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Abstract

Protein-protein interaction networks provide a global picture of cellular function and biological processes. Some proteins
act as hub proteins, highly connected to others, whereas some others have few interactions. The dysfunction of some
interactions causes many diseases, including cancer. Proteins interact through their interfaces. Therefore, studying the
interface properties of cancer-related proteins will help explain their role in the interaction networks. Similar or overlapping
binding sites should be used repeatedly in single interface hub proteins, making them promiscuous. Alternatively, multi-
interface hub proteins make use of several distinct binding sites to bind to different partners. We propose a methodology to
integrate protein interfaces into cancer interaction networks (ciSPIN, cancer structural protein interface network). The
interactions in the human protein interaction network are replaced by interfaces, coming from either known or predicted
complexes. We provide a detailed analysis of cancer related human protein-protein interfaces and the topological
properties of the cancer network. The results reveal that cancer-related proteins have smaller, more planar, more charged
and less hydrophobic binding sites than non-cancer proteins, which may indicate low affinity and high specificity of the
cancer-related interactions. We also classified the genes in ciSPIN according to phenotypes. Within phenotypes, for breast
cancer, colorectal cancer and leukemia, interface properties were found to be discriminating from non-cancer interfaces
with an accuracy of 71%, 67%, 61%, respectively. In addition, cancer-related proteins tend to interact with their partners
through distinct interfaces, corresponding mostly to multi-interface hubs, which comprise 56% of cancer-related proteins,
and constituting the nodes with higher essentiality in the network (76%). We illustrate the interface related affinity
properties of two cancer-related hub proteins: Erbb3, a multi interface, and Raf1, a single interface hub. The results reveal
that affinity of interactions of the multi-interface hub tends to be higher than that of the single-interface hub. These findings
might be important in obtaining new targets in cancer as well as finding the details of specific binding regions of putative
cancer drug candidates.
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Introduction

Protein–protein interaction networks provide valuable informa-

tion in the understanding of cellular function and biological

processes. With the tremendous increase in human protein

interaction data, network approach is used to understand

molecular mechanisms of disease [1] particularly to analyze

cancer phenomenon. To date, attempts at providing insights into

distinct topological features of cancer genes [2–5] have illustrated

how to improve cancer classification [6,7] and identified cancer-

related subnetworks [8]. Thus, abstract network representation,

where proteins are nodes and interactions are edges, is useful for

the comprehension of biological processes and protein function in

a global sense. However, to characterize interactions with respect

to their physical and chemical properties and in particular, to

understand how a function is exerted, it is essential to include

structural details in the networks; such details come from three

dimensional protein structures and from protein interfaces.

Proteins interact with each other through binding sites [9–13].

Interface characteristics are important in determining the

specificity and strength of interactions. For example, conserved

modes are used to distinguish biological from crystal interactions

[14]. Different in residue composition, transient and obligate

complexes have different strength of interactions; the former

mostly rely on salt bridges and hydrogen bonds whereas for the

latter, hydrophobic forces are more dominant [15,16]. In terms of

geometrical concern, if two proteins interact through a large

interface with high complementarity, they will probably interact

with high specificity and high affinity [17]. Physical interactions

through interface residues also determine whether the binding will

be promiscuous or specific.

Structural knowledge of proteins is also critical in identifying

whether a binding site is specific or multiply used. Since each

protein has almost a fixed surface area, it can have a limited

number of binding sites. How can a hub protein interact with tens

of other proteins through its binding sites? This question implies

that whereas some binding sites are distinct, others should be used

to bind to several different proteins. Therefore, the same or

overlapping binding sites should be frequently and repeatedly used

in hub proteins making them promiscuous [18]. With this in mind,

Kim et al. [19] distinguished overlapping from non-overlapping

interfaces in their structural interaction network to determine
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interaction behavior. They classified network hubs into single-

interface and multi-interface. The former have at most two distinct

binding interfaces and the interactions exclude each other whereas

the latter have more than two binding interfaces with most of the

interactions being possible simultaneously.

Knowing that cancer-related proteins are more likely to act as

hubs [2] in protein interaction networks, the questions that arise

are what features of cancer-related proteins make them act as hubs

and how is it possible for them to bind to many different proteins

with varying affinity. To address these questions, as distinct from

previous structural studies [19–25], here we integrate protein-

protein interfaces into a structural network, focus on cancer-

related proteins and investigate the interface properties of cancer/

noncancer protein interactions in order to shed light on the details

of interaction. We provide a detailed analysis and comparison of

six interaction networks: 1) the human protein-protein interaction

network, (PIN), 2) the human cancer-related protein-protein

interaction network, cPIN, a sub-network of the first. Then, we

characterize the interactions in these networks by combining

three-dimensional protein structures. Thus, we have: 3) the

network constructed by selecting genes for which three-dimen-

sional protein data is available, SPIN, a sub-network of the first, 4)

the human cancer-related structural protein-protein interaction

network, cSPIN, a sub-network of SPIN. We map the known

structural data into these networks whenever a complex structure

is available. For the rest, we predict the complex structures of the

interactions through structural templates and hot spots using

PRISM [26,27]. The last two resulting networks are ‘‘structural

interface’’ networks: 5) human structural protein interface network

(iSPIN) and 6) structural cancer-related protein interface network

(ciSPIN). These six networks are analyzed and compared to

highlight the advantages of using structures. Our results reveal that

cancer-related proteins tend to interact with their partners through

distinct interfaces, corresponding mostly to multi-interface hubs

and constituting the nodes with higher essentiality in the network.

In addition, they have smaller, more planar and more hydrophilic

binding sites compared to those seen in non-cancer proteins which

may indicate low affinity and high specificity of the cancer-related

interactions.

Results/Discussion

Structural protein interface network (iSPIN)
We illustrate how to obtain a structure-integrated network from

PIN: The seed network is the human protein-protein interaction

network (PIN) where the nodes are proteins and the edges are

interactions. We determined which proteins in this network have

structural information in Protein Data Bank (PDB) [28] and

constructed a subnetwork with the extracted structures called

SPIN (see Methods for the details). To further integrate protein

interfaces into SPIN, we mapped the known structural data of

complexes into SPIN whenever a complex structure was available.

If a known structure was not available for an interaction, we

predicted the complex structures of the two interacting proteins

using structural templates and hot spots through PRISM [26,27].

The resulting network, which includes known complexes in PDB

and predicted complexes (from PRISM) contains interface

knowledge and is called iSPIN. The subsets of PIN, SPIN and

iSPIN, which contain cancer-related interactions, are called cPIN,

cSPIN and ciSPIN, respectively (See Methods section for further

information). Table 1 lists the number of proteins and interactions

in each network. In Table 1, ‘‘known complex in PDB’’ column

represents the number of interactions for which three dimensional

protein structures are available in PDB. The three networks (PIN,

SPIN, iSPIN) are illustrated in Figure 1.We should note that there

was a dramatic decrease in the number of proteins when going

from PIN to SPIN. As seen in Figure 1, while PIN contains

information about gene interactions, SPIN only contains those

with PDB IDs. And finally iSPIN contains the information at the

residue level; protein interfaces. Although we provide a topological

analysis of the networks, the main concern of this study is to

present interface analysis of cancer-related proteins and, in

addition, to predict which interactions can and cannot occur

simultaneously and ultimately, to emphasize the importance of

using structures in network studies.

Analysis of interface properties in iSPIN
We present the interface properties of interactions such as the

accessible surface area (ASA), planarity, gap volume index (see

definitions below) and residue composition at the interfaces in

iSPIN (both predicted and known PDB interfaces). To analyze the

properties of interfaces, we used PROTORP [29] (see Methods).

First, the analysis of the interface properties throughout the whole

network (iSPIN) is presented. Next, the analysis is restricted to

Author Summary

Protein-protein interaction networks provide a global
picture of cellular function and biological processes. The
dysfunction of some interactions causes many diseases,
including cancer. Proteins interact through their interfac-
es. Therefore, studying the interface properties of cancer-
related proteins will help explain their role in the
interaction networks. The structural details of interfaces
are immensely useful in efforts to answer some funda-
mental questions such as: (i) what features of cancer-
related protein interfaces make them act as hubs; (ii) how
hub protein interfaces can interact with tens of other
proteins with varying affinities; and (iii) which interactions
can occur simultaneously and which are mutually
exclusive. Addressing these questions, we propose a
method to characterize interactions in a human protein-
protein interaction network using three-dimensional
protein structures and interfaces. Protein interface anal-
ysis shows that the strength and specificity of the
interactions of hub proteins and cancer proteins are
different than the interactions of non-hub and non-cancer
proteins, respectively. In addition, distinguishing overlap-
ping from non-overlapping interfaces, we illustrate how a
fourth dimension, that of the sequence of processes, is
integrated into the network with case studies. We believe
that such an approach should be useful in structural
systems biology.

