted sequential and massive panel approaches for inherited neuropathies. Clin Genet 2020;98:185-90.
- Hoyle JC, Isfort MC, Roggenbuck J, Arnold WD. The genetics of Charcot-Marie-Tooth disease: Current trends and future implications for diagnosis and management. ApplClin Genet 2015;8:235-43.
- Morena J, Gupta A, Hoyle JC. Charcot-Marie-Tooth: From molecules to therapy. Int J Mol Sci 2019;20:3419. doi: 10.3390/ijms20143419.
- Bombelli F, Stojkovic T, Dubourg O, Echaniz-Laguna A, Tardieu S, Larcher K, et al. Charcot-Marie-Tooth disease type 2A: From typical to rare phenotypic and genotypic features. JAMA Neurol 2014;71:1036-42.
- 44. Joo IS, Ki CS, Joo SY, Huh K, Kim JW. A novel point mutation in PMP22 gene associated with a familial case of Charcot-Marie-Tooth disease type 1A with sensorineural deafness. Neuromuscul Disord 2004;14:325-8.
- 45. Seeman P, Mazanec R, Huehne K, Suslíková P, Keller O, Rautenstrauss B. Hearing loss as the first feature of late-onset axonal CMT disease due to a novel P0 mutation. Neurology 2004;63:733-5.
- Chen B, Niu S, Wang X, Yu X, Tang H, Pan H, *et al.* Three novel mutations in a group of Chinese patients with X-linked Charcot-Marie-Tooth disease. Clin Neurol Neurosurg 2019;184:105430. doi: 10.1016/j. clineuro. 2019.105430.
- 47. Lerat J, Magdelaine C, Derouault P, Beauvais-Dzugan H, Bieth E, Acket B, *et al.* New PRPS1 variant p.(Met68Leu) located in the dimerization area identified in a French CMTX5 patient. Mol Genet Genomic Med 2019;7:e875. doi: 10.1002/mgg3.875.
- Ando M, Okamoto Y, Yoshimura A, Yuan JH, Hiramatsu Y, Higuchi Y, et al. Clinical and mutational spectrum of Charcot-Marie-Tooth disease type 2Z caused by MORC2 variants in Japan. Eur J Neurol 2017;24:1274-82.
- Laššuthová P, Mazanec R, Vondráček P, Sišková D, Haberlová J, Sabová J, et al. High frequency of SH3TC2 mutations in Czech HMSN I patients. Clin Genet 2011;80:334-45.
- Piscosquito G, Saveri P, Magri S, Ciano C, Gandioli C, Morbin M, et al. Screening for SH3TC2 gene mutations in a series of demyelinating recessive Charcot-Marie-Tooth disease (CMT4). J PeripherNerv Syst 2016;21:142-9.

- Lewis RA, Sumner AJ, Shy ME. Electrophysiological features of inherited demyelinating neuropathies: A reappraisal in the era of molecular diagnosis. Muscle Nerve 2000;23:1472-87.
- Bis-Brewer DM, Danzi MC, Wuchty S, Züchner S. A network biology approach to unraveling inherited axonopathies. Sci Rep 2019;9:1692. doi: 10.1038/s41598-018-37119-z.
- Mostacciuolo ML, Righetti E, Zortea M, Bosello V, Schiavon F, Vallo L, et al. Charcot-Marie-Tooth disease type I and related demyelinating neuropathies: Mutation analysis in a large cohort of Italian families. Hum Mutat 2001;18:32-41.
- Sivera R, Sevilla T, Vílchez JJ, Martínez-Rubio D, Chumillas MJ, Vázquez JF, *et al.* Charcot-Marie-Tooth disease: Genetic and clinical spectrum in a Spanish clinical series. Neurology 2013;81:1617-25.
- 55. Kim HS, Chung KW, Kang SH, Choi SK, Cho SY, Koo H, *et al.* Myotonic dystrophy type I combined with X-linked dominant Charcot-Marie-Tooth neuropathy. Neurogenetics 2010;11:425-33.
- Høyer H, Busk ØL, Holla ØL, Strand L, Russell MB, Skjelbred CF, et al. Hereditary peripheral neuropathies diagnosed by next-generation sequencing. Tidsskr Nor Laegeforen 2015;135:1838-44.
- Manganelli F, Tozza S, Pisciotta C, Bellone E, Iodice R, Nolano M, et al. Charcot-Marie-Tooth disease: Frequency of genetic subtypes in a Southern Italy population. J Peripher Nerv Syst 2014;19:292-8.
- Drew AP, Zhu D, Kidambi A, Ly C, Tey S, Brewer MH, et al. Improved inherited peripheral neuropathy genetic diagnosis by whole-exome sequencing. Mol Genet Genomic Med 2015;3:143-54.
- Rudnik-Schöneborn S, Tölle D, Senderek J, Eggermann K, Elbracht M, Kornak U, *et al.* Diagnostic algorithms in Charcot-Marie-Tooth neuropathies: Experiences from a German genetic laboratory on the basis of 1206 index patients. Clin Genet 2016;89:34-43.
- 60. Nam SH, Hong YB, Hyun YS, Nam da E, Kwak G, Hwang SH, et al. Identification of genetic causes of inherited peripheral neuropathies by targeted gene panel sequencing. Mol Cells 2016;39:382-8.
- Li LX, Zhao SY, Liu ZJ, Ni W, Li HF, Xiao BG, *et al.* Improving molecular diagnosis of Chinese patients with Charcot-Marie-Tooth by targeted next-generation sequencing and functional analysis. Oncotarget 2016;7:27655-64.
- Dohrn MF, Glöckle N, Mulahasanovic L, Heller C, Mohr J, Bauer C, et al. Frequent genes in rare diseases: Panel-based next generation sequencing to disclose causal mutations in hereditary neuropathies. J Neurochem 2017;143:507-22.
- Yoshimura A, Yuan JH, Hashiguchi A, Ando M, Higuchi Y, Nakamura T, et al. Genetic profile and onset features of 1005 patients with Charcot-Marie-Tooth disease in Japan. J Neurol Neurosurg Psychiatry 2019;90:195-202.
- 64. Hsu YH, Lin KP, Guo YC, Tsai YS, Liao YC, Lee YC. Mutation spectrum of Charcot-Marie-Tooth disease among the Han Chinese in Taiwan. Ann Clin Transl Neurol 2019;6:1090-101.
