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Abstract

We develop a novel approach to analyse trophic metacommunities, which allows us to explore
how progressive habitat loss affects food webs. Our method combines classic metapopulation
models on fragmented landscapes with a Bayesian network representation of trophic interactions
for calculating local extinction rates. This means that we can repurpose known results from classic
metapopulation theory for trophic metacommunities, such as ranking the habitat patches of the
landscape with respect to their importance to the persistence of the metacommunity as a whole.
We use this to study the effects of habitat loss, both on model communities and the plant-mam-
mal Serengeti food web dataset as a case study. Combining straightforward parameterisability
with computational efficiency, our method permits the analysis of species-rich food webs over
large landscapes, with hundreds or even thousands of species and habitat patches, while still
retaining much of the flexibility of explicit dynamical models.
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INTRODUCTION

Global biodiversity loss progresses at a rapid pace, with
human-induced landscape changes such as habitat fragmenta-
tion and habitat loss being important drivers (Tylianakis et al.,
2008; Haddad et al., 2015). To accurately forecast species
extinction rates and develop efficient conservation strategies,
ecologists must understand how species respond to these
changes in habitat. Changes in the spatial configuration of a
landscape drive species extinctions both directly but also
through their effect on the interactions among species (Tyliana-
kis et al., 2008; Valiente-Banuet et al., 2015). Their direction
and extent is difficult to predict however, especially when con-
sidering complex ecological communities such as food webs.
Species in the same food web are inextricably linked, both

directly and indirectly. Therefore, the extinction of one species
can lead to a cascade of secondary extinctions which might
affect the entire network (Ebenman and Jonsson, 2005; Dunne
&Williams, 2009). This can have unpredictable consequences
for the community as it might drastically change its structure
and, at worst, lead to a highly impoverished community
(Eklöf and Ebenman, 2006; Dunne and Williams, 2009).
Theoretical studies typically consider secondary extinctions

in food webs without taking their spatial extent into account
(Eklöf and Ebenman, 2006; Dunne and Williams, 2009; Stan-
iczenko et al., 2010; Binzer et al., 2011; Curtsdotter et al.,
2011; Brose et al., 2017). In non-spatial webs, the main
approaches to model secondary extinctions are purely topo-
logical models, solely based on food web structure (Dunne
and Williams, 2009), and dynamical models, which explicitly
simulate population dynamics using a system of differential
equations (Binzer et al., 2011; Curtsdotter et al., 2011). A

middle-ground approach between them are Bayesian networks
(Eklöf et al., 2013; Box 1).
Predictions derived from non-spatial studies are crucial for

understanding how species extinctions reverberate through
food webs and how this affects their persistence and stability.
Yet, by neglecting the spatial context, they also neglect the
potentially strong impact spatial aspects can have on (local)
communities (Gibert and Yeakel, 2019). Therefore, non-spa-
tial food web models might miss important ecological patterns
and processes that play out at the landscape level such as spa-
tial rescue effects, the co-distribution of predators and their
prey, species range limits and the restructuring of food webs
considering different spatial scales (Guzman et al., 2018).
Using a spatially implicit model, Gravel et al. (2011a) for
example showed that regional dynamics could promote the
persistence of species in complex food webs that were locally
prone to extinctions.
More recently, several advances in food web ecology

address the effect of spatial change on food webs (Pillai
et al., 2011; Eklöf et al., 2012), mostly however in small
food webs and/or landscapes. For example, Liao et al. (2016,
2017a,2016) studied how the loss of habitat patches and
landscape fragmentation affect food chains and simple food
web motifs. An explicit population dynamical approach was
taken by Ryser et al. (2019), who theoretically studied com-
plex food webs in fragmented landscapes and found that
habitat isolation drives top species extinctions due to bot-
tom-up energy limitation. Using a system of differential
equations, Ryser et al. (2019) explicitly simulate feeding and
dispersal dynamics which allows for greater biological real-
ism but also restricts the network sizes that are computation-
ally feasible (Box 1).
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To be able to explore much larger systems, here we develop
a novel approach to study trophic metacommunities which is
rooted in single-species metapopulation models on fragmented
landscapes (Hanski and Ovaskainen, 2000; Ovaskainen and
Hanski, 2001; Hanski and Ovaskainen, 2003; Grilli et al.,
2015). The essence of our method is that species’ extinction
rates are calculated from a Bayesian network representation
of the food web (Eklöf et al., 2013), which allows us to model
food webs with hundreds of species and patches. Our
approach can also be used for obtaining analytical solutions
for simple community modules (Supporting Information, Sec-
tion S4). The method retains many known properties of
metapopulation theory, such as being able to rank the habitat

patches of the landscape with respect to their importance to
the persistence of the metacommunity Ovaskainen and Han-
ski, 2001). We make use of this ranking to study how progres-
sive habitat loss affects species extinctions, depending on
whether one prioritises the removal of valuable vs. non-valu-
able patches.
The article is structured as follows. After briefly presenting our

modelling framework and its parameterisation (Section 2), we
use it to study the effect of habitat loss on community persistence
—first on model food webs (Section 3), then in a case study on
an empirical example (Section 4). We finish by reflecting on the
advantages and limitations of our approach, and its place in the
wider context of trophic metacommunity theory (Section 5).