Table 1. The number of proteins and interactions in each
network.

Network name Protein Interaction Known complex in PDB

PIN 13584 85083 206

cPIN 8990 27413 149

SPIN 1702 5312 206

cSPIN 1303 3221 149

iSPIN 534 549 206

ciSPIN 381 363 149

doi:10.1371/journal.pcbi.1000601.t001

Structural Cancer Protein Interaction Network
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subsets of genes having common phenotype, molecular function or

biological process.

Cancer proteins have smaller, more planar, less tightly
packed and less hydrophobic binding sites compared to
non-cancer proteins

Physical properties of interfaces were computed for the

interactions in iSPIN. We classified the interactions into two

groups: ‘‘cancer-related interactions’’ are those in which at least

one partner in a binary interaction is a cancer-related protein and

‘‘noncancer interactions’’ are those in which none of the proteins

are known to be involved in cancer. According to these

designations, there were 363 cancer-related and 186 non-cancer

interactions. Change in ASA (DASA) is the difference between the

total ASA of monomers and that of the complex. Cancer proteins

on average were observed to have smaller DASAs (1009.1 Å2) than

that of noncancer proteins (1242.9 Å2) (standard deviations and p-

values are summarized in Table 2). Next, we calculated the

interface ASA as the sum of ASAs of each interface residue in the

complex state. When the interface ASA of the complex structures

is considered, it was found that ASA of cancer proteins (2210.9 Å2)

were smaller than that of noncancer proteins (2628.1 Å2). These

results indicate that the complex interfaces which are formed

through the interactions of cancer proteins are less buried, or

likewise, the monomeric surfaces of cancer proteins are less

Figure 1. Representation of PIN,SPIN and iSPIN. In A) proteins in PIN are represented; the ones colored black have PDB IDs and the ones
colored blue do not have PDB IDs. In B) The proteins with PDB ID and interactions among them constitutes SPIN. In C) The proteins with PDB ID and
protein interface information and their interactions constitutes iSPIN. The zoomed representations give idea about what type of information each
network contains; PIN is an abstract representation of interactions, SPIN is a subset of PIN with information of PDB IDs, and iSPIN contains the most
detailed information including protein interfaces into network. All the networks are visualized using Cytoscape [76].
doi:10.1371/journal.pcbi.1000601.g001

Table 2. Average interface properties of cancer and non-cancer interactions. 6 in brackets refers to standard deviation.

Interface property Cancer-related interactions Non-cancer interactions p-value (at a = 0.05)

DASA (Å2) 1009.1(6611) 1242.9(6942) 6.2e-005

Interface ASA (Å2) 2210.9 (61475) 2628.1(61947) 0.0006

Planarity (Å) 2.84(61.28) 3.06(61.23) 0.04

Gap Volume Index 2.76(61.48) 2.54(61.27) Not significant (0.07)

% Polar residues in interface 29.7 (614.8) 30.7 (613.5) Not significant (0.14)

% Non-polar residues in interface 27.1 (613.6) 28.8 (612.9) 0.007

% Charged residues in interface 43.2 (616.6) 40.5 (615.4) 0.006

doi:10.1371/journal.pcbi.1000601.t002

Structural Cancer Protein Interaction Network
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exposed. It is known that transient complexes have smaller

interface areas [30]. Our results show that cancer proteins use a

smaller surface area while interacting and we know that they have

many interaction partners [3], thus it may be hypothesized that

they are more likely to be involved in transient interactions. Here,

we should note that although standard deviations of the two

datasets are high in all cases, i.e. the distributions of the data sets

are highly disperse, p-values at 5% confidence interval are small

indicating the significance of the difference between two means of

cancer-related and noncancer interfaces.

We also investigated the complementarity of the interfaces. Gap

volume provides a measure of complementarity and closeness of

packing of the interface between the two interacting proteins by

measuring the volume of empty space between them. Gap volume

index is the ratio of gap volume to the interface area; it estimates

the volume enclosed between any two molecules, delimiting the

boundary by defining a maximum allowed distance from both

interfaces [17]. For the cancer related interactions, the average

gap volume (5076.8 Å3) was found to be smaller than the average

gap volume of noncancer interactions (5574.5 Å3) (p-value = 0.038

at a= 0.05). This is an outcome of the smaller interfaces of the

cancer proteins since volume is proportional to the surface area.

On the other hand, the average gap volume indices for these two

categories were 2.76Au and 2.54 Au, respectively (p-value = 0.07 at

a= 0.05). This means cancer related interactions are less

optimized in terms of complementarity indicating that, the

complementarity and packing of two types (cancer/noncancer)

are distinguishable from each other.

Planarity indices are used to analyze the shapes of the interfaces.

The planarity of the interface is defined as the rmsd of the interface

atoms from the least-squares plane fitted through all interface

atoms. The larger the planarity index, the less planar the interface,

and, conversely, the smaller the planarity index, the more planar the

interface [9]. For cancer-related interactions, the average planarity

index (2.84) was smaller than that of non-cancer interactions (3.06)

with p-value 0.04 indicating that cancer-related interfaces are more

planar. It is known that there is a high correlation between the

planarity of the interfaces and their ASAs [18]. As the ASAs of the

interfaces increase, the planarity index also increases, and the

interfaces become less planar, deviating from their principal axes. It

is also known that transient complexes usually have more planar

interfaces [30]. Here, consistent with previous findings, we observed

that cancer proteins use more planar binding sites in their

complexes. The results are summarized in Table 2.

Previously, smaller interfaces were shown to display a reduced

hydrophobic effect [31]. Residue compositions of interfaces (polar,

non-polar or charged) were analyzed in iSPIN and were

normalized by the ASA in the complex structures (see Methods).

The results revealed that cancer-related interactions show a

reduction in hydrophobicity and an increase in charged

interactions, and thus have more hydrophilic interfaces than

non-cancer interactions. Although, in general, it is agreed that

protein-protein interfaces are highly hydrophobic and hydropho-

bicity is a dominant force in protein-protein interactions [32],

there are also studies indicating the importance of hydrophilic

interface regions. Tormo et al. (1999) studied the interactions of

NK (natural killer) receptors (which regulates NK cell function)

and determined the interface of C-type-lectin-like receptor family

(Ly49 A) to be highly hydrophilic and dominated by charged

interactions [33]. Charged interactions appear to play important

role in our iSPIN interfaces as well, which implies that

electrostatics are significant in binding. A recent study indicated

that favorable electrostatic interactions were not a prerequisite for

stable complex formation between proteins whereas hydrophobic

effects were found to be favorable in native complexes [34]. Here,

we also observed that cancer related proteins, which are

intrinsically more disordered and transient [35], had less

hydrophobic interactions than other proteins.

Hub proteins have smaller, more planar, less tightly
packed binding sites than non-hub proteins

We also classified interactions as ‘‘hub-involved’’ or ‘‘non-hub-

involved’’. In hub-involved interactions, at least one protein of the

binary interaction is a hub protein, whereas in non-hub-involved

interactions, none of the proteins correspond to a hub. There were

455 hub-involved interactions and 94 non-hub-involved interactions.

As hub proteins in iSPIN, we considered the hubs of SPIN. We found

that, on average, hub proteins tended to form smaller, more planar

interfaces with their partners. In contrast to previous studies [36,37],

we found no significant difference in the residue composition of the

interfaces (including charged residue content) of hub proteins. In

terms of complementarity of the interfaces, hub proteins formed

looser complexes (gap volume index of 2.72 versus 2.49). The results

are summarized in Table 3. (See first lines in each row)

Some hubs are single-interface (communicating with their

partners by using the same interface) whereas others are multi-

interface. The hub proteins of SPIN with more than two

interactions in iSPIN were classified as either multi-interface or

single-interface hubs resulting in 79 hub proteins, of which 42 were

multi-interface and 37 were single-interface. Interestingly, when

we compared the interfaces of these two types of hubs, we

observed that they had different compositions. Interfaces of multi-

interface hubs were usually similar to non-hub interfaces (data not

shown). On the other hand, interfaces of single-interface hubs were

more polar and less charged than multi-interface hubs and non-

hub proteins (See the second lines in each row of Table 3).

Gene clustering based on phenotype information,
molecular function or biological process

The most populated phenotypes observed among cancer genes

in iSPIN are leukemia, breast cancer and colorectal cancer, for

which there are 55, 22 and 23 related interactions in iSPIN,

respectively. Phenotype information was obtained from OMIM

[38] which is a compendium of human genes and genetic

phenotypes. We compared the interface properties of these cancer

related interactions with the same number of interfaces of non-

cancer interactions. For all of the phenotype groups, cancer

related interfaces showed a reduction in interface ASA and DASA

compared to noncancer ones. In addition, cancer related interfaces

were more planar and less tightly packed.