- 65. Taghizadeh S, Vazehan R, Beheshtian M, Sadeghinia F, Fattahi Z, Mohseni M, *et al.* Molecular diagnosis of hereditary neuropathies by whole exome sequencing and expanding the phenotype spectrum. Arch Iran Med 2020;23:426-33.
- 66. Jerath NU, Shy ME. Hereditary motor and sensory neuropathies: Understanding molecular pathogenesis could lead to future treatment strategies. Biochim Biophys Acta 2015;1852:667-78.
- Niemann A, Berger P, Suter U. Pathomechanisms of mutant proteins in Charcot-Marie-Tooth disease. Neuromolecular Med 2006;8:217-42.
- 68. Polke JM, Laurá M, Pareyson D, Taroni F, Milani M, Bergamin G, *et al.* Recessive axonal Charcot-Marie-Tooth disease due to compound heterozygous mitofusin 2 mutations. Neurology 2011;77:168-73.
- Piscosquito G, Saveri P, Magri S, Ciano C, Di Bella D, Milani M, et al. Mutational mechanisms in MFN2-related neuropathy: Compound heterozygosity for recessive and semidominant mutations. J Peripher Nerv Syst 2015;20:380-6.
- 70. Park SY, Kim SY, Hong YH, Cho SI, Seong MW, Park SS. A novel double mutation in cis in MFN2 causes Charcot-Marie-Tooth neuropathy

type 2A. Neurogenetics 2012;13:275-80.

- Verhoeven K, Claeys KG, Züchner S, Schröder JM, Weis J, Ceuterick C, *et al.* MFN2 mutation distribution and genotype/ phenotype correlation in Charcot-Marie-Tooth type 2. Brain 2006;129:2093-102.
- Tazir M, Bellatache M, Nouioua S, Vallat JM. Autosomal recessive Charcot-Marie-Tooth disease: From genes to phenotypes. J Peripher Nerv Syst 2013;18:113-29.
- Meggouh F, de Visser M, Arts WF, De Coo RI, van Schaik IN, Baas F. Early onset neuropathy in a compound form of Charcot-Marie-Tooth disease. Ann Neurol 2005;57:589-91.
- 74. Fernández RM, Peciña A, Muñoz-Cabello B, Antiñolo G, Borrego S. Co-segregation of a homozygous SMN1 deletion and a heterozygous PMP22 duplication in a patient. Clin Case Rep 2016;4:879-84.
- Hodapp JA, Carter GT, Lipe HP, Michelson SJ, Kraft GH, Bird TD. Double trouble in hereditary neuropathy: Concomitant mutations in the PMP-22 gene and another gene produce novel phenotypes. Arch Neurol 2006;63:112-7.
- 76. Schreiber O, Schneiderat P, Kress W, Rautenstrauss B, Senderek J, Schoser B, *et al.* Facioscapulohumeral muscular dystrophy and Charcot-Marie-Tooth neuropathy 1A-evidence for "double trouble" overlapping syndromes. BMC Med Genet 2013;14:92. doi: 10.1186/1471-2350-14-92.
- Pla-Martín D, Calpena E, Lupo V, Márquez C, Rivas E, Sivera R, *et al.* Junctophilin-1 is a modifier gene of GDAP1-related Charcot-Marie-Tooth disease. Hum Mol Genet 2015;24:213-29.
- Gonzaga-Jauregui C, Harel T, Gambin T, Kousi M, Griffin LB, Francescatto L, *et al.* Exome sequence analysis suggests that genetic burden contributes to phenotypic variability and complex neuropathy. Cell Rep 2015;12:1169-83.
- 79. Kim SM, Lee J, Yoon BR, Kim YJ, Choi BO, Chung KW. Severe phenotypes in a Charcot-Marie-Tooth 1A patient with PMP22 triplication. J Hum Genet 2015;60:103-6.
- Liu P, Gelowani V, Zhang F, Drory VE, Ben-Shachar S, Roney E, et al. Mechanism, prevalence, and more severe neuropathy phenotype of the Charcot-Marie-Tooth type 1A triplication. Am J Hum Genet 2014;94:462-9.
- Anghelescu C, Francou B, Cardas R, Guiochon-Mantel A, Aubourg P, Servais L, *et al.* Targeted exomes reveal simultaneous MFN2 and GDAP1 mutations in a severe Charcot-Marie-Tooth disease type 2 phenotype. Eur J Neurol 2017;24:e15-6.
- Cassereau J, Casasnovas C, Gueguen N, Malinge MC, Guillet V, Reynier P, *et al.* Simultaneous MFN2 and GDAP1 mutations cause major mitochondrial defects in a patient with CMT. Neurology 2011;76:1524-6.
- Kostera-Pruszczyk A, Kosinska J, Pollak A, Stawinski P, Walczak A, Wasilewska K, *et al.* Exome sequencing reveals mutations in MFN2 and GDAP1 in severe Charcot-Marie-Tooth disease. J PeripherNerv Syst 2014;19:242-5.
- 84. Vital A, Latour P, Sole G, Ferrer X, Rouanet M, Tison F, et al. A French family with Charcot-Marie-Tooth disease related to simultaneous heterozygous MFN2 and GDAP1 mutations. NeuromusculDisord 2012;22:735-41.
- 85. Chung KW, Sunwoo IN, Kim SM, Park KD, Kim WK, Kim TS, et al. Two missense mutations of EGR2 R359W and GJB1 V136A in a Charcot-Marie-Tooth disease family. Neurogenetics 2005;6:159-63.
- 86. Antoniadi T, Buxton C, Dennis G, Forrester N, Smith D, Lunt P, et al. Application of targeted multi-gene panel testing for the diagnosis of inherited peripheral neuropathy provides a high diagnostic yield with unexpected phenotype-genotype variability. BMC Med Genet 2015;16:84. doi: 10.1186/s12881-015-0224-8.
- 87. Xie Y, Lin Z, Liu L, Li X, Huang S, Zhao H, *et al.* Genotype and phenotype distribution of 435 patients with Charcot-Marie-Tooth disease from central south China. Eur J Neurol 2021;28:3774-83.