Box 1. Secondary extinctions in non-spatial food web models

Topological models provide the simplest approach to understanding secondary extinctions in food webs: a species undergoes sec-
ondary extinction once all its resources go extinct, otherwise it is extant. This method only requires the network structure as
input, so it can be used to model very large networks (Dunne and Williams, 2009). However, the assumption that species’
extinction risks do not respond at all to either the identity or the number of resource species lost until the last of them is gone
(at which point the extinction probability suddenly jumps to certainty) is rather crude.
Dynamical models are on the other end of the spectrum and offer a highly detailed description of trophic communities. They

explicitly model population dynamics using a system of coupled ordinary differential equations (Berlow et al., 2009; Binzer
et al., 2011; Curtsdotter et al., 2011; Riede et al., 2011). They depend on a large number of parameters and specific model
assumptions, and are computationally expensive. Furthermore, while these models have the potential to be the most realistic of
all, this potential is only realised if all model parameters are realistically represented. Although the rise in computational power
promoted their use, the explicit modelling of population dynamics limits the food web size (and, in a spatial context, landscape
size; Ryser et al., 2019) that they can be applied to.
Bayesian network models (Eklöf et al., 2013) provide a middle-ground between the two methods above. Bayesian networks

permit extinction probabilities to increase gradually with resource loss, and allow them to be non-zero even when species have
full access to their resources (quantifying the probability of species going extinct for causes other than those represented by the
network). The numerical evaluation of Bayesian networks is highly efficient. This greatly reduces computation times and per-
mits analysis of large food webs with hundreds or even thousands of species (and, in a spatial context, habitat patches).
In a Bayesian network, if a consumer species C has two prey items A and B whose extinction probabilities P ¬Að Þ and P ¬Bð Þ

are known, then one can obtain the marginal extinction probability P ¬Cð Þ of the consumer using the law of total probability:

P ¬Cð Þ ¼Pð¬CjABÞP Að ÞP Bð ÞþPð¬Cj¬ABÞP ¬Að ÞP Bð Þ
þPð¬CjA¬BÞP Að ÞP ¬Bð ÞþPð¬Cj¬A¬BÞP ¬Að ÞP ¬Bð Þ (B1)

(this generalises straightforwardly to more than two prey items). Here P Að Þ¼ 1�P ¬Að Þ (and similarly for species B), and the
conditional probabilities are determined from some set of model assumptions. One such assumption is that the probability
Pð¬CjfÞ of a species C going extinct is a function of just the fraction f, and not the identity, of its resources that are absent (see
the Supporting Information, Section S7 for a generalisation, where each prey contributes a different amount to the consumer’s
diet):

Pð¬CjfÞ¼ πCþ 1�πCð Þw fð Þ (B2)

where πC is species C’s baseline extinction probability (the likelihood of extinction despite all its resources being present), and
the weighting function w fð Þ. is monotonically increasing in f. such that w 0ð Þ¼ 0 and w 1ð Þ¼ 1. For a basal species A, we assume
its abiotic resources are always available (f¼ 0), so P ¬Að Þ¼ πAþ 1�πAð Þw 0ð Þ¼ πA. For a non-basal species C, one obtains
P ¬Cð Þ by using the already calculated extinction probabilities of its prey, and then applying eqn B1. Thus, determining the
extinction probabilities of all species in a food web is a bottom-up calculation process: we start with basal species, then move
on to species only consuming those basal species, and so on.
This also means that the Bayesian network approach has two important limitations. First, the food webs must be acyclic,

otherwise this bottom-up approach would not work. Second, since predators are influenced by their prey but prey dynamics do
not depend on the presence of their predators at all, the method cannot capture any top-down effects (a property shared with
topological models).
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METHODS

Model summary

Our starting point is a spatially explicit, Levins-type metapop-
ulation model over a fragmented landscape consisting of N
habitat patches connected by dispersal (Hanski and Ovaskai-
nen, 2000, 2003; Ovaskainen and Hanski, 2001; Grilli et al.,
2015). Each of S species has a metapopulation over this land-
scape. Colonisation depends on species’ current patch occu-
pancies and dispersal abilities, and is unaffected by
interspecific interactions. Extinctions, on the other hand, hap-
pen both due to local patch conditions and the fact that the
species form a trophic network: extinction risk in a given
patch increases when more prey items of a species are locally
absent. We do not consider non-trophic interactions here.
More formally, we model the probability pki that species i is

found in patch k. (Here and elsewhere, subscripts refer to spe-
cies and superscripts to patches.) Colonisation rates of patch
k by species i, Ck

i ¼ ∑
N

l¼1

Mkl
i p

l
i, are modelled using a species-de-

pendent landscape matrix whose k, lð Þ th entry Mkl
i gives the

dispersal rate of species i from patch l to k. In turn, extinction
rates are obtained from the probability δki that species i disap-
pears from patch k. As metapopulation models assume that
migration operates on a slower time scale than local popula-
tion dynamics (Hanski, 1994), we assume that within-patch
extinction rates are not affected by the occupancy rates of
other patches, so that within-patch extinction can be modelled
as a Poisson process with rate Ek

i . So the probability of
extinction occurring within one unit of time is
δki ¼ 1� exp �Ek

i

� �
, from which Ek

i ¼�log 1�δki
� �

. With these
colonisation and extinction rates, the model reads (Supporting
Information, Section S2):

dpki
dt

¼ 1�pki
� �

∑
N

l¼1

Mkl
i p

l
iþpki log 1�δki

� �
i¼ 1, . . .,S; k¼ 1, . . .,Nð Þ

(1)