If the difference in interface properties is important enough, it

would be possible to classify a protein as cancer-related or non-

cancer by analyzing its interface. Thus, to check whether the data

on interface properties can be assessed for classification purposes,

we used Weka [39], a machine learning software for data analysis.

The training sets included equal number of cancer-related and

non-cancer interfaces. The experiments were performed using 10-

fold cross validation with several classifiers using four interface

features; interface ASA, DASA, planarity and gap volume index.

(See Methods for the details of the classification procedure) For

example, using support vector machine (SVM) as the classifier

algorithm, interfaces were ranked as cancer or noncancer related

with an accuracy of 61%, 71% and 67% for leukemia, breast

cancer and colorectal cancer, respectively. The relatively poorer

accuracy of leukemia might be the outcome that there are many

distinct subgroups of leukemia which we combined all in one here.

The results obtained using SVM classifier are summarized in

Structural Cancer Protein Interaction Network
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Table 4. The results using all classifiers are given as supplementary

information (Text S1).

We also classified the genes in iSPIN according to the molecular

function and biological process of each protein obtained from the

Gene Ontology slim terms [40]. Among the most common

molecular functions were signal transducer activity, catalytic

activity, nucleic acid binding and transcription regulator activity.

Interfaces were classified as cancer related with an accuracy of

53%, 58%, 58% and 63% for signal transducer activity, catalytic

acitivity, nucleic acid binding and transcription regulator activity,

respectively. For the last three molecular functions, interface

properties showed noticeable differences for cancer and noncancer

interactions. However, for signal transducer activity function (65

cancer related-65 noncancer interfaces), the interface properties

were quite similar. We observed that cancer/noncancer interfaces

can be distinguished to a greater extent when the genes are

classified according to common phenotype rather than molecular

function. For the common phenotype case, in our interface

datasets, only cancer genes share the phenotype and noncancer

genes would have different phenotype properties. On the other

hand, for molecular function case, all genes share the same

molecular function irrespective of being cancer/noncancer. The

relatively poor classification performance by using molecular

functions indicates that functionally related proteins might have

similar interface characteristics regardless of being cancer-related.

Similarly, no discriminative characteristics between cancer-related

and noncancer interface datasets were observed when the proteins

were classified according to the biological processes.

The last four rows of the Table 4 shows the results of

classification performances without grouping genes according to

their phenotypes or functions. When we used all the data in iSPIN

(with an unbalanced training set), the performance is poorer than

the clustered cases. However, when a more appropriate method

(adaboost instead of SVM) was used, comparable performances

were obtained (Text S1).

Topological properties of the networks and relationship
with essentiality

Topological properties of protein-protein interaction networks

are shown to be useful to characterize proteins functionally [41] and

to understand molecular mechanisms of diseases [3,4]. To address

the topological properties of each of our network, we calculated the

degree distribution of proteins, which is a measure of the number of

proteins’ interaction partners. In Figure 2, the topological properties

are visualized for SPIN and listed in Table 5. For each network, the

degree distribution of the proteins decreases following a power-law

(P(k) ,kc where k is the number of partner proteins). This implies

that the networks have scale-free properties [42]. The average

number of neighbors is the average degree of a node in the network.

On average, proteins in SPIN have 6.24 interaction partners. A

normalized version of average degree is the network density

showing how densely the network is populated with edges. When

structure information was integrated, network density increased.

This might indicate that less connected nodes in PIN might be

absent in PDB (Table 5). In Figure 2B, the average clustering

coefficient, which is a measure of proteins to form clusters in the

network [42] is shown. The average clustering coefficient decreases

as the number of protein interactions increases, since sparsely

connected proteins are neighbors of highly connected proteins (hub

proteins). For the hub proteins, the number of neighbors increased,

however, the number of connected pairs did not increase as much as

the number of neighbors which caused the average clustering

coefficient to decrease. This behavior indicates a hierarchical

organization in the protein interaction network [42]. In Figure 2B,

we see an exception for this case, although some nodes are highly

connected, their average clustering coefficients are also high (.0.30)

(upper right corner of the figure). This indicates the occurrence of

dense subnetworks, in which hubs mostly interact with other hub

proteins. (Such subnetworks in SPIN are explained and visualized in

the next section) In Figure 2C, the topological coefficient which is a

relative measure for the extent to which a protein shares neighbors

with other proteins, [43] is displayed. The decreasing behavior of

the topological coefficient as the number of interactions of a protein

increases confirms the modular network organization; neighbors of

hub proteins are not more connected than the neighbors of sparsely

connected proteins. Figure 2D shows the shortest path length

distribution and indicates that proteins are closely linked. The

topological properties of other networks (PIN, cPIN, cSPIN, iSPIN,

ciSPIN) showed similar trends to those of SPIN explained above.

When cancer related networks were compared with the whole

Table 3. Average interface properties of hub and nonhub involved interactions. 6 in brackets refers to standard deviation. The
first and second lines in p-value column represent the comparison of hub/non-hub and single-interface hub/non-hub interactions,
respectively.

Interface property
Hub-involved
All hubs Single-interface hubs Nonhub-involved p-value (at a = 0.05)

DASA (Å2) 1011.0 (6434)
1022.1(6374)

1459.9 (61484) 0.0004 0.003

Interface ASA (Å2) 2230.0 (61326)
2228.1(61178)

2943.9 (62691) 0.0030 0.01

Planarity (Å) 2.82 (61.13)
2.97(61.13)

3.34 (61.72) 0.0099 0.18

Gap Volume Index 2.72 (61.40)
2.53(61.06)

2.49 (61.48) 0.0580 0.39

% Polar residues in interface 30.5 (614.5)
32.5 (614.6)

29.9 (613.3) 0.80 0.11

% Non-polar residues in interface 28.0 (613.3)
28.6(612.2)

28.1 (613.1) 0.77 0.59

% Charged residues in interface 41.5 (616.4)
38.8(60.16)

42.0 (615.4) 0.77 0.03

doi:10.1371/journal.pcbi.1000601.t003

Structural Cancer Protein Interaction Network
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networks (cPIN with PIN, cSPIN with SPIN and ciSPIN with

iSPIN), the average clustering coefficient values were lower; i.e., the

proteins have a lower tendency to form clusters. This is reasonable

since cancer proteins are the key nodes that link different pathways

and they spread throughout the network to function in these

pathways. For example, the Cancer Cell Map (http://cancer.

cellmap.org/cellmap/), which is a collection of human-focused

cellular pathways implicated in cancer, contains ten pathways each

having around 100–400 interactions and cancer genes usually

function in more than one pathway. Another parameter related to

shortest path length is network diameter, which is the largest

shortest path length between two nodes providing information

about the accessibility of the nodes. The network parameters

calculated for each network are displayed in Table 5.

Topological role & functional distribution of cancer and
hub proteins in SPIN and PIN

Functionally related proteins are more connected than ran-

domly chosen protein pairs [43]. Here, we analyzed the

distributions of molecular function of cancer and noncancer

proteins and biological process in which they are involved (shown

Table 4. Cancer/noncancer classification analysis and statistical test results for iSPIN interface data, iSPIN clustered data according
to phenotype, molecular function or biological process. In the first column, cr stands for cancer-related interfaces and ncr stands
for noncancer interfaces. The second column gives the classification performances; first line is accuracy and second line is weighted
precision value. The third column lists features (mean values, standard deviations) used in classification for cancer and noncancer
interfaces. The last column is the significance of mean values and standard deviations.