Point IntNon-structureSport IntRefNon-structureIntRef </th <th>Supplement</th> <th>tary Table 1:</th> <th>In silico prediction of the pathogenic</th> <th>ity of the id</th> <th>lentified variants</th> <th></th> <th></th> <th></th> <th></th>	Supplement	tary Table 1:	In silico prediction of the pathogenic	ity of the id	lentified variants				
	Patient No	Gene	Nucleotide change/Amino acid change	Zygosity	ACMG Classification	SIFT	Polyphen2	LRT	Mutation taster
	1	MFN2	c. 281G>A/p.Arg94Gln	Het	Pathogenic	Affect protein function	Probably damaging	Damaging	Damaging
	2	MFN2	c. 605G>A/p.Gly202Asp	Het	Likely pathogenic	Affect protein function	Probably damaging	Damaging	Damaging
		VPS13D	c. 3005G>A/p.Gly1002Asp	Het	NUS	Affect protein function			Damaging
4 WW $G SITCP_AMCTSRIFtHetLikky pathogenicNiter protein functionPoshaby famagingDumagingDumaging7WWG SITCP_ANASRIFtHonoLikky pathogenicMiter protein functionPoshaby famagingDumagingDumaging8WWG SITCP_ANASRIFLHonoLikky pathogenicMiter protein functionPoshaby famagingDumaging9WWG SITCP_ANASRIFLHenLikky pathogenicMiter protein functionPoshaby famagingDumaging9WWG SISCP_APASSIFLHetVUSMiter protein functionPoshaby famagingDumaging9WWG SISCP_APASSIFSIERHetVUSTotentedPoshaby famagingDumaging11SIRTCG 10CC-TP_ANGS0CSIHetVUSTotentedPoshaby famagingDumaging12SIRTCG 10CC-TP_ANGS0CSIHetVUSTotentedPoshaby famagingDumaging13SRRTCG 10CC-TP_ANGS0CSIHetVUSTotentedPoshaby famagingDumaging13SRRTCG 10CC-TP_ANGS0CSIHetVUSTotentedPoshaby famagingDumaging14SRRTCG 10CC-TP_ANGS0CSIHetVUSTotentedPoshaby famagingDumaging15SRRTCG 10CC-TP_ANGS0CSIHetVUSTotentedPoshaby famagingDumaging15SRRTCG 10CC-TP_ANGS0CSIHetVUSTotentedPoshaby famagingDumaging$	3	MFN2	c. 281G>A/p.Arg94Gln	Het	Pathogenic	Affect protein function	Probably damaging	Damaging	Damaging
	4	MFN2	c. 833T>C/p.Met278Thr	Het	Likely pathogenic	Tolerated	Benign	Damaging	Damaging
	5	MFN2	c. 371C>T/p.Ser124Phe	Homo	Likely pathogenic	Affect protein function	Probably damaging	Damaging	Damaging
	9	MFN2	c. 334G>A/p.Val112Met	Homo	Likely pathogenic	Affect protein function	Probably damaging	Damaging	Damaging
	7	MFN2	c. 334G>A/p.Val112Met	Homo	Likely pathogenic	Affect protein function	Probably damaging	Damaging	Damaging
9 <i>MP3</i> 6.732C-GG/BAD79401 Het Lickly prudbent Hite Lickly prudbent Polosity damaging Damaging Damaging 10 <i>SHTC</i> c.333C-GG/BAD77041 Het VUS Tolerent Possity damaging Damaging 11 <i>SHTC</i> c.105C-Thy-Arg/MCS Het VUS Tolerend Possity damaging Damaging 11 <i>SHTC</i> c.132C-Thy-Arg/MCS Het VUS Tolerend Possity damaging Damaging 13 <i>SHTC</i> c.132C-Thy-Arg/MCS Het VUS Tolerend Barry Damaging Damaging 13 <i>SHTC</i> c.132C-Thy-Arg/MST Het VUS Tolerend Damaging Damaging 13 <i>SHTC</i> c.331C-Thy-Arg/MST Het VUS Tolerend Damaging Damaging 13 <i>SHTC</i> c.331C-Th-Arg/MST Het VUS Tolerend Damaging Damaging 13 <i>SHTC</i> c.331C-Th-Arg/MST Het VUS Tolerend Dama	8	MFN2	c. 310C>T/p.Arg104Trp	Het	Pathogenic	Affect protein function	Probably damaging	Damaging	Damaging
	6	MFN2	c. 752C>G/p.Pro251Arg	Het	Likely pathogenic	Affect protein function	Probably damaging	Damaging	Damaging
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		SBFI	c. 2335C>G/p.Leu779Val	Het	NUS	Affect protein function	Possibly damaging	Damaging	Damaging
	10	SH3TC2	c. 1105C>T/p.Arg369Cys	Het	NUS	Tolerated	Possibly damaging		Damaging
		AARS	c. 2053G>A/p.Val685Met	Het	NUS	Tolerated		Damaging	Damaging
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	11	SH3TC2	c. 1412del/p.Leu471TrpfsTer53	Homo	Pathogenic	ı	ı		Damaging
		I Hdf	c. 803C>T/p.Pro268Leu	Het	NUS	Tolerated	Benign	Damaging	Damaging
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12	SH3TC2	c. 3152G>A/p.Gly1051Glu	Homo	NUS	Affect protein function	Probably damaging	Damaging	Damaging
13 $SHTC3$ c 69delph/ys3Angkfraft0HonoPanlogenic $ -$ Damaging		UBQLN2	c. 1573C>T/p.Pro525Ser	Het	NUS	Tolerated	Benign	ı	Damaging
14 $S137C2$ $c.3511C-TpArg1/TlCys$ HetLikely pathogenicAffect protein functionProbably damagingDamagingDamaging $S137C2$ $c.2038C-CpLaAg87ValHetVUSAffect protein functionProbably damagingDamagingDamagingS137C2c.2038C-CpLaAg87ValHetVUSAffect protein functionProbably damagingDamagingDamaging16CJBIc.548C-Ap_Arg22GlnHeniLikely pathogenicAffect protein functionProbably damagingDamagingDamaging17CJBIc.578C-Ap_Arg22GlnHeniLikely pathogenicAffect protein functionProbably damagingDamagingDamaging19CJBIc.572C-Ap_RS2509TyrHeniLikely pathogenicAffect protein functionProbably damagingDamagingDamaging10CJBIc.177CTp_RS2GLanHeniLikely pathogenicAffect protein functionProbably damagingDamagingDamaging10CJBIc.177CTp_RS2GLanHeniLikely pathogenicc.1c.177CTp_RS2GLanHenic.187CTPPARTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT$	13	SH3TC2	c. 69del/p.Lys24ArgfsTer10	Homo	Pathogenic	1		ı	Damaging