The central idea of our approach is to couple these indepen-
dent metapopulation equations by making the extinction
probabilities δki depend on the local persistence probabilities
of species i’s prey items via a Bayesian network representation
of the food web (Eklöf et al., 2013). When modelling species
extinctions using Bayesian networks, each species i in patch k
has a baseline probability of extinction πki ; the species goes
extinct with this probability even if it has full access to its
resources. Second, the conditional probability of a species to
go extinct in a patch depends on the fraction f of its resources
that are locally absent. This conditional probability increases
monotonically with f, from the baseline probability πki to cer-
tainty as f increases from 0 to 1. The marginal probability δki
is then obtained by substituting all conditional probabilities
into the law of total probability (Box 1; Supporting Informa-
tion, Section S1).
The model retains many known results from the classic

metapopulation theory on which it is based. We can deter-
mine the persistence of any species i by its metapopulation
capacity λi: if this quantity exceeds 1 it means that the
metapopulation persists at equilibrium, otherwise all pki are
zero. For eqn 1, λi is given by the leading eigenvalue of the

matrix Akl
i ¼�Mkl

i =log 1�δki
� �

(Supporting Information, Sec-
tion S3). Also, the relative patch value Vk

i ¼ λi�λ�k
i

� �
=λi

(where λ�k
i is species i’s metapopulation capacity after patch k

is removed) can be obtained as the normalised product of the
dominant left and right eigenvectors of Akl

i (Ovaskainen and
Hanski, 2001). This quantity measures how important a patch
is for the persistence of a species. We use it to rank the
patches of a landscape with respect to their importance to the
persistence of the metacommunity.

Model parameterisation

We first constructed four model food webs via the allometric
method of Schneider et al. (2016) (Supporting Information,
Section S5.1). Each web has 400 species, but with a varying
fraction of consumer to basal species (200:200, 250:150,
300:100, and 350:50). To study how progressive habitat loss
affects these webs, we generated five landscapes, each with
300 uniformly distributed patches in the unit square. The
landscape matrices were constructed by making their entries
decline exponentially with the distance dkl between patches k
and l: Mkl

i ¼ exp �dkl=ξi
� �

, where ξi is the characteristic disper-
sal distance of species i.
We assume homogeneous landscapes where all patches have

the same abiotic conditions and each patch can potentially
harbour the full food web. This means that both the baseline
extinction probabilities πi and dispersal distances ξi are patch-
independent. Their species-dependence may take one of two
forms. First, they can be constant across all species, with
πi ¼ 0:2 and ξi ¼ 0:055. Second, they may be trophic level-
based. We calculated the trophic level Ti of each species i as a
prey-averaged trophic level (Williams and Martinez, 2004;
Supporting Information, Section S5.2). Denoting their arith-
metic average by �T, we set πi ¼ 0:2Ti= �T and ξi ¼ 0:055Ti= �T.
The numerical factors adjust the arithmetic average �π and �ξ to
be equal to 0:2 and 0:055 respectively, for a better comparison
with the constant case. Additionally, to explore the role of
habitat connectivity in general, we gradually increased ξi from
0:01 to 0:1 (keeping it equal across species), and let πi be
trophic level-based (Supporting Information, Section S6).
We also looked at how the functional form of a consumer’s

response to the loss of resources affects the response of a food
web to habitat loss, by implementing four different forms of
the response function. All are described by regularised beta
functions of the fraction f of resource species lost, with differ-
ent shape parameters α and β:

(1) α¼ β¼ 1 (linear function; see inset in top right corner of
Fig. 3a). Here a consumer’s probability of extinction is
simply proportional to the fraction of resources lost.

(2) α¼ 5, β¼ 1 (Fig. 3b). This is a convex function, meaning
that consumer extinction probabilities only start apprecia-
bly increasing after some fixed fraction of the resources
have already been lost.

(3) α¼ 1, β¼ 5 (Fig. 3c). A concave function: consumer
extinction probabilities attain high values even after the
removal of a small fraction of their prey.

(4) α¼ β¼ 5 (Fig. 3d). A sigmoidal function, combining prop-
erties of the convex and concave cases.

© 2020 The Authors. Ecology Letters published by John Wiley & Sons Ltd.
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Implementing habitat loss

First, we obtain the equilibrium patch occupancies for each
food web on each landscape. We do so beginning with the
basal species (for whom δki ¼ πki ), by solving for their equilib-
rium state in eqn 1 (Supporting Information, Section S3). We
use these occupancy data and the Bayesian network representa-
tion of the food web (Box 1) to obtain their δki . With these
parameters, we then solve eqn 1 for all those species consuming
only basal ones. We then obtain their δki in turn, and go on to
solve for the patch occupancies of species consuming only basal
and primary consumer species—and so on, until top predators
are reached (Supporting Information, Section S1–S2).
We start implementing habitat loss if at least one consumer

species persists. We do this by gradually removing patches
from each landscape, always 10 at a time. The order of
removal differs between three habitat loss scenarios:

(1) Best-case scenario: patches are removed in increasing
order of patch value (least valuable patches first). Since
species at different trophic positions may differ in which
patches are most valuable to them, we rank the patches
based on the patch values of basal species.