Group
Accuracy
Precision

Cancer/Noncancer
Interface ASA
DASA
Planarity Gap V.I.

p-value
(at a = 0.05)

Phenotype: Leukemia (55 cr – 55 ncr) 0.61
0.64

1863.3 (61207.9)/2425.8 (61207.9)
850.86 (6346.91)/1147.5 (6633.31)
2.482 (60.762)/2.939 (61.390)
2.862 (61.285)/2.423 (60.985)

0.0007
0.0287
0.4128
0.1125

Phenotype: Breast cancer (22 cr – 22 ncr) 0.71
0.77

1908.5 (6623.82)/2672.2 (61257.3)
822.87 (6290.40)/1343.6 (6670.89)
2.361 (60.601)/3.269 (61.455)
2.306 (61.138)/2.239 (60.9478)

0.03
0.0047
0.1079
0.9159

Phenotype: Colorectal cancer (23 cr – 23 ncr) 0.67
0.73

1923.8 (6533.87)/2790.4 (61352.8)
978.07 (6325.92)/1428.5 (6771.66)
2.781 (61.003)/3.472 (61.724)
2.547 (61.748)/2.229 (60.9272)

0.0167
0.04
0.2917
0.6211

Molecular function: Signal Transducer Activity (65 cr – 65 ncr) 0.53
0.55

2226.3 (61370.7)/2454.7 (61726.1)
989.50 (6423.20)/1033.5 (6451.70)
2.886 (61.347)/2.805 (61.141)
2.764 (61.178)/2.612 (61.201)

0.3814
0.6282
0.8559
0.3801

Molecular function: Catalytic Activity (84 cr – 84 ncr) 0.58
0.62

2042.8 (6823.69)/2758.1 (62233.0)
963.32 (6340.09)/1277.1 (6627.45)
2.916 (61.446)/3.171 (61.320)
2.496 (61.066)/2.577 (61.232)

0.0085
0.0006
0.1078
0.6185

Molecular function: Nucleic Acid Binding (31 cr – 31 ncr) 0.58
0.60

2229.9 (61504.6)/2567.5 (6870.98)
913.30 (6382.07)/1308.0 (6508.19)
2.717 (61.458)/3.217 (61.193)
2.240 (60.959)/1.934 (61.031)

0.0188
0.0016
0.0324
0.1471

Molecular function: Transcription Regulator Activity (23 cr – 23 ncr) 0.63
0.64

2668.6 (62031.3)/2877.9 (61250.0)
1106.0 (6548.00)/1504.1 (6587.72)
2.615 (60.897)/3.600 (61.486)
2.442 (61.091)/2.011 (61.111)

0.1803
0.0224
0.0182
0.1732

All data in iSPIN (363 cr – 186 ncr) 0.66
0.44

2210.9 (61476.0)/2628.1 (61947.5)
1009.1 (6611.77)/1243.0 (6942.69)
2.843 (61.285)/3.056 (61.233)
2.760 (61.482)/2.543 (61.275)

0.0006
6.2e-005
0.0429
0.0798

iSPIN equal # of instances (186 cr -186 ncr) 0.54
0.54

2199.6 (61436.5)/2628.1 (61947.5)
1029.7 (6732.01)/1243.0 (6942.69)
2.954 (61.492)/3.056 (61.233)
2.820 (61.651)/2.543 (61.275)

0.0058
0.0013
0.1937
0.1088

iSPIN PDB – PDB interfaces (55 cr – 55 ncr) 0.56
0.56

1917.2 (6884.04)/2471.3 (61240.9)
911.41 (6489.56)/1258.8 (6740.15)
2.723 (61.316)/3.298 (61.424)
3.018 (61.833)/2.278 (61.149)

0.03
0.0089
0.0228
0.0214

iSPIN predicted interfaces (131 cr – 131 ncr) 0.57
0.58

2186.6 (61146.4)/2694.0 (62177.8)
989.81 (6347.54)/1236.3 (61018.3)
2.727 (60.880)/2.955 (61.135)
2.584 (61.020)/2.654 (61.312)

0.0051
0.0035
0.2427
0.7967

doi:10.1371/journal.pcbi.1000601.t004

Structural Cancer Protein Interaction Network

PLoS Computational Biology | www.ploscompbiol.org 6 December 2009 | Volume 5 | Issue 12 | e1000601



in Figure 3). The results show that in PIN and SPIN, cancer

proteins and hub proteins are over-represented in protein binding,

signal transducer activity, kinase activity and transcription

regulator activity. Previously, Jonsson et al [3] performed a cluster

analysis of the human interactome (the so-called ‘PIN’ in this

study). They observed that cancer proteins, on average, belonged

to more highly populated clusters compared to non-cancer

proteins and were involved in multiple cellular processes. Here,

we performed a clustering analysis of SPIN using MCODE [44]

and obtained subnetworks (see Methods). The first six subnet-

works, which were ranked as top six, are shown in Figure 4

(proteins are colored according to four categories; cancer-hub,

noncancer-hub, cancer-nonhub, noncancer-nonhub and shown in

purple, green, blue and white color, respectively). These

subnetworks were compared to SPIN to check if some molecular

functions and biological processes were over/under-represented.

We observed a common molecular function; signal transduction

activity, which is over-represented in three of the subnetworks

(subnetworks 2, 4 and 6). In terms of topological properties, these

subnetworks showed similarity in the way that they contain hub

proteins; subnetworks 2 and 4 contain only hub proteins (cancer or

noncancer) and in subnetwork 6; 14 nodes out of 17 are hubs.

Thus, we wondered if hub proteins prefer to interact with other

hub proteins. Maslov and Sneppen [45] argued that hub proteins

do not tend to interact with other hub proteins, but rather prefer

to interact with lowly connected proteins. In contrast, Coulomb et

al. [46] found that the average degree of nearest neighbors is

independent of node degree. We calculated the average degree of

hub proteins; we divided the partners of hub proteins into two

class; hubs and nonhubs. We found that, on average, hub-nonhub

average degree (7.04) was greater than hub-hub average degree

(5.06) indicating that hubs do not have a preference to interact

with other hub proteins in SPIN. On the other hand, we found

Figure 2. Topological properties of SPIN. (A) Degree distribution of proteins, R2 = 0.914 for power law fit (B) Average clustering coefficient (C)
Topological coefficients (D) Shortest path length distribution.
doi:10.1371/journal.pcbi.1000601.g002

Table 5. Network parameters calculated for each network.

Parameter Network type

PIN cPIN SPIN cSPIN iSPIN ciSPIN

Number of nodes 13584 8990 1702 1303 534 381

Number of edges 85083 27413 5312 3221 549 363

Clustering coefficient 0.109 0.080 0.143 0.113 0.089 0.051

Characteristic path length 4.086 4.589 4.661 5.064 9.533 8.221

Network diameter 11 11 11 11 23 20

Network density 0.001 0.001 0.004 0.004 0.004 0.005

Avg. number of neighbors 11.27 5.45 6.24 4.94 2.11 1.97

doi:10.1371/journal.pcbi.1000601.t005
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that cancer hubs prefer to interact with other hub proteins rather

than interacting with non-hubs. Cancerhub – hub average degree

and cancerhub – nonhub average degree were 8.49 and 7.16,

respectively. The same results are valid for PIN as well. The results

support that cancer proteins play central role in the networks and

show distinct topological properties than noncancer proteins.

Hubs are more important than bottlenecks to
characterize essential genes

Recently, Yu et al (2007) [47] have analyzed the significance of

hubs, proteins with high degree distribution, and bottlenecks,

proteins with high betweenness, in the yeast protein-protein

interaction network and regulatory networks. They have

investigated which quantity, degree distribution or betweenness,

is a better predictor of protein essentiality. It was reported that in

directed networks, for example in regulatory networks, between-

ness is a more important feature in terms of essentiality. In yeast

regulatory networks, Yu et al. observed that bottlenecks (both

hub-bottlenecks and nonhub-bottlenecks) are generally products

of essential genes, whereas hub-nonbottlenecks are not essential

at all. When they analyzed the protein-protein interaction

network in yeast (undirected network), they found that degree

is a much better predictor of essentiality than betweenness since

hub-nonbottlenecks are much more essential than nonhub-

bottlenecks.

We also investigated how degree and betweenness correlate

with essentiality in protein-protein interaction network in human.

We classified all proteins into four categories; hub-bottleneck, hub-

nonbottleneck, nonhub-bottleneck and nonhub-nonbottleneck.

Figure 5 (A, B) show the essentiality of different categories of

proteins, in PIN and in SPIN. In addition to these networks, a

random network, which is the same size as SPIN and has the same

average degree distribution, was generated from PIN. First a

protein from PIN was selected randomly. Then, some of the

interactions of this protein were randomly selected. The same

procedure was applied to the newly selected neighbors until the

network size and average degree distribution values were satisfied.

As shown in Figure 5, the hub-bottlenecks were found to be the

most essential category in all networks. The fraction of essential

gene percentages for hub-bottlenecks in SPIN, random network

and PIN were 54%, 35% and 31%, respectively. Hub-nonbottle-

necks were found to be more essential than nonhub-bottlenecks;

i.e. degree is a more important parameter in terms of essentiality in

PIN, SPIN and the random network. This finding confirms the

hypothesis stated by Yu et al (2007) [47].

Essentiality fractions in SPIN were much higher than the ones

in PIN (y-axes of Figure 5A and Figure 5B). The reason for higher

fraction of essential genes in SPIN may stem from a possible bias

towards well-studied proteins for which structural information is

available. Another reason could be a physical bias due to the fact

that PIN is a large-scale data. To investigate the reason for this

bias, we generated a random network from PIN, which is the same

size as SPIN and has the same average degree distribution.