SH37C2cc2.028G-C/p.LeuG/OPleHetVUSAffect protein functionProbably damagingDamagingDamaging16 $GJBI$ c.554A-T/p.Asp83ValHetP USToleratedPosshly damagingDamagingDamaging17 $GJBI$ c.556A-p.Arg2GInHeniLikely pathogenicAffect protein functionProshly damagingDamagingDamaging18 $GJBI$ c.565A-p.Arg2GInHeniLikely pathogenicAffect protein functionProshly damagingDamagingDamaging19 $GJBI$ c.17/C/f/p.ser26.cuHeniLikely pathogenicAffect protein functionProshly damagingDamagingDamaging19 $GJBI$ c.77/C/f/p.ser26.cuHeniLikely pathogenicAffect protein functionProshly damagingDamagingDamaging20 $WNKI$ c.21062_1065inF1/P.T/P.FirletHeniLikely pathogenicAffect protein functionProshly damagingDamagingDamaging20 $WNKI$ c.2500C-Ar/P.GJS54affHeniLikely pathogenicAffect protein functionProshly damagingDamagingDamaging21 $GJBI$ c.105_1065inF1/P.FroH44LucuHeniVUSAffect protein functionProshly damagingDamagingDamaging22 $GJBI$ c.305C-Ar/P.Arg045istHenoVUSAffect protein functionProshly damagingDamagingDamaging23 $STMI$ c.317_2.3128inAs/PAFID425istHenoVUSAffect protein functionProshly damaging <t< td=""><td>14</td><td>SH3TC2</td><td>c. 3511C>T/p.Arg1171Cys</td><td>Het</td><td>Likely pathogenic</td><td>Affect protein function</td><td>Probably damaging</td><td>Damaging</td><td>Damaging</td></t<>	14	SH3TC2	c. 3511C>T/p.Arg1171Cys	Het	Likely pathogenic	Affect protein function	Probably damaging	Damaging	Damaging
		SH3TC2	c. 2028G>C/p.Leu676Phe	Het	NUS	Affect protein function	Probably damaging	Damaging	Damaging
15 GBI $c.548C3-Ap_Arg183His$ HetPathogenicAffect protein functionProbably damagingDamagingDamaging17 GBI $c.56S-Ap_Arg22Gin$ HemiLikely pathogenic $Affect protein functionPosably damagingDamagingDamaging18GBIc.56S-Ap_Arg22GinHemiLikely pathogenic -DamagingDamaging19FGD_4c.1062_1065insTp_Tyr355LeufsTer2HomoLikely pathogenic -DamagingDamaging19FGD_4c.1062_1065insTp_Tyr355LeufsTer2HomoVUS -20WXK1c.7526C>Ap_Ser250FutHomoVUS -21WXK1c.7526C>Ap_Ser250FutHetVUS -220WXK1c.7526C>Ap_Ser250FutHetVUS -23WXK1c.7526C>Ap_Ser250FutHetVUS -21GDAP -23SETXc.312_J128insAp_Arg1035HetVUS -<$		SH3TC2	c. 254A>T/p.Asp85Val	Het	NUS	Tolerated	Possibly damaging	ı	Damaging
16 $GJBI$ c. $6SG$ -A/p.Arg.2GInHeniLikely pathogenicAffect protein functionPossibly damagingDamagingDamaging17 $GJBI$ c. 217 delp.His73MetisTerl1HeniPathogenicDamaging18 $GJBI$ c. 217 delp.His73MetisTerl1HeniPathogenicDamaging19 $GJBI$ c. 217 delp.His73MetisTerl1HeniLikely pathogenicDamaging19 $FGD4$ c. $10C_{2}$ [063insTpyT535LutsTe2HonoLikely pathogenicDamaging10 $FGD4$ c. $10C_{2}$ [063insTpyT535LutsTe2HonoUUSDamaging20 $WXKI$ c. 2500 C>A/p.Gip.Pro6ArgHetVUS21 $GD4PI$ c. 197 C-Gip.Pro6ArgHetVUSAffect protein function21 $GD4PI$ c. 107 C-Gip.Pro6ArgHetVUSAffect protein function22 $GD4PI$ c. 107 C-Gip.Pro6ArgHetVUSAffect protein function23 $SETX$ c. 127 C-Tip.Pro144LeuHetVUSAffect protein functionPossibly damagingDamaging24 $SETX$ c. 127 C-Tip.Pro144LeuHetVUSToferate25 $Affectc. 127C-Tip.Pro144$	15	GJBI	c. 548G>A/p.Arg183His	Het	Pathogenic	Affect protein function	Probably damaging	Damaging	Damaging
17 $GJBI$ c. 2.17del/p.His73MetfsTre11HemiPathogenicDamaging18 $GJBI$ c. 77C-T/p.Ser26LeutHemiLikely pathogenicAffect protein functionProbably damagingDamagingDamaging19 $FGD4$ c. 1062_1063insT/p.Tyr355LeufsTre2HomoLikely pathogenicAffect protein functionProbably damagingDamagingDamaging20 $WNKI$ c. 5756C-A/p.Ser260TyrHenVUS20 $WNKI$ c. 400C-A/p.Ser250TyrHenVUS21 $GDAPI$ c. 197C-G/p.Pro66ArgHetVUSAffect protein function22 $GDAPI$ c. 197C-G/p.Pro66ArgHetVUSAffect protein function23 $SETX$ c. 3127_3126insA/p.Arg104315HetVUSAffect protein functionPosibly damagingDamagingDamaging24 $SETX$ c. 3127_3126insA/p.Arg104315HomoVUSAffect protein functionPosibly damagingDamaging25 dT/M c. 8890C-T/p.Trp330LeutHetVUS26 MRS c. 3127_3126insA/p.Arg104315HetVUS26 MRS c. 8890C-T/p.Trp330LeutHetVUS <t< td=""><td>16</td><td>GJBI</td><td>c. 65G>A/p.Arg22Gln</td><td>Hemi</td><td>Likely pathogenic</td><td>Affect protein function</td><td>Possibly damaging</td><td>Damaging</td><td>Damaging</td></t<>	16	GJBI	c. 65G>A/p.Arg22Gln	Hemi	Likely pathogenic	Affect protein function	Possibly damaging	Damaging	Damaging