(2) Worst-case scenario: as above, but removing patches in
decreasing order of patch value (most valuable first).

(3) Random scenario: patches are removed at random.

The patch ranking formula only applies for small perturba-
tions of the landscape. Therefore, after each patch loss step
(simultaneous removal of 10 patches), we recalculate the patch
values to re-rank the order in which we will remove patches
next. We repeat this process until either all but basal species
have gone extinct, or less than two patches remain in a land-
scape. Figure 1 illustrates the habitat loss scenarios by dis-
playing the patch occupancies for a basal species and a top
predator over a landscape.
For the linear functional form of predator response to prey

loss (α¼ β¼ 1), we additionally looked at removing patches
based on the patch value rankings of top species, instead of
basal ones (Supporting Information, Section S6.2). This
means that patch removal was stopped whenever the top spe-
cies have gone extinct.
Finally, we have also implemented a numerical experiment

where we remove the links connecting the patches, instead of
the patches themselves. This was also done in a random, best-
case, and worst-case sequence (Supporting Information, Sec-
tion S9). Link removal expresses the assumption that individ-
uals have more difficulty travelling across patches due to the
deterioration of the habitat matrix, even though the patches
themselves are intact.

RESULTS

Our approach can be used to obtain analytical approxima-
tions for the metapopulation capacities in simple food web
structures (Supporting Information, Section S4). One such
structure is a linear food chain (species 1 is the basal species
eaten by species 2, which is in turn eaten by species 3, and so
on, until the top species) over a homogeneous landscape
(baseline extinction probabilities are patch-independent,

πki ¼ πi). In this case the following recursion equation approxi-
mates the metapopulation capacities λi:

λiþ1≈
λMiþ1

λMi
=λi� log 1�πiþ1ð Þ 1�1=λið Þ½ � (2)

for all i>1, and λ1 ¼�λM1
=log 1�π1ð Þ for the basal species.

λMi
is the dominant eigenvalue of species i’s landscape matrix

Mkl
i , which we do not assume to be generated by any particu-

lar kernel form here. We can simplify this expression further
by assuming πi ¼ π and λMi

¼ λM are constant across species:

λiþ1≈
λM

λM=λi� log 1�πð Þ 1�1=λið Þ½ � (3)

One can show that eqn 3 implies strictly decreasing
metapopulation capacities with increasing trophic level, even-
tually dropping them below 1 (Supporting Information, Sec-
tion S4.2). This imposes a limit on the maximum length of the
trophic chain, because species persistence requires λi>1. The
following simple approximation can be derived for the maxi-
mum number of trophic levels T:

T¼�λMlog πð Þ (4)

Empirical estimates of λM from three different butterfly
metapopulations (Hanski, 1994) gave 3:9, 0:97, and 0:74 (Sup-
porting Information, Section S4.2). If these are indeed typical
values, then eqn 4 reveals that trophic chain length is quite
restricted unless π is quite low (Fig. 2). For instance, with
λM ¼ 2 and π¼ 0:1, the number of trophic levels is already
limited to 5 at most. The upshot is that, quite apart from
energetic or other constraints, the simple realities of metacom-
munity structure alone can restrict the maximum possible
number of trophic levels to a handful—a conclusion consis-
tent with an earlier study employing a slightly different mod-
elling approach (Calcagno et al., 2011).
Beyond such simple food web structures, one can rely on

numerical solutions to eqn 1, which we have done to explore
our four large model food webs. Since they produce similar
trends, we present results for the one with 300 consumer and
100 basal species (Fig. 3; see Supporting Information, Sec-
tion S6 for the others). The extent to which habitat loss
threatens species persistence differs significantly between patch
removal scenarios. In the best-case scenario, unless consumer
response to prey absence is described by a strongly concave
function (Fig. 3c), species have a high chance to persist even
if a large fraction of habitat patches are lost. This applies to
species at all trophic levels, though metapopulation capacities
are generally higher at lower levels. By contrast, in the ran-
dom and worst-case scenarios, species across all trophic levels
have a much higher risk of extinction even after moderate
levels of habitat removal. Interestingly, it makes almost no
difference whether habitat loss starts with the most valuable
patches or occurs randomly. This means that random patch
removal is practically as harmful to a metacommunity as if
one intentionally tried to cause the greatest damage. This pat-
tern was observed for all food webs, landscapes, and parame-
terisations, and highlights the importance of planned
landscape alterations whereby only patches of low value are
removed. Note however that when removing links between
patches instead of the patches themselves, random removal

© 2020 The Authors. Ecology Letters published by John Wiley & Sons Ltd.
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falls more in-between the best- and worst-case link removal
scenarios, even though all other aspects of the results are
qualitatively identical (Supporting Information, Section S9).
Both the baseline extinction probability πi and dispersal dis-

tance ξi affect the described outcomes, but in most cases do
not change the overall trends (Fig. 3). If πi (but not ξi)

increases with trophic level, differences in metapopulation
capacity across trophic levels are elevated compared to the
constant case, with higher values for lower trophic levels.
When both πi and ξi increase with trophic level (a likely sce-
nario if trophic level and body mass are correlated, since lar-
ger-bodied organisms disperse faster and also tend to have

(a)

(b)

(c)

Figure 1 Patch occupancies along a habitat loss gradient, for a basal species (blue) and a top predator (red) in a model food web with 300 consumer and

100 basal species. Axes are coordinates of the landscape, circles are patches and their shading is proportional to local persistence probabilities (dark blue/
red: 100% persistence; empty circle: 0% ). In the best-case scenario (a), we first remove patches that contribute the least to the metapopulation capacity of

the basal species; in the worst-case scenario (b), we start with patches that contribute the most; and in (c) we remove patches randomly. The dispersal

distance ξi is 0:055 for all species, and baseline extinction probabilities πi increase linearly with trophic level.