Figure 5C displays the fraction of essential genes in this random

network. We observed that the fraction of essentiality was higher

for the random network than for PIN. However, the values were

still much smaller than those for SPIN. Thus, we concluded that

the reason for higher essentiality in SPIN probably arose from a

bias towards well-studied proteins rather than a physical bias.

The essentiality of cancer hubs is significantly higher
than that of non-cancer hubs

Hub proteins are more likely to be encoded by essential genes

[48,49]. In addition, somatic cancer genes are more likely to

Figure 3. Molecular function and biological process distribution of cancer & non-cancer genes. (A) Molecular distribution of genes in
SPIN (B) Molecular distribution of genes in PIN (C) Biological process distribution in SPIN (D) Biological process distribution in PIN.
doi:10.1371/journal.pcbi.1000601.g003
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encode hub proteins [2]. From these, we can hypothesize that

essential cancer genes are more likely to encode hub proteins than

non-essential cancer genes. Thus, we classified all cancer genes in

the networks as hub and non-hub, and observed that cancer-hubs

were more essential than cancer-nonhubs, which confirms our

above hypothesis; essential cancer genes are more likely to encode

hub proteins than non-essential cancer genes. The essentiality

percentage in each category, hubs and non-hubs are 50% (total

532) and 37% (total 650) for PIN, 66% (total 158) and 44% (total

286) for SPIN, 47% (total 85) and 37% (total 140) for random

network, respectively. The essentiality percentage values are

visualized in Figure 6.

Another question is whether cancer or non-cancer hubs are

more essential. We found that when we classified the hub proteins

as cancer-hubs and non-cancer-hubs, there was a significant

difference in essentiality. In SPIN, there were 158 cancer hubs,

66% of which were essential. In contrast, only 28% of the 197

non-cancer hubs were essential. Similarly, in both PIN and the

random network cancer hubs were much more essential than non-

cancer hub proteins. In PIN the 50% of the 532 cancer hubs were

essential, whereas only 24% of the 1801 total non-cancer hub

proteins were essential. In the random network, 47% of 85 total

cancer hubs were essential, whereas 30% of 246 total non-cancer

hub proteins were essential. The fraction of essential genes in

cancer hubs and non-cancer hubs for each network are shown in

Figure 6. The numbers of essential and nonessential genes are

given for each category in PIN, SPIN and random network as

supplementary information (Text S1). We should note that

essential gene list is obtained on optimal growth/living conditions

and if the conditions are changed, for example in case of a disease

state such as cancer, a nonessential gene would become essential

or vice versa. However, due to the lack of data on essential gene

information in cancer cells, we assigned the same set of essential

genes to cancer state and non-cancer state. Recently, Luo et. al

[50] had an effort to identify the genes essential for growth and

related phenotypes in different cancer cells by genetic screening

strategy. Since a small fraction of these genes appear in our

networks, it is not appropriate to use them in statistical analysis.

Multi-interface and single-interface proteins:
Correspondence with degree, betweenness and
essentiality

As discussed above, some hubs are single-interface, that is, they

communicate with their partners by using the same interface,

whereas others are multi-interface. We investigated to which

category, hub-bottleneck or hub-nonbottleneck, multi-interface

and single-interface proteins belong. We observed that multi-

interface proteins generally corresponded to hub-bottleneck

Figure 4. Sub-networks in SPIN. SPIN is clustered into sub-networks, proteins are classified into four categories; cancer-hub, noncancer-hub,
cancer-nonhub, noncancer-nonhub are displayed in purple, green, blue and white color, respectively. Over-represented molecular functions (if any)
are shown for each sub-network.
doi:10.1371/journal.pcbi.1000601.g004
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proteins rather than hub-nonbottlenecks (71% of multi-interface

proteins are hub-bottlenecks.) When the single-interface proteins

were considered, the percentage of hub-bottleneck correspondence

decreased to 59%. In other words, 58% of hub-bottleneck proteins

were multi-interface and 42% are single-interface. Previously we

showed that hub-bottlenecks were the most essential category of

proteins in SPIN and in PIN. Here, in the structural interface

network, we found that the essentiality of multi-interface hubs

(68%) was higher than that of single-interface (52%). This result

agrees with a previous finding [19] indicating that the number of

interfaces leads to higher essentiality. In addition, Aragues et al.

(2007) found that yeast hubs with multiple interacting motifs were

more likely to be essential than hubs with one or two interacting

motifs [51]. Being more essential and corresponding mostly to

hub-bottlenecks, multi-interface hubs are the key points in the

protein-protein interaction network.

Cancer proteins in our network are more enriched in multi-

interface proteins: 56% of cancer proteins are multi-interface,

while 44% being single-interface. This is reasonable since on

average, cancer proteins are longer [52] with larger surface areas.

To cope with many interactions at the same time, they tend to be

multi-interface hubs with distinct interfaces interacting with

different proteins. Although cancer proteins tend to have more

than one distinct interface, we found that on average their

interfaces were smaller, which can indicate that their binding

behavior acts similar to that of hub proteins. In addition, the

average number of interfaces of cancer multi-interface hubs and

noncancer multi-interface hubs were 2.5 and 2.3, respectively.

Cancer multi-interface hubs have a greater average number of

interfaces. The correspondence of hub-bottlenecks and hub-

nonbottlenecks to multi/single interface proteins and the essenti-

ality percentage in cancer/noncancer & multi/single interface

proteins are displayed in Table 6.

Case Studies
The interface information is an asset in predicting which

interactions can and cannot co-exist. In other words, it will help

to deduce which interactions can occur simultaneously and which

are mutually excluded. Addressing this question may add a fourth

dimension to interaction maps, that of sequence of processes.

Including the sequence dimension in structural networks is an

immense asset; transforming network node-and-edge maps into

cellular processes, and assisting in the comprehension of cellular

pathways and their regulation. Here, to characterize the interac-

tions and to infer the order of processes, we present two case studies,

first a multi-interface cancer protein and an inhibitor of the protein,

and second, a single-interface cancer protein in iSPIN. For the first

case study, multi-interface cancer protein, most of the interactions

are simultaneously possible whereas for the latter, the interactions

are mutually exclusive. In addition to geometrical justification for

simultaneous and exclusive interaction behavior, dynamic nature of

Figure 5. Essentiality of different categories of proteins. A) Essentiality in PIN. B) Essentiality in SPIN. C) Essentiality in random network.
doi:10.1371/journal.pcbi.1000601.g005

Figure 6. Essentiality of proteins classified as cancer-hub,
cancer-nonhub and non-cancer-hub in SPIN, PIN and random
network.
doi:10.1371/journal.pcbi.1000601.g006
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protein-protein interactions are taken into account. The interacting

complexes were refined using FiberDock http://bioinfo3d.cs.tau.

ac.il/FiberDock/, which models both side-chain and backbone

flexibility. Next, to obtain a quantitative estimation of the

importance of the interactions, we used FoldX algorithm [53,54]

for calculating the interaction energy between two proteins, which

serves as an estimate for the affinity of the interactions. In Figure 7, a

visualization of iSPIN is displayed together with multi-interface and

single-interface proteins.

A multi-interface hub: ErbB3 (Her3)
Here we show how the interface information is used to deduce

which interactions can and cannot co-exist. If each interaction

partner of a hub protein uses a distinct interface on the hub while

interacting, then these interactions are more likely to occur

simultaneously. In addition, the quaternary structure of the complex

should be considered carefully to ensure that the interaction

partners do not collide. To demonstrate this idea, we present a so-

called ‘multi-interface’ hub protein: ERBB3 (or HER3), which is

one of the hub proteins in SPIN. The receptor tyrosine-protein

Table 6. Correspondence of HB, H-NB to Multi/single
interface proteins and Essentiality % in cancer/noncancer &
Multi/single interface proteins HB and H-NB refer to hub-
bottlenecks and hub-nonbottlenecks, respectively.

HB H-NB Total

Multi-interface # 30 12 42

Single-interface # 22 15 37

Essentiality percentage (%)

Multi-interface 68

Single-interface 52

Cancer 76

Non-cancer 42

doi:10.1371/journal.pcbi.1000601.t006

Figure 7. Representation of iSPIN. The nodes colored in green and red are multi-interface hubs and single-interface hubs, respectively. In the
zoomed representation, the interactions of a multi-interface hub; ERBB3 is displayed.
doi:10.1371/journal.pcbi.1000601.g007
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kinase erbB-3 precursor (ERBB3) belongs to EGF receptor

subfamily and acts as a heregulin receptor and as an epidermal

growth factor receptor. Amplification of this gene and/or

overexpression of its protein have been reported in numerous

cancers, including prostate, bladder, and breast tumors [55].