18 GBH c. 77 -T/p,Ser26LeuHemiLikely pathogenicAffect protein functionProbably damagingDamagingDamagingDamaging19 $FGD4$ c. 1062_1063 insT/p.Ty:35SLeufsTer2HomoLikely pathogenic W/KI c. $7526C>A/p.Ser2507yr$ HomoVUS W/KI c. $2500C>A/p.Gly834ArgHetVUSW/KIc. 2500C>A/p.Gly834ArgHetVUSU/KIc. 2500C>A/p.Gly834ArgHetVUS$	17	GJBI	c. 217del/p.His73MetfsTer11	Hemi	Pathogenic	ı	1	ı	Damaging
19 $FGD4$ c. $10c_2$	18	GJBI	c. 77C>T/p.Ser26Leu	Hemi	Likely pathogenic	Affect protein function	Probably damaging	Damaging	Damaging
WXK1c. $7526C>Ap.Ser2507yr$ HomoVUScc<	19	FGD4	c. 1062_1063insT/p.Tyr355LeufsTer2	Homo	Likely pathogenic	ı		ı	ı
20 $WNKI$ c. 2500 G>Ap.Gly834ArgHetVUS-Damaging $WNKI$ c. 4501 +96C>ANilHetVUS <td></td> <td>WNKI</td> <td>c. 7526C>A/p.Ser2509Tyr</td> <td>Homo</td> <td>NUS</td> <td></td> <td></td> <td>ı</td> <td>ı</td>		WNKI	c. 7526C>A/p.Ser2509Tyr	Homo	NUS			ı	ı
WYKIc. $4501+96C>ANi1$ HetVUS 21 $GDAPI$ c. $197C>G/p$.Pro66ArgHetVUSAffect protein function 22 $GDAPI$ c. $197C>G/p$.Pro66ArgHetVUSAffect protein function 23 $SETX$ c. 3127 <t< td=""><td>20</td><td>WNKI</td><td>c. 2500G>A/p.Gly834Arg</td><td>Het</td><td>NUS</td><td>ı</td><td>Damaging</td><td>ı</td><td>ı</td></t<>	20	WNKI	c. 2500G>A/p.Gly834Arg	Het	NUS	ı	Damaging	ı	ı
21 $GDAPI$ c. 197C>Gp.Pro66ArgHetVUSAffect protein function22 $GDAPI$ c. 431C>T/p.Pro144LeuHetLikely pathogenicAffect protein function23 $SETX$ c. 3127_3128insA/p.Arg1043fisHomoLikely pathogenicAffect protein function24 $SETX$ c. 3127_3128insA/p.Arg1043fisHomoVUSAffect protein functionPossibly damagingDamagingDamaging25 ATM c. 4852C>T/p.Arg1618TerHetVUS25 ATM c. 889G>T/p.Trp230LeuHetVUS26 $MARS$ c. 918_919del/p.Trp230LeuHetVUS27 $MARS$ c. 918_919del/p.Trp230LeuHetVUS28 $SBF2$ c. 918_919del/p.Trp230TerbHetVUS28c. 918_919del/p.Trp230TerbHetVUS28c. 918_919del/p.Trp230TerbHetVUS28c. 918_919del/p.Trp230TerbHetVUS28c. 918_919del/p.Trp230TerbHetVUS28c. 918_919del/p.Trp230Terb <td< td=""><td></td><td>WNKI</td><td>c. 4501+96C>A/Nil</td><td>Het</td><td>NUS</td><td>ı</td><td>ı</td><td>ı</td><td>ı</td></td<>		WNKI	c. 4501+96C>A/Nil	Het	NUS	ı	ı	ı	ı
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	21	GDAPI	c. 197C>G/p.Pro66Arg	Het	NUS	Affect protein function		ı	ı
23SETXc. 3127_3128insA/p.Arg1043fsHomoLikely pathogenic24SETXc. 7195A>T/p.Ile239PheHomoVUSAffect protein functionPossibly damagingDamagingDamaging25ATMc. 4852C>T/p.Arg1618TerHetVUS26MARSc. 918_919del/p.Tyr307SerfsTer6HetVUSTolerated27MARSc. 918_919del/p.Tyr307SerfsTer6HetVUS27MARSc. 2209C>T/p.Arg1037HisHetVUSAffect protein functionPossibly damagingDamagingDamaging28SBF2c. 3110G>A/p.Arg1037HisHomoVUSAffect protein functionPossibly damagingDamaging28SBF2c. 5345_5354del/p.Asp1782ValfsTer10HomoVUSDamaging28SBF2c. 5345_5354del/p.Asp1782ValfsTer10HomoVUSDamaging	22	GDAPI	c. 431C>T/p.Pro144Leu	Het	Likely pathogenic	Affect protein function	1	ı	ı
24SETXc. 7195 A>T/p.Ile2399 heHomoVUSAffect protein functionPossibly damagingDamagingDamaging25ATMc. 4852C>T/p.Arg1618 TerHetVUS26MTMc. 6899G>T/p.Trp2300 LeuHetVUSTolerated26MARSc. 918_919del/p.Tyr307SerfsTerf6HetVUSTolerated27MARSc. 2209C>T/p.Arg1037HisHetLikely pathogenicAffect protein functionPossibly damagingDamaging27MARSc. 2209C>T/p.Arg1037HisHomoVUSAffect protein functionPossibly damagingDamaging28SBF2c. 5345_5354del/p.Asp1782ValfsTer10HomoVUSAffect protein functionPossibly damagingDamaging28SBF2c. 5345_5354del/p.Asp1782ValfsTer10HomoVUSDamaging	23	SETX	c. 3127_3128insA/p.Arg1043fs	Homo	Likely pathogenic	1		ı	ı
25ATMc. 4852C>T/p.Arg1618TerHetVUSATMc. 689G>T/p.Trp2300LeuHetVUSTolerated26MARSc. 918_919del/p.Tyr307SerfsTer6HetVUSDamaging27MARSc. 918_919del/p.Tyr307SerfsTer6HetVUS27MARSc. 2209C>T/p.Arg737TrpHetLikely pathogenicAffect protein functionPossibly damagingDamagingDamaging28SBF2c. 5345_5354del/p.Asp1782ValfsTer10HonoVUSAffect protein functionPossibly damagingDamaging28SBF2c. 5345_5354del/p.Asp1782ValfsTer10HonoPunoDamaging	24	SETX	c. 7195A>T/p.Ile2399Phe	Homo	NUS	Affect protein function	Possibly damaging	Damaging	Damaging