© 2020 The Authors. Ecology Letters published by John Wiley & Sons Ltd.
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lower population sizes, increasing extinction risk), these differ-
ences are reduced, and metapopulation capacities start
decreasing even after moderate habitat loss. Finally, when ξi
but not πi increases with trophic level, we find a reversed rela-
tionship between metapopulation capacity and trophic level
for low to moderate habitat loss, with higher trophic levels
now also having higher metapopulation capacities. In line
with our Bayesian network approach which neglects top-down
effects, species at the top of the food web generally have lower
metapopulation capacities and are more likely to go extinct
than species at lower levels. The reason we do not see this
here is that the stronger landscape connectivity gained by fas-
ter dispersal at higher trophic levels offsets the increased risk
of extinction due to local prey absence.
Note that, while we have assumed that dispersal ability is

either constant or increases with trophic level, this need not be
the case. In some systems, dispersal rates may actually decrease
(Pedersen et al., 2016). Beisner et al. (2006) show evidence that
zooplankton and fish (species at higher trophic levels) disperse
more rarely than smaller organisms in lakes. Villarino et al.
(2018) show the same phenomenon for plankton, based on
body sizes. In such systems, one can implement dispersal rates
that decrease with trophic level. All other things equal, this will
further hinder the persistence of higher trophic levels.
Changing the functional form of a consumer’s response to

the loss of its resources alters the overall, absolute scaling of
the metapopulation capacities, with little effect on their rela-
tive values (compare Fig. 3a–d). For functional forms leading
to reduced metapopulation capacities, this means extinctions
happen at lower numbers of removed patches. In the case of a

concave response function for instance, we find that the high-
est trophic levels are often unable to persist even on a fully
intact landscape. This is because their persistence probabilities
are disproportionately reduced by the absence of even a few
of their prey items.
Predictably, an overall increase in habitat connectivity, emu-

lated by gradually increasing ξi from 0:01 to 0:1 (keeping it
equal across species, and letting πi be trophic level-based), acts
as a general buffer against species extinctions up until habitat
loss becomes too severe (Supporting Information, Section S6).
Also, removing patches based on the patch value rankings of
top species instead of basal ones does not alter the general
patterns we observed, at least for the linear consumer
response to prey loss we tested (α¼ β¼ 1). The only difference
is that, since patch removal is stopped whenever the top spe-
cies go extinct, there is no information on metapopulation
capacities beyond that point (Supporting Information, Sec-
tion S6.2). Finally, we have also checked what happens over
landscapes where patches are arranged in a more regular,
grid-like manner than expected by chance (Supporting Infor-
mation, Section S10). It turns out that more regular land-
scapes behave much like random ones; however, they lead to
reduced metapopulation capacities overall, hindering meta-
community persistence.

A case study

We demonstrate that our framework can be readily applied to
empirical systems using, as a case study, the plant-mammal
Serengeti food web dataset (Baskerville et al., 2011). This is a
species-rich web with the plant species mostly associated with
particular habitats and mammals often tightly associated with
well-defined plant groups (Baskerville et al., 2011). Although
the Serengeti ecosystem is a protected area, there are neverthe-
less threats towards the habitat types within the system. First,
the rapidly growing human population outside the park bor-
ders increase livestock grazing within the park, resulting in
habitat degradation that is particularly severe near the borders
(Veldhuis et al., 2019). Second, climate change has recently
caused warmer and longer dry season as well as more power-
ful rains, resulting in soil erosion and washouts (Ritchie,
2008). As such, assessing the effects of habitat loss is relevant
for the system. This, together with the data set’s species rich-
ness and organisation into well-defined trophic levels, make it
a good case study for demonstrating our method.
The Serengeti food web data set (Baskerville et al, 2011)

contains a total of 161 species and 592 feeding links across
three distinct trophic levels, with nine carnivore species feed-
ing on 23 herbivore species feeding on 129 plant species.
Apart from a single cannibalistic link (belonging to Panthera
leo, the lion), the web is completely acyclic. Since the Bayesian
network approach requires acyclic networks, we removed this
self-link from the data.
In their work, Baskerville et al. (2011) used a modified ver-

sion of the group model (Allesina and Pascual, 2009) and
showed that the web contains functionally distinct groups of
plants strongly associated with habitat types, connected to dis-
tinct groups of primary consumers that in turn are connected
to distinct groups of secondary consumers. The nested
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Figure 2 The maximum number of trophic levels in trophic chain