According to the KEGG database [56], ERBB3 functions in the

ErbB signaling pathway and the Calcium signaling pathway. In the

ErbB signaling pathway, NRG1 (neuregulin 1, heregulin), which is a

direct ligand for ERBB3, binds and activates ERBB3. We modeled

this interaction using the PDB accession codes 1hae_A (NMR

structure of heregulin) for NRG1 and 1m6b_A (crystal structure of

ERBB3 taken from a homodimer structure) for ERBB3, respec-

tively. PRISM results indicate that these two proteins (1hae_A and

1m6b_A) interact, and using NOXclass [57], we found that the

interaction is biologically relevant. After applying flexible refine-

ment by FiberDock, FoldX server [53,54] was used to calculate the

interaction energy (24.08 kcal/mol). Predicted binding sites on

both proteins and interacting residues for NRG1-ERBB3 interac-

tion are shown in Figure 8A. The interaction was experimentally

studied in a previous study by Jones et al (1998) [58], where they

mutated individual residues of the egf domain of heregulinb (the

same as egf domain of heregulina-NRG1- except four residues) to

alanine in order to determine residues critical for binding receptors

and initiating signal transduction. They found that when His2, Leu3,

Val4, Phe13, Val15–Gly18, Val23, Arg31, Lys35, Gly42–Gln46 residues

were changed to alanine, binding affinity for ERBB3 was

dramatically reduced. We observed that most of these critical

residues were included in our predicted binding site for NRG1. In

Figure 8A, these residues are labeled.

In the ErbB signaling pathway, NRG1 also binds to ERBB4,

and the binding affinity was reported to be similar to that of

ERBB3 [58]. According to our interface prediction, ERBB3 and

ERBB4 binding interfaces on NRG1 are overlapping; i.e., the

same binding site is used for the ERBB3 and ERBB4 interactions.

Therefore, NRG1-ERBB3 and NRG1-ERBB4 interactions are

mutually exclusive; they cannot occur at the same time.

According to the calcium signaling pathway in KEGG [56],

ERBB3 interacts with PLCG1. Although the interaction is not

reported in public databases as in DIP [59], BIND [60], in a recent

study, it was observed on protein microarrays [61]. PLCG1

(Phospholipase C-gamma-1) is a major substrate for heparin-binding

growth factor 1 (acidic fibroblast growth factor)-activated tyrosine

kinase. The PDB structure of SH3 domain of PLCG1 is 1hsq. The

predicted interface residues of ERBB3-PLCG1 (1m6b_A-1hsq_A)

interaction are displayed in Figure 9 labeled as A. The interaction

energy between proteins was calculated as 212.62 kcal/mol.

The two other possible interactions of ERBB3 occur with

EPOR (Erythropoietin receptor) and ACK1 (Activated CDC42

kinase 1) according to the human interactome constructed by

Jonsson and Bates. No experimental confirmation is available for

these interactions yet, however, they have high confidence scores

to occur in Jonsson and Bates’s network [3]. These interactions of

ERBB3 were also predicted to interact and further investigated.

Subcellular location for ERBB3, EPOR and ACK1 is the cell

membrane. EPOR and ERBB3 function as single-pass type I

membrane protein. The predicted interfaces for these interactions

are illustrated in Figure 9, labeled as B and C.

Our results show that ERBB3 uses at least three different binding

sites while interacting. Of these interactions, we propose that ERBB3

cannot interact with EPOR and ACK1 at the same time, because if

we model the quaternary structure of ERBB3-EPOR-ACK1

complex, the residues of EPOR and ACK1 will collide. Thus, they

Figure 8. Representation of ERBB3-NRG1 interaction schematically. The interactions are visualised using VMD [78] A) ERBB3 (1m6b_A) and
NRG1 (1hae_A) are shown as newcartoon diagram in blue and red color, respectively. The transparent surface represents the interface region. The
labeled residues (represented by their Ca atoms) of 1hae_A are reported to be critical for binding in a previous work [58]; i.e. when they are mutated
to alanine, the binding affinity for ERBB3 was significantly reduced. B) HER3 (blue) – pertuzumab heavy chain (yellow) is shown. Pertuzumab shares
the same interface with NRG1 (see ‘‘An inhibitor affecting Erb signaling pathway: pertuzumab’’ section).
doi:10.1371/journal.pcbi.1000601.g008
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cannot bind simultaneously. But, we should keep in mind that

proteins are dynamic, and a hinge-like motion of the two domains of

ERBB3 can eliminate the collision between EPOR and ACK1.

If we compare their interaction energy, which were calculated

as 216.37 kcal/mol and 26.12 kcal/mol for ERBB3-EPOR and

ERBB3-ACK1, respectively, ERBB3-EPOR interaction is more

favorable. In addition, when ACK1 interacts with ERBB3, it also

blocks the interaction of NRG1. In terms of geometrical and

energy concern, the simultaneously possible interactions would be

ERBB3-PLCG1 (interaction energy: 212.62 kcal/mol) and

ERBB3-EPOR, for which the affinity predictions are higher than

those of other interactions.

An inhibitor affecting Erb signaling pathway:
pertuzumab

To illustrate the importance of the sequence of processes, we

further focused on ERBB3 interactions and investigated how it

functions if its partners use the same interface while interacting. In

this case the interactions cannot occur at the same time. In

general, the HER/erbB family of proteins (EGFR (HER1), HER2,

HER3, and HER4) activate intracellular signaling pathways in

response to extracellular signals [55]. The signaling mechanism is

as follows: first EGFR and HER3 are activated by ligand binding

(ligands are EGF and NRG1 for EGFR and HER3, respectively),

and then EGFR or HER3 forms heterodimer with HER2 followed

by the transphosphorylation of their C-terminal tails. Heterodimer

formation of HER2 with EGFR and HER3 induces different

pathways. For example, The PI3K/Akt pathway, which is

critically important in tumorigenesis, is activated by phosphory-

lated HER3. The deregulation of signaling functions of the HER

family of proteins causes cell transformation and tumorigenic

growth [55]. In anti-cancer drug development, EGFR and HER2

proteins are the main targets. For example, pertuzumab, which

targets HER2 dimerization region, attempts to inhibit HER2-

HER3 or HER2-EGFR interactions.

In a recent study [62] investigating the effect of pertuzumab in lung

cancer cells, it was found that pertuzumab blocked NRG1-stimulated

phosphorylation of HER3. In contrast, it failed to block epidermal

growth factor (EGF)-stimulated phosphorylation of EGFR in human

non-small cell lung cancer cell line 11_18. This is somewhat

interesting since HER2 uses the same binding region for dimerization

with HER3 and EGFR and this region is assumed to be blocked by

pertuzumab. However, it may be hypothesized that in addition to its

inhibiting effect on dimerization region of HER2, pertuzumab should

also affect the ligand binding region of HER3 and EGFR, namely

HER3-NRG1 interaction and EGFR1-EGF interaction.

In order to investigate the effect of pertuzumab on HER3-

NRG1 interaction, pertuzumab heavy chain (PDB ID 1s78) was

docked to HER3 (PDB ID 1m6b). The docked conformation is

visualized in Figure 8B. NOXclass results indicate that the docked

conformation is biological (biological score is 70%). Although

HER2 and HER3 are similar in structure, the interface region on

HER2 and HER3 through which the interaction with pertuzumab

occurs are not exactly the same in structure, but rather use

overlapping regions. We observed that pertuzumab binding

interferes with NRG1 binding region, which indicates that

pertuzumab may also block ligand binding to HER3 and thus

prevent HER3 activation. 36% of interface residues (8 out of 22) of

HER3-NRG1 interface are also used by pertuzumab, which

makes the interactions of HER3 with NRG1 and pertuzumab

mutually exclusive. Both interactions are visualized together and

the black surface region shows the shared interface region (see

Text S1).

Thus, our results indicate that pertuzumab may block the

NRG1 interaction region of HER3. Probably, pertuzumab would

not affect the binding of EGF to EGFR and thus it is not effective

against (EGF)-stimulated phosphorylation of EGFR in the

aforementioned lung cancer cells.

A single-interface hub: RAF1
If the interaction partners of a hub protein use the same

interface region, then these interactions are more likely to be

mutually exclusive. For example, in iSPIN, RAF1 has 9

interactions partners which compete for binding. RAF proto-

oncogene serine/threonine-protein kinase participates in the

transduction of mitogenic signals from the cell membrane to the

nucleus and protects cells from apoptosis mediated by STK3.