ATMc. 689G>T/p.Trp2300LeuHetVUSTolerated26MARSc. 918_919del/p.Tyr307SerfsTer6HetVUSDamaging27MARSc. 2109C>T/p.Arg73TTpHetLikely pathogenicAffect protein functionPossibly damagingDamaging27SBF2c. 3110G>A/p.Arg1037HisHonoVUSAffect protein functionPossibly damagingDamaging28SBF2c. 5345_5354del/p.Asp1782ValfsTer10HonoPunoVUSDamaging	25	ATM	c. 4852C>T/p.Arg1618Ter	Het	NUS			ı	ı
26 MARS c. 918_919del/p.Tyr307SerfsTer6 Het VUS - - Damaging 27 MARS c. 2209C>T/p.Arg73Trp Het Likely pathogenic Affect protein function Possibly damaging Damaging 27 MARS c. 2209C>T/p.Arg1037His Het Likely pathogenic Affect protein function Possibly damaging Damaging 28 SBF2 c. 3110G>A/p.Arg1037His Hono VUS Affect protein function Possibly damaging Damaging 28 SBF2 c. 5345_5354del/p.Asp1782ValfsTer10 Hono Pathogenic - - - Damaging		ATM	c. 6899G>T/p.Trp2300Leu	Het	NUS	Tolerated	ı	ı	ı
27 MARS c. 2209C>T/p.Arg737Tp Het Likely pathogenic Affect protein function Possibly damaging Damaging Damaging 28 SBF2 c. 5345_5354del/p.Asp1782ValfsTer10 Hono VUS Affect protein function Possibly damaging Damaging Damaging 28 SBF2 c. 5345_5354del/p.Asp1782ValfsTer10 Hono Pathogenic - - - Damaging	26	MARS	c. 918_919del/p.Tyr307SerfsTer6	Het	NUS			ı	Damaging
SBF2 c. 3110G>A/p.Arg1037His Homo VUS Affect protein function Possibly damaging Damaging 28 SBF2 c. 5345_5354del/p.Asp1782ValfsTer10 Homo Pathogenic - - Damaging	27	MARS	c. 2209C>T/p.Arg737Trp	Het	Likely pathogenic	Affect protein function	Possibly damaging	Damaging	Damaging
28 SBF2 c. 5345_5354del/p.Asp1782ValfsTer10 Homo Pathogenic Damaging		SBF2	c. 3110G>A/p.Arg1037His	Homo	NUS	Affect protein function	Possibly damaging	Damaging	Damaging
	28	SBF2	c. 5345_5354del/p.Asp1782ValfsTer10	Homo	Pathogenic				Damaging

Supplement	tary Table 1:	Contd						
Patient No	Gene	Nucleotide change/Amino acid change	Zygosity	ACMG Classification	SIFT	Polyphen2	LRT	Mutation taster
29	MME	c. 1270G>A/p.Gly424Arg	Homo	VUS	Affect protein function	Probably damaging	Damaging	Damaging
30	MPZ	c. 223G>T/p.Asp75Tyr	Het	NUS	Affect protein function	Probably damaging	Damaging	Damaging
31	MPZ	c. 207_212delGCCCGA/p.Pro70_Glu71del	Het	NUS				
	DNMTI	c. 1018G>A/p.Ala340Thr	Het	NUS	Tolerated	Benign	Benign	Benign
32	LRSAMI	c. 2120C>T/p.Pro707Leu	Het	Likely pathogenic	Affect protein function	Probably damaging	Damaging	Damaging
	LRSAMI	c. 49C>T/p.Arg17Cys	Het	NUS	Affect protein function	Probably damaging	Damaging	Damaging
33	DCTNI	c. 3746C>T/p.Thr12491le	Het	Likely pathogenic	Affect protein function			Damaging
	BLK	c. 2111G>A/p.Ala71Thr	Het	VUS		Possibly damaging		
34	COX15	c. 520G>A/p.Gly174Ser	Homo	Likely pathogenic	Tolerated	Probably damaging	Damaging	Damaging
35	COX6A1	c. 247-7_247-3del (3' proximal splice site)	Homo	Pathogenic			ı	Damaging
36	GARS	c. 1172G>A/p.Arg391His	Het	NUS	Tolerated	Possibly damaging	Damaging	Damaging
	GAN	c. 944C>G/p.Pro315Arg	Het	NUS	Tolerated	Benign	ı	Damaging
37	GAN	c. 444C>G/p.His148Gln	Homo	NUS	Tolerated	Probably damaging	Damaging	Damaging
38	HK	c. 19C>T/p.Arg7Ter	Homo	Pathogenic			ı	Damaging
39	IGHMBP2	c. 1523C>T/p.Ser508Leu	Homo	Likely pathogenic	Affect protein function	Damaging	Damaging	Damaging
	SLC12A6	c. 1625T>C/p.Ile542Thr	Homo	NUS	Tolerated	Possibly damaging		
40	7110	c. 280G>T/p.Gly94Trp	Homo	NUS	Tolerated	Possibly damaging		Damaging
41	MTMR2	c. 484C>T/p.Arg162Ter	Homo	Pathogenic				Damaging
42	NAGLU	c. 325C>T/p.Arg109Cys	Het	NUS		Possibly damaging		Damaging
43	OPAI	c. 1045C>T/p.Arg349ter	Het	Pathogenic			ı	Damaging
44	SACS	c. 8980C>T/p.Pro2994Ser	Homo	NUS		Possibly damaging	Damaging	Damaging
45	C10ORF2	c. 876delT/p.Ala293ProfsTer33	Het	Likely pathogenic				
46	HSPB8	c. 71C>T/p.Ser24Phe	Het	NUS	Tolerated	Possibly damaging	Damaging	Damaging
47	APOB	c. 13441G>A/p.Ala4481Thr	Homo	NUS		Benign	ı	
48	CDH23	c. 1589-7C>T	Homo				ı	

	VUS	1	1	ı	10	215	1
ease	Reported/Novel	Reported=14 Novel=4	Novel=17	Novel=12	·	Reported=107 Novel=88	Reported=9 Novel=12
ts of Charcot Marie Tooth dise	Genetic Diagnosis	<i>PMP22</i> duplication=98/170 cases <i>MPZ</i> point mutations: 4 variants <i>PMP22</i> missense mutations: 2 variants C×32: 12 variants	Total yield= $365/438$ (83.3%) Most common: PMP22 duplication=184 cases Point mutations- GJB1= 56 cases GDAPI=42 cases SH3TC2=27 cases MPZ=19 cases NDRG1, HSPB I=7 cases each MFN2=6 cases HK I= 5 cases	Total yield=148/197 (75.1%) PMP22=107 GJB1=14 GDAP1=8 MPZ=7 SH3TC2=3 MFN2=2	Total yield=35/103 (33.9%) Point mutations=28 cases Copy number variations=7 cases	Total yield=137/448 (30.5%) 195 variants in 31 genes for 137 patients AD inheritance=93/137 AR inheritance=32/137 X-linked inheritance=9/137	Total yield=21/110 (19.09%) HMN=2 cases HMNP=4 cases CMT2=10 cases CMT1=1 case CMT1=1 cases CMTX=4 cases