metacommunities, as a function of a common baseline extinction

probability π and the leading eigenvalue of a common landscape matrix

λM. Unless π is low and λM simultaneously high, the metacommunity

structure itself puts a cap on the number of possible trophic levels. This

colour map was generated by iterating eqn 3 until metapopulation

capacities dropped below the persistence threshold of 1. However, the

same result is obtained by approximating the maximum number of

trophic levels simply with �λMlog πð Þ (eqn 4; see also Supporting

Information, Fig. S3).
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network structure coupled to a spatial component, together
with a high species richness, make the Serengeti food web a
good case study to apply our method to. However, since there
are only three distinct trophic levels in this system (with a
strong bias towards basal species), we use the groups to
parameterise our model in addition to the constant and
trophic level-based parameterisations we relied on earlier
(Supporting Information, Section S6). We follow the group
labelling in Baskerville et al. (2011) and assign carnivores to
groups 1-2, herbivores to groups 3-6, and basal species to
groups 7-14. Since group labels decrease with trophic level but

we would like both the baseline extinction probabilities πi and
dispersal distances ξi to increase with them, we define
πi ¼ 0:2 15�Gið Þ= �G and ξi ¼ 0:055 15�Gið Þ= �G, where Gi is the
group index and �G their arithmetic average. While this partic-
ular parameterisation of groups within a trophic level does
not have any specific ecological relevance, it demonstrates
how parameter values can be assigned if, for example, ecologi-
cal information on dispersal properties for certain groups of
species is available.
The original dataset does not contain any explicit spatial

arrangement of the food web in a landscape. Therefore we use
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Figure 3 Effect of habitat loss on species persistence in a model food web with 300 consumer and 100 basal species. (a–d) are for different functional forms

of a consumer’s response to the loss of resources (top right insets). Species are grouped into trophic levels (colour legends); lines show the mean and the

bands around them the one standard deviation range of the metapopulation capacities of species in the corresponding trophic level. Rows indicate patch

removal scenario (best-case, worst-case and random); columns the parameterisation method: baseline extinction probabilities πi and dispersal distances ξi
can either take on one value across all species, or increase with trophic level (trophic level-based, TLB). Horizontal dashed lines highlight a metapopulation

capacity of 1, the threshold for long-term species persistence. Vertical dashed lines show when the metapopulation capacity of the top species in the food

web drops below this threshold.
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the same approach here as for our model food webs and con-
struct a landscape of 300 patches uniformly placed in the unit
square. In the best- and worst-case habitat loss scenarios, we
ranked patches for removal based on their contribution to the
metapopulation capacity of a basal species. This species was
chosen to be the Gum arabic tree (Acacia senegal), because it
is a basal species that is also the sole member of spatial group
12.
The patterns we obtain for the Serengeti food web when πi

and ξi are constant or trophic level-based are consistent with
the results found for the model food webs (Supporting Infor-
mation, Section S6), with one exception. We find that the neg-
ative effect of a concave predator response on
metacommunity persistence is strongly mitigated, with the
metacommunity persisting even under severe habitat loss and
a worst-case patch removal scenario. This is in contrast to the

pattern seen in the model food webs, where the concave form
immediately leads to the loss of the topmost trophic levels.
However, this result is an artefact of the overabundance of
basal species in the Serengeti dataset, and the low baseline
extinction probability they all receive under a strictly trophic
level-based parameterisation. When parameters are spatial
group-based (Figure 4), the better resolution of the parameter-
isation leads to an outcome in line with those seen in the
model food webs when both πi and ξi are trophic level-based.

DISCUSSION

Understanding how habitat loss affects complex communities
such as food webs remains a major challenge in ecology (Guz-
man et al., 2018; Leibold and Chase, 2018). Due to indirect
effects present in ecological networks, the extinction of one
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Figure 3 Continued.
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species can set in motion an entire cascade of secondary
extinctions (Ebenman and Jonsson, 2005; Dunne and Wil-
liams, 2009). Here we have studied the effect of habitat loss
on food webs by developing a novel approach to trophic
metacommunities, combining the methods of classic metapop-
ulation models on fragmented landscapes (Hanski and Ovas-
kainen, 2000, 2003; Ovaskainen and Hanski, 2001; Grilli
et al., 2015) with a Bayesian network representation of trophic
interactions (Eklöf et al., 2013) for calculating local extinction
rates. The approach has much of the flexibility of explicit
dynamical models (Ryser et al., 2019), but is close in tractabil-
ity and computational efficiency to simple topological meth-
ods (Dunne and Williams, 2009). This allows one to apply it
to much larger food webs and landscapes than would be feasi-
ble with fully fledged dynamical models, while still retaining
the ability to make predator extinction a smooth function of
prey absence (as in Cazelles et al., 2015). It thus provides an

alternative, complementary way of analysing spatial food
webs.
Thanks to its origin in well-studied metapopulation models,

the method inherits many of their useful analytical properties,
such as the ability to rank habitat patches with respect to
their value to the community as a whole (Ovaskainen and
Hanski, 2001). We demonstrated the importance of this rank-
ing by simulating the patch removal process, taking away
patches in sequence based on their value. This has revealed
that trophic metacommunities can tolerate substantial habitat
loss if the least valuable patches are removed first. However,
starting with the most important ones greatly accelerates col-
lapse. Surprisingly, random removal of patches is almost
indistinguishable in its effects from the worst-case scenario of
removing patches in decreasing order of importance, leading
to similar landscapes in which habitat is scattered randomly
(Fig. 1). In contrast to this, removing less valuable patches
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Figure 4 Effect of habitat loss on species persistence in the Serengeti food web. Layout as in Fig. 3, except colour legends show spatial group instead of