Among its interaction partners, we were able to predict interaction

interfaces for CDC25, YWHAZ and MAP2K2, for which

interaction energies were calculated as 21.91 kcal/mol,

Figure 9. Ribbon diagram and interface representation of ERBB3 interactions with PLCG1, EPOR and ACK1. ERBB3 (1m6b_A), PCLG1
(1hsq_A), EPOR (1eer_B) and ACK1 (1u46_A) are colored in blue, red, pink and orange respectively. Interface residues are shown as spheres. (A)
ERBB3-PLCG1 interaction. (B) ERBB3-EPOR interaction. (C) ERBB3-ACK1 interaction.
doi:10.1371/journal.pcbi.1000601.g009
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28.35 kcal/mol, 22.92 kcal/mol, respectively. We should note

that all interaction energies were calculated for the comparison of

the interactions and the numeric values may not be precise since

these are not experimental results.

Interaction with RAP1A is a known structure with PDB ID 1c1y.

Additional possible interactions of RAF1 in iSPIN are with RALA,

DIRAS1, DIRAS2, CCNA2 and RRAD. Although the interface

region is not completely the same for each interaction partner, most

interface residues are shared (the shared percentage .20, which is

the cutoff value for assigning the interface as distinct or same).

Thus, these interactions cannot occur at the same time. All three

interactions (RAF1-CDC25A, RAF1-MAP2K2, RAF1-YWHAZ)

are cancer-cancer related and their affinities are lower compared to

ERBB3-EPOR and ERBB3-PLCG1 interactions which are

cancer-noncancer related and simultaneously possible. Friedler

et al. (2005) [63] observed a highly electrostatic binding site in a

cancer protein, p53, interacting with Rad51 and other peptide

sequences with different affinity. The results imply that cancer

proteins and hubs interact with their partners with high specificity

and low affinity. Therefore, it becomes possible for them to bind to

many different proteins with varying affinity. Three predicted

binding sites are illustrated in Figure 10. In Text S1, RAF1 is

displayed with its three binding partners: RAF1 (1c1y_B) is shown

in blue, the partners YWHAZ (1qja_A), MAP2K2 (1s9i_A) and

CDC25A (1c25_A) are colored in red, cyan and purple

respectively. The interface is highly shared which hypothesize that

RAF1 is a single-interface protein and involved in mutually

exclusive interactions. RAF1 is a protein kinase and a signaling

protein; thus, it probably interacts transiently with most of its

targets. A recent study confirms this interaction behavior of RAF1,

showing that the binding of Cdc25 and of Rad24 (14-3-3 homolog

that is important in the DNA damage checkpoint) to Raf-1 is

mutually exclusive [64].

Conclusion
In this work, we analyzed cancer proteins and hub proteins in

human protein-protein interaction networks from a structural

perspective, and by considering their global behavior in the

network.

Integrating three-dimensional protein structures into human

protein-protein interaction network revealed important aspects

about hubs and cancer-related proteins. Interface property analysis

identified the structural tendencies of cancer proteins that assist their

binding to multiple proteins. Interfaces of cancer proteins, on

average, are smaller in size, more planar, less tightly packed and

more hydrophilic than those of non-cancer proteins. Within

phenotypes, for breast cancer, colorectal cancer and leukemia,

interface properties were found to be discriminating from non-

cancer interfaces with an accuracy of 71%, 67%, 61%, respectively.

Hub proteins also have smaller, less tightly packed and more

planar interfaces than non-hub proteins. Similar or overlapping

binding sites should be used repeatedly in hub proteins, single

interface hub proteins, making them promiscuous. Alternatively,

multi-interface hub proteins make use of several distinct binding

sites to bind to different partners. Interfaces of multi-interface hubs

are usually similar to non-hub interfaces. On the other hand,

interfaces of single-interface hubs are more polar and less charged

than multi-interface hubs and non-hub proteins.

In addition cancer-related proteins tend to interact with their

partners through distinct interfaces, corresponding mostly to

multi-interface hubs, which comprise 56% of cancer-related

proteins, and constituting the nodes with higher essentiality in

the network (76%). Cancer proteins are more enriched in multi-

interface proteins: 56% of cancer proteins are multi-interface,

while 44% being single-interface. This is reasonable since it is

known that, on average, cancer proteins are longer with larger

surface areas. To cope with many interactions at the same time,

they tend to be multi-interface hubs with distinct interfaces

interacting with different proteins. Cancer multi-interface hubs

have a greater average number of interfaces.

We found that, on average, hub-nonhub average degree (7.04) is

greater than hub-hub average degree (5.06) indicating that hubs

do not have a preference to interact with other hub proteins in

SPIN. On the other hand, we found that cancer hubs prefer to

interact with other hub proteins rather than interacting with non-

hubs. Cancerhub – hub average degree and cancerhub – nonhub

average degree are 8.49 and 7.16, respectively. The same results

are valid for PIN as well. The results reveal the well known

information that cancer proteins play central role in the networks

and show distinct topological properties than noncancer proteins.

Finally, we illustrated, in detail, the interface related affinity

properties of two cancer-related hub proteins: Erbb3, a multi

interface, and Raf1, a single interface hub. The results revealed

that affinity of interactions of the multi-interface hub tend to be

higher than that of the single-interface hub. These findings might

be important in obtaining new targets in cancer as well as finding

the details of specific binding regions of putative cancer drug

candidates.

Figure 10. Ribbon diagram and interface representation of RAF1 interactions with YWHAZ, MAP2K2 and CDC25A. RAF1 (1c1y_B),
YWHAZ (1qja_A), MAP2K2 (1s9i_A) and CDC25A (1c25_A) are colored in blue, red, cyan and purple respectively. (A) RAF1-YWHAZ interaction. (B)
RAF1-MAP2K2 interaction. (C) RAF1-CDC25A interaction. Interaction interfaces of RAF1 through YWHAZ, MAP2K2 and CDC25A are highly
overlapping; the interactions are mutually exclusive.
doi:10.1371/journal.pcbi.1000601.g010
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Methods

Human protein-protein interaction and cancer-
associated protein interaction datasets

We studied the human interactome constructed by Jonsson &

Bates (2006) [3] and referred to this network as ‘PIN’. They used

an orthology-based method in which BLAST [65] searches were

run for the human genome against all proteins in the DIP [59]

and MIPS Mammalian Protein-Protein Interaction databases

[66]. They analyzed their putative interactions giving confidence

scores based on the level of homology to proteins found

experimentally to interact and the amount of experimental data

available. After ROC curve analysis, with a sensitivity of 85% and

specificity of 82%, the human interactome consisted of 108113

binary gene-gene interactions and 13584 genes. From these

interactions, the redundant ones, i.e. the interactions for which

the RefSeq ID corresponding to the same genes, were omitted.

Thereby, the network (PIN) consists of 85083 interactions. The

list of cancer genes was taken from the comprehensive census of

human cancer genes provided by Futreal et al (2004) [67]. 10724

interactions were cancer-related in this interactome. In addition,

we collected a set of known cancer genes from the Memorial

Sloan Kettering computational biology website CancerGenes

(http://cbio.mskcc.org/CancerGenes/Select.action) using the

queries of ‘‘tumor suppressor’’, ‘‘oncogene’’ and ‘‘stability’’ genes.

We combined that list with the known cancer genes of Futreal

et al. [67]. Thus, cancer related interactions number increased to

27413.

Mapping interactions to known 3D structures
We used Swiss-Prot Knowledgebase [68] to map the binary

interactions to known structures. The human genes for which 3D

structures are known were compiled from the Swiss-Prot

Knowledgebase. For each gene-gene interaction in the human

interactome, a known complex structure was searched. If a

known structure was not available for the interaction, we

searched for the structures of each gene and mapped each gene

to the corresponding structure as a single chain. If any of the

genes in the binary interaction did not have a structural

representation, then that interaction was omitted. For example,

in the human interactome, one of the binary interactions is

TP53-MDM2 interaction. The interaction is represented by a

known complex structure in PDB [28] as 1ycr. However, for the

TP53-MDM4 interaction, there occurs no known complex

structure. In this case, TP53 was represented by its correspond-

ing structure with the highest resolution for which the PDB ID is

1aie_chain A. Similarly, for MDM4, the structure is

2cr8_chainA. In total, 206 interactions were mapped to known

complexes. The summary of the mapping procedure is illustrated

in Figure 11.

The mapped protein-protein interaction network called the

‘‘structural protein interaction network’’ (SPIN) consists of 1702

nodes (proteins) and 5312 edges (interactions). From 5312

interactions, 206 interactions were mapped to known 3D

structures. Therefore, the interfaces of these 206 interactions were

known. On the other hand, the interfaces of the remaining 5106

interactions were left for further prediction.