features in various cohor	Genetic Test	Targeted gene sequencing	Targeted gene sequencing	Targeted gene sequencing	MLPA, Targeted gene sequencing	Targeted gene sequencing	Whole exome sequencing
and genetic	Sporadic/ Familial	35/104		47/101	ı		2/108
graphic, clinical a	Age at onset (years)						
l, demo	M: F ratio	1	ı		48:55	ı	
: Epidemiologica	Cohort Number	172 cases	438 cases	197 cases	103 cases	448 cases	110 cases
y Table 2	Country	Italian	Spanish	Italian	Norway		
Supplementar	Author/Year	Mostacciuolo et al., 2001[53]	Sivera <i>et al.</i> , 2013 ^[54]	Manganelli et al., 2014 ^{IST]}	Hoyer <i>et al.</i> , 2015 ^[56]	Antoniadi et al., 2015 ^[86]	Drew <i>et al.</i> , 2015 ^[58]

lementa	Iry Table 2:	Contd							
ear	Country	Cohort Number	M: F ratio	Age at onset (years)	Sporadic/ Familial	Genetic Test	Genetic Diagnosis	Reported/Novel	VUS
16[59]	German	1330 cases		Varied from early infantile (<2 years), to late adult (>50 years)	894/436	MLPA, Targeted gene sequencing	AD/X-linked inheritance (axonal) = 108/340 (31.8%) AD/X-linked inheritance (demyelinating) = 275/674 (40.8%) Autosomal recessive inheritance (axonal) = 15/340 (4.4%) Autosomal recessive inheritance	-	
<i>l.</i> ,	Korean	78 families	·	1-49 years		Hexaplex microsatellite PCR, Targeted panel sequencing	(dem/semanng) = 500 (4, 0.0%) Total yield=17/78 (21.7%) GJBI=6 variants MPZ=2 variants SH3TC2=1 pair of compound heterozygous PMP22, $MARS$, $MFN2$, $SPTLC2$, DCTYVI=1 variant each	Reported=7 Novel=8	1
	Chinese	22 cases	17:5	Childhood to 46 years	ı	MLPA, Targeted gene sequencing	PMP22 duplication=8/22 Possible pathogenic variants: 11/22	Reported=7 Novel=3	ī
	Chinese Han	106 patients, NGS done on 82	57:25	Mean 30±15 years	86/20	NGS	<i>PMP22</i> duplication=10 patients <i>GJB1</i> mutation=9 patients <i>PMP22</i> deletion=2 patients <i>MFN2</i> mutation=2 patients <i>NEFL, SH3TC2, HSPB1, PRX</i> =1 patient each	Reported=15(single base exchange) Reported Copy number variation=2(PMP22 duplication, PMP22 deletion) Novel=6(single base exchange)	
al.,	German	612 cases	294:318		289/217	MLPA and NGS	Total yield=121/612 (19.7%) PMP22=16.4% GJB1=10.7% MPZ & SH3TC2=9.9% MFN7=8.3%	Reported=121 cases Novel=34 variants	201
et al.,	French	179 cases (123 prospective and 56 retrospective)				Targeted panel of genes causing inherited disorders	Total yield=49/123 (39.8%) CMT1=19/28 CMT2=27/64 dHMN=5/11 HSAN=5/9 Internediate CMT=4/8	Reported=26 Novel=52	17
t al.,	Hunagrian and Roma	531 cases	289:242	First decade to seventh decade of life	142/148	MLPA, qPCR, targeted gene sequencing	Total yield=59.9% CMT1=276 CMT2=42	Reported=30 Novel=6	,

Supplementa	ry Table 2:	Contd							
Author/Year	Country	Cohort Number	M: F ratio	Age at onset (years)	Sporadic/ Familial	Genetic Test	Genetic Diagnosis	Reported/Novel	VUS
Hartley <i>et al.</i> , 2018 ^[24]	Canadian	50 index patients and 23 affected/ unaffected family members	- I	Adult onset: 34 cases Pediatric onset: 16 cases	11/39	NGS	Total yield=12/50 (24%) HMSN=8/34 HMN=4/11 HSN or HSAN=0/5	1	11
Hoebeke et al., 2018 ^[39]	French	75 cases from 59 different families	1.8:1	Mean: 4.1 years	21/54	MLPA, Targeted gene sequencing, Targeted inherited disease panel for NGS	<i>PMP22</i> duplication=46/75 <i>MFN2</i> mutations=11/75 Other genes=18/75	Reported=12 Novel=10	ı
Yoshimura et al., 2018 ^[63]	Japanese	1005 patients	·		570/413	NGS (CMT panel)	Total yield=301/1005 (30%)	ı	
Khadilkar <i>et al.</i> , 2017 ^[12]	Indian	22 patients	19:3		18/4	NGS	Total yield=13/22 (63.07%)	ı	Э
Hsu <i>et al.</i> , 2019 ^[64]	Taiwanese	427 patients	248:179	Mean=23.8±17.4 years Range=1-72 years	177250	Real time fluorescent PCR for <i>PMP22</i> , direct sequencing of <i>PMP22</i> , <i>GJB1</i> , <i>MPZ</i> , <i>MFN2</i> , <i>NEFL</i> , <i>AARS</i> , <i>HSPB1</i> , <i>GDAP1</i> . NGS	Total yield=312/427 (73.1%) Demyelinating CMT=266/315 (84.4%) Axonal CMT=46/112 (41.1%)	Reported=69 Novel=12	1
Cortese <i>et al.</i> , 2020 ^[8]	UK and US	220 cases	136:84	,	-111/109-	NGS	Demyelinating CMT=30/41 axonal or intermediate=32/143 dHMN =/21 HSN=2/15	Novel=30	98
Taghizadeh et al., 2020 ^[65]	Iran	58 patients		Mean=13 years Range=4 months to 63 years	ı	NGS (WES)	Total yield=27/58 (46.6%)	Reported=16 Novel=11	ı.