trophic level, and columns show different functional forms of a consumer’s response to the loss of resources (top insets). We show the results for the

spatial group-based parameterisation (SGB), whereby both the baseline extinction probabilities πi and dispersal distances ξi decrease with spatial group. In

the colour scheme, green colours are groups whose species are primary producers, blue colours are groups with secondary consumers and brown colours

are groups with top predators.
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first in the best-case scenario preserved habitat islands in
which species were able to persist even under severe habitat
loss. This highlights the need to estimate patch rankings in
real-life conservation efforts, and to either prioritise conserv-
ing high-value patches, or else to improve the value of others
—e.g. by increasing habitat connectivity. Land use strategies
which take these considerations into account can then sub-
stantially promote food web persistence, and especially pre-
vent top species extinctions.
Our metacommunity approach is similar to some trophic

models of island biogeography (Holt, 2009; Gravel et al.,
2011a,b). In fact, our work can be seen as an extension and a
change of focus from these works. It is an extension in two
ways. First, our model is spatially explicit. Second, it replaces
the strict dichotomy of a predator either being able to colo-
nise a patch or not at all (depending on whether at least one
of its prey items are locally present) with a more gradual
approach using Bayesian networks, in which the presence of a
predator is a smoothly increasing function of the likelihood of
its prey items being present. It is a change of focus in that we
have concentrated on the effects of habitat loss in closed
metacommunities, instead of species-area relationships and
the effect of network metrics on regional persistence in an
island-mainland setting.
Our framework characterises each species by (1) their posi-

tion in the food web; (2) their patch-specific baseline extinc-
tion probabilities πki ; and (3) their dispersal kernel (which, in
our case, was always chosen to be exponential with a species-
specific dispersal distance ξi). In the literature, an increased
risk of extinction has been related to various indicators such
as high trophic level, large body size, and low abundance
(Gaston and Blackburn, 1995; Purvis et al., 2000; Cardillo
et al., 2005; Davidson et al., 2009; Lee and Jetz, 2011). In
agreement with several previous studies (Kondoh, 2003; van
Nouhuys, 2005; Eklöf and Ebenman, 2006; Curtsdotter et al.,
2011; Liao et al., 2017b; Ryser et al., 2019), we found that
species at higher trophic levels indeed tend to suffer elevated
extinction risks. Differences in other indicators can be
accounted for through their effects on the species-level param-
eters πki and ξi. For instance, if a patch can only support a
small number of individuals of a given species, it has a higher
chance of disappearing due to demographic stochasticity even
when all its resources are present. Such a situation can be rep-
resented by increasing the species’ patch-specific baseline
extinction probability. While this can and should be done
whenever adequate data are available to characterise each
patch on the landscape, here we deliberately assumed all habi-
tat patches to share the same abiotic conditions (Leibold
et al., 2004) and thus baseline extinction probabilities to be
independent of patch identity. This allowed us to focus on the
general effects of habitat loss.
Similarly, dispersal ability is crucial for persistence in frag-

mented landscapes; all other things equal, species that are
good disperses are at an advantage. In our model, we can
integrate different assumptions for the dispersal abilities of
species by assigning species-specific dispersal distances and
dispersal kernel forms. We have looked at constant dispersal
distances across species, and also ones that increase with
trophic level (and, in case of the Serengeti food web, scale

with the spatial guild of a species). Ideally, detailed informa-
tion on species-specific dispersal would be used to construct
realistic dispersal kernel functions in conjunction with realistic
habitat structures, as the combination have profound conse-
quences for species persistence (Årevall et al., 2018). This may
include possibilities such as multiplying the dispersal kernel of
each species by an overall size-dependent scaling factor. While
data are scarce, it is conceivable that this factor is in fact
inversely related to size, due to smaller organisms having
more offspring that disperse, as well as having faster popula-
tion dynamics. The interplay of such a scaling relationship
with the direct size dependence of dispersal distances may
alter the interpretation of Fig. 3.
However, regardless of such details, it follows from the

structure of our model that habitat destruction likely affects
species at the highest trophic levels the most, since apart from
having fewer available patches for colonisation in the land-
scape, they must also cope with the problem of reduced prey
availability. In line with this expectation, we found that habi-
tat isolation deconstructed food webs from top to bottom,
with species at higher trophic levels going extinct first (Ryser
et al., 2019; McWilliams et al., 2019). Dispersal ability can
also be seen as a measure of habitat connectivity, i.e. how well
species can access habitat patches in general. This is particu-
larly important as human land use practices causing habitat
loss often also decrease the quality of the habitat matrix in
which the patches are embedded (Bonte et al., 2012). A
decrease in matrix quality manifests itself in overall reduced
dispersal likelihoods, whereby the kernel yields a lower disper-
sal rate for all distances, reducing the chance of successful
colonisation between habitats (Eklöf et al., 2012).
Despite its tractability, computational efficiency, and straight-