Figure 11. Flowchart representation of the method of mapping interactions to 3D structures and generating iSPIN. The method is
applied for all the interactions in the human interactome (PIN).
doi:10.1371/journal.pcbi.1000601.g011
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When the list of cancer-related proteins were searched through

1702 proteins, 466 of them were found to be encoded by cancer-

related genes (cancer gene information from Futreal et al. [67] and

the Memorial Sloan Kettering computational biology website

CancerGenes (http://cbio.mskcc.org/CancerGenes/Select.action),

the rest (1236) were taken as encoded by noncancer genes. As a

result, we defined the ‘cancer structural subnetwork’ (‘cSPIN’), as

the one consisting of cancer-cancer and cancer-noncancer gene

interactions. Our cSPIN contains 1303 proteins and 3221

interactions. The total number of proteins and interactions for

each network is summarized in Table 5.

Definition of hubs and bottlenecks
Degree represents the number of interaction partners of a

protein. Betweenness is a measure of the total number of shortest

paths going through a certain node or edge in the network [69].

We defined as hubs the proteins that are in the top 20% of the

degree distribution in PIN and SPIN. That corresponds to proteins

with $9 interactions. Accordingly, we defined bottlenecks as the

top 20% proteins with the highest betweenness values. (Varying

the threshold from 10% to 30% had no significant impact on our

results; see Text S1 for hub/non-hub interface statistics). To

calculate betweenness within the network, we used NetworkX

(NX) (https://networkx.lanl.gov/wiki), a Python package. Hubs

were classified as hub-bottlenecks and hub-nonbottlenecks accord-

ing to high betweenness or low betweenness, respectively.

Determination of essential human genes
Goh et al (2007) [2] predicted the essentiality of a human gene

using phenotype information of the corresponding mouse

orthologs. A human gene was defined as ‘‘essential’’ if a knock-

out of its mouse ortholog results in lethality. Here embryonic/

prenatal lethality and postnatal lethality are considered lethal

phenotypes, and the rest of the phenotypes are considered non-

lethal. We obtained the human-mouse orthology and mouse

phenotype data from Mouse Genome Informatics (http://www.

informatics.jax.org ) on May 10, 2008. Of 1702 proteins in our

SPIN, 1536 have mouse orthologs and phenotype information.

According to our classification, we found 497 genes to be essential

and the rest to be non-essential.

Predicting protein-protein interfaces in SPIN
PRISM (protein interactions by structural matching) [26,27] is a

web server to predict protein-protein interactions and protein

interfaces. The prediction algorithm uses structural and evolutionary

similarities to find possible binary interactions between proteins,

‘‘targets,’’ through similar known interfaces, ‘‘templates.’’ Here, target

proteins were the proteins in our SPIN dataset for which we wanted to

predict the interaction interfaces. As template interfaces, we used the

representative interfaces generated from the nonredundant data set of

protein-protein interfaces [13] available at http://prism.ccbb.ku.edu.

tr/interface , for which the interactions are biological according to

NOXclass [57] outputs. There are 1478 template interfaces.

The PRISM prediction algorithm starts by extracting the

surfaces of target proteins by invoking NACCESS [70]. Template

interfaces are split into their complementary partner chains and

these partners are structurally aligned with the surfaces of the

target proteins. Similarity between the target surface and one

partner of the template interface is measured using a scoring

function based on two factors. The first is structural similarity, in

which RMSD and residue match ratio between target protein and

the template interface is scored. The other factor considers

evolutionary similarity in which a hotspot match ratio is scored.

(Critical residues at the interface which account for the majority of

the binding free energy are called hotspots [71]. PRISM obtains

the information on hotspots from Hotsprint [72,73] a web server

for predicting hotspots at protein interfaces.) Then, combining

these scores, PRISM predicts the most possible interactions

occurring between the target proteins.

Elimination of crystal packing interfaces and interactions
After we obtained the interfaces of the proteins in our network

using PRISM, non-biological interfaces, if any, should be

eliminated. Interfaces having a biological score greater than

60% according to the NOXclass [57] outputs were accepted as

biologically relevant. Thus, 357 interaction interfaces were

predicted and most of them (80%) had biological scores greater

than 80%. Also, including the known interfaces coming from 3D

structures, the resulting network which includes interface infor-

mation is called ‘iSPIN’. It consists of 534 proteins and 563

interactions. The subnetwork of cancer-related interactions

(ciSPIN) includes 381 proteins and 375 interactions. The protein

and interaction numbers are given in Table 5.

Hub classification: Single-interface and multi-interface
hubs

Kim et al. (2006) [19] classified protein hubs as singlish-interface

and multi-interface hubs. The former has at most two distinct

binding interfaces, whereas the latter has more than two binding

interfaces. In this study, we also classified the hubs in iSPIN

according to the number of distinct binding interfaces; we defined

single-interface hubs as protein hubs with only one distinct binding

interface and multi-interface hubs as those with more than one

distinct binding interface. To distinguish overlapping interfaces

from non-overlapping interfaces, we looked at the shared residue

percentage of the interfaces of hub proteins. We defined shared

residue percentage as the ratio of number of shared residues to the

number of total interface residues. If the interface residues are

shared at a percentage greater than 20%, then the corresponding

interface is an overlapping one and interactions occurring through

this interface are mutually exclusive. On the other hand, if the

interface is not shared at all, meaning that the shared residue

percentage is less than 20%, then this is a non-overlapping

interface and the interaction through this interface is simulta-

neously possible, independent of each other.

Interface property analysis
For interface analysis, we used PROTORP [29] which invokes

NACCESS [70], SURFNET [74] and PRINCIP (SURFNET)

[74] for interface accessible surface area and gap volume and

planarity calculation, respectively. PROTORP calculates the

amino acid composition of residues defined in the interface as a

percentage value of those classified as polar, non-polar and

charged as described previously by Jones and Thornton [75]. The

amino acid compositions were weighted and then normalized by

the interface ASA values which were calculated using NACCESS.

Statistical tests
Mann-Whitney test (also called Wilcoxon rank sum), which is a

nonparametric test that compares the distributions of two

unmatched groups, was performed to compare cancer and non-

cancer related interface properties. Two-tailed p values were

calculated at a= 0.05.

Classification analysis
To check whether the differences in cancer & noncancer related

interface properties are significant in practice or not, Weka [39],
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which is a machine learning software, was used. Training set

contained equal number of cancer-related (positive set) and

noncancer interfaces (negative set). To equalize the number of

data in the positive and negative set, a Weka filter called

‘‘Resample’’ which creates a stratified subsample of the given

dataset, was used. ‘‘Resample’’ filter ensures that overall class

distributions are retained within the sample. 10 runs of 10-fold

cross validation were performed using four different classifier

algorithms; decision stump, naı̈ve bayes, support vector machine

(SVM) and adaboostm1. Decision stump is a machine learning

algorithm consisting of a single-level Decision Tree. It is mostly

used as a component in boosting algorithms such as Adaboostm1.

In Weka, Adaboostm1 functions as a meta-classifier which uses

decision stump by weighting several iterations of it. Naı̈ve Bayes is

a simple probabilistic classifier whereas SVM is a supervised

learning classifier. The statistical measures of the tests are

Accuracy and Precision. Accuracy is the percentage of correctly

classified instances calculated by TP+TN/(TP+TN+FN+FP). For

cancer class predictions, TP is the number of correctly predicted

cancer interfaces and FP is the number of non-cancer interfaces

which are predicted as cancer-related. TN is the number of

correctly predicted noncancer interfaces and FN is the number of

cancer-related interfaces which are predicted as being non-cancer.

Precision is the proportion of the instances which are correctly

predicted among all predictions and calculated by TP/(TP+FP) for

cancer class. For noncancer class, precision is calculated by TN/

(TN+FN). Average of two precision values (for cancer and

noncancer) comes out to be Precision of the tests.

Interaction energy calculation
For the case studies, interaction energies were calculated using

FoldX [53,54]. Firstly, the complex structures were subjected to an

optimization procedure using the repair function of FoldX. During

this step, all side chains were moved slightly to eliminate small van

der Waals’ clashes. Next, AnalyzeComplex function was used to

determine the interaction energy between the proteins. Through-

out the FoldX calculations, the default parameters were used.

Network topology analysis
All the parameters describing the network topology were

calculated using NetworkAnalyzer, which is a Java plugin for

Cytoscape [76]. Another Cytoscape plugin MCODE [44], which

detects densely connected regions in protein-protein interaction

networks based on a vertex weighting method by local

neighborhood density, was used to find highly connected

subnetworks in the network. BINGO [77], being also a Cytoscape

plugin, determines which Gene Ontology terms are significantly

overrepresented in subgraphs of biological networks.

Supporting Information

Text S1 Figure S1, Figure S2, Table S1–S3

Found at: doi:10.1371/journal.pcbi.1000601.s001 (2.02 MB
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