Xie <i>et al.</i> , 2021 ^[87]	Chinese	435 families	268:167	1-60 years	221/214	MLPA for <i>PMP22</i> , NGS (CMT panel)	Total yield=304/435 (70%)	Reported=140 Novel=20	99
Current cohort	Indian	55 patients	29:26	Infancy to 54 years	Sporadic=33 Familial=22	NGS (WES=31, CES=17, Neurology/CMT panel=7)	28/55 (50.9%)	Reported=17 Novel=45	33
dHMN: distal H	ereditary moto.	r neuronopathy, H	SAN: Here	ditary sensory and au	tonomic neurop	athy, HSN: Hereditary sensory r	neuropathy, MLPA: Multiplex ligation-	-dependent probe amplification	

Supplementary Table 3:	Impact of mutations in multiple g	enes on neuropathy phenotype

Author/year	Gene combination	Number of subjects	Impact on phenotype
Kim et al., 2015 ^[70]	PMP22 triplication	1 case	Proband: severely affected: triplication, mildly affected family members: duplication
Liu et al., 2014 ^[71]	PMP22 triplication		Triplication is caused due to Lenovo mutation from maternal origin and results in severe phenotype as compared to usual duplication
Meggouh <i>et al.</i> , 2005 ^[50]	<i>PMP22</i> and <i>LITAF</i>	1 case	PMPP22 causes inefficient protein folding and variations in <i>LITAF</i> may hamper protein degradation pathway, altogether affecting the clearance of misfolded protein. Modifier genes can play role for pathogenesis of disease
Fernández <i>et al.</i> , 2016 ^[51]	SMN2 and PMP22	1 case	Clinical phenotype suggestive of SMN, Elder brother was diagnosed with CMT
Hodapp <i>et al.</i> , 2006 ^[66]	<i>PMP22</i> and <i>GJB1</i> , <i>PMP22</i> and <i>DCTN1</i> , <i>PMP22</i> and <i>ABCD1</i>	3 families	Presence of two gene variants resulted in cumulative effect on severity of symptoms, and individual variant itself was correlated with respective function in peripheral nerve
Chung et al., 2005 ^[76]	<i>EGR2</i> (R359W) and <i>GJB1</i> (V136A)	Screening: 125 CMT families, described: 1 family; 5 members	Proband carrying both the mutations had severe phenotype while father having mutation only in $EGR2$ gene presented with mild phenotype. The difference in clinical presentation might be either due to genetic modifier in $EGR2$ (mild phenotype) or cumulative effect of both the mutations (severe phenotype)
Kim et al., 2010 ^[77]	<i>DMPK</i> (CTG repeats) and <i>GJB1</i> (R149Q)	1 family	<i>DMPK</i> inherited from father (80 fold as compared to 220 fold in proband), mother was found normal for the repeats, <i>GJB1</i> : mother carried heterozygous mutation but this variant was absent in father
Vital <i>et al.</i> , 2012 ^[75]	<i>MFN2</i> (V160fs) and <i>GDAP1</i> (R120W)	1 family	Mother and father both heterozygous carriers of one mutation each. Proband and her daughter have both the variants. Synergistic effect of two mild variants resulted in severe phenotype observed in the second generation (proband) and her daughter as well
Kostera-Pruszczyk <i>et al.</i> , 2014 ^[74]	<i>MFN2</i> (T236M) and <i>GDAP1</i> (H123R)	l case	<i>MFN2</i> variant: inherited from maternal line (mother and paternal grandfather carriers); results in impaired mitochondrial energy coupling and <i>GDAP1</i> variant: denovo; impairs mitochondrial transmembrane potential. Individual variants presents with mild phenotypes as reported earlier in literature, but this combination resulted in severe phenotype
Anghelescu et al., 2017 ^[72]	<i>MFN2</i> (P201L) and <i>GDAP1</i> (E222K)	1 case	Proband: both <i>GDAP1</i> and <i>MFN2</i> mutations. Father and paternal grandmother carriers of <i>GDAP1</i> variant, <i>MFN2</i> variant was not found in any of the family members examined. Father and paternal grandmother had mild phenotypic presentation, de novo <i>MFN2</i> mutation or co-existence of <i>MFN2</i> and <i>GDAP1</i> may explain the severity of disease in the proband
Cassereau <i>et al.</i> , 2011 ^[73]	<i>MFN2</i> (R468H) and <i>GDAP1</i> (Q163X)	l family	<i>MFN2</i> variant results in mild phenotype, as ATP production remains normal in this case even when there is defect in energy coupling, but <i>GDAP1</i> variant results in decreased ATP production because of impairment in Complex I activity. Simultaneous <i>MFN2</i> and <i>GDAP1</i> mutations cause major mitochondrial defects in a patient with CMT. The synergistic effect of these two mutations prove to be deleterious and hence explaining the severity of phenotype
Pla-Martín <i>et al.</i> , 2015 ^[68]	JPH 1 and GDAP1	-	<i>GDAP1</i> variant (R120W) and JPH 1 variant (R213P) collectively mimics the phenotype of <i>GDAP1</i> knock-down cells as they both are involved in calcium homeostasis
Schreiber <i>et al.</i> , 2013 ^[67]	FSHD and PMP22	1 case	Overlap of two phenotypes