forward parameterisability, our metacommunity approach also
has idiosyncrasies and important limitations. First, it should be
noted that only extinction rates depend on species interactions,
not colonisation rates. This may look strange, implying that a
predator i may establish in a patch k that is devoid of any
prey. That, however, turns out to be irrelevant, because the
extinction probability δki of the predator in such a patch is
equal to one. Thus, the extinction rate Ek

i ¼�log 1�δki
� �

is
infinitely large, immediately negating the effect of the colonisa-
tion process (eqn 1). While incorporating interaction-dependent
colonisation in the model is definitely a promising avenue for
future development, the lack of this dependence does not
undermine the model’s results or applicability.
Second, throughout this work, we have made conditional

predator extinction probabilities either a function of the frac-
tion, or weighted fraction (Supporting Information, Sec-
tion S7), of prey species lost. There may be cases when it is
better to make them some absolute function of the available
prey in a given location—such as for opportunistic feeders
which consume anything within a certain size range. Fortu-
nately, our model is extensible to deal with such scenarios
(Supporting Information, Section S1), though at the cost of
replacing eqn B2 with something more complicated.
Third, the calculation of extinction rates depends heavily on

the assumption of the separation of time scales between
extinction and colonisation: the Bayesian network method of
calculating extinction probabilities assumes that there is no
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chance of an extinction cascade within a patch being stopped
by a colonist of a prey species arriving midway through. This
essentially means that mass effects are assumed not to influ-
ence extinction dynamics. It also explicitly assumes that every-
thing is in (quasi-)equilibrium when calculating local
extinction rates, so our method might not be suited for calcu-
lating extinction debts or patch occupancy dynamics far from
equilibrium.
Fourth, the food web structure must be acyclic (no ‘‘A eats

B eats C eats A’’ scenarios), because the Bayesian network
formalism can only be used for such webs. Fortunately, while
real food webs are not perfectly acyclic, they are generally
close, and there are ways of removing cyclic links from food
webs in a robust way that has minimal effect on the rest of
the web (Allesina et al., 2009; Eklöf et al., 2013).
Finally, an important limitation is that species’ dynamics

depend only on the persistence probabilities of their prey, not
their predators. In real food webs, secondary extinctions can
emerge bottom-up (if consumers lose their resources), and
top-down, by resources responding to the loss of their con-
sumers. Species may, for example, be locally predated to
extinction (Huffaker, 1958; Schoener et al., 2001), and the loss
of a predator can release a prey species which then grows to
the point of eliminating other species in the web (Paine, 1966,
1974; Lafferty and Suchanek, 2016). However, since Bayesian
networks operate on a strict bottom-up principle whereby
prey influence their predators but not vice versa (from the
perspective of prey, their predators might as well not even be
present), extinctions resulting from top-down effects are not
implemented in our framework. This is a severe limitation;
moreover, there is no immediate, straightforward remedy that
would unambiguously extend the model to take top-down
effects into account. This has to be considered when interpret-
ing its results and applying the method to empirical systems:
if, in a given system, top-down effects are deemed important,
other methods should be used instead.
The current consensus within community ecology is that new

ways of thinking about trophic metacommunities are needed to
move the field forward (Leibold and Chase, 2018; Guzman
et al., 2018; Hirt et al., 2018). Here we offered one possible
approach to this problem, rooted in classic metapopulation the-
ory and the method of Bayesian networks. Due to its flexibility
and ability to handle large systems, we see our approach as a
stepping-stone along the way to a fuller understanding. Our
numerical experiments demonstrate that preserving high-value
patches increases the likelihood of community persistence, even
under severe habitat loss. Increasingly isolated landscapes, on
the other hand, accelerate species extinctions and particularly
drive top species towards extinction, reducing trophic complex-
ity. Using a different methodology, similar trends have been
observed by Ryser et al. (2019); in fact, our model qualitatively
reproduces their results (Supporting Information, Section S8).
Our findings reinforce that trophic interactions, dispersal ability
and the spatial configuration of patches are crucial when
assessing the extinction risk of species in fragmented land-
scapes. We hope that our method will be of use to ecologists
interested in metacommunity processes and to provide useful
insights for real-life conservation efforts to preserve complex
trophic communities.
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A., Galetti, M. et al. (2015). Beyond species loss: the extinction of

ecological interactions in a changing world. Funct. Ecol., 29, 299–307.
Veldhuis, M.P., Ritchie, M.E., Ogutu, J.O., Morrison, T.A., Beale, C.M.,

Estes, A.B. et al. (2019). Cross-boundary human impacts compromise

the serengeti-mara ecosystem. Science, 363, 1424–1428.
Villarino, E., Watson, J.R., Jönsson, B., Gasol, J.M., Salazar, G., Acinas,

S.G. et al. (2018). Large-scale ocean connectivity and planktonic body

size. Nat. Commun., 9, 142.

Williams, R.J. & Martinez, N.D. (2004). Limits to trophic levels and

omnivory in complex food webs: theory and data. Am. Nat., 163, 458–468.

SUPPORTING INFORMATION

Additional supporting information may be found online in
the Supporting Information section at the end of the article.

Editor, Timothée Poisot
Manuscript received 20 February 2020
First decision made 9 April 2020
Manuscript accepted 14 August 2020

© 2020 The Authors. Ecology Letters published by John Wiley & Sons Ltd.

Methods Bayesian networks and trophic metacommunities 1861


