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Abstract Neuronal inhibition is crucial for temporally precise and reproducible signaling in the

auditory brainstem. Previously we showed that for various synthetic stimuli, spherical bushy cell

(SBC) activity in the Mongolian gerbil is rendered sparser and more reliable by subtractive

inhibition (Keine et al., 2016). Here, employing environmental stimuli, we demonstrate that the

inhibitory gain control becomes even more effective, keeping stimulated response rates equal to

spontaneous ones. However, what are the costs of this modulation? We performed dynamic

stimulus reconstructions based on neural population responses for auditory nerve (ANF) input and

SBC output to assess the influence of inhibition on acoustic signal representation. Compared to

ANFs, reconstructions of natural stimuli based on SBC responses were temporally more precise,

but the match between acoustic and represented signal decreased. Hence, for natural sounds,

inhibition at SBCs plays an even stronger role in achieving sparse and reproducible neuronal

activity, while compromising general signal representation.

DOI: https://doi.org/10.7554/eLife.29639.001

Introduction
Acoustically evoked inhibition plays a crucial role in shaping the neuronal activity already at the first

central station of the auditory system (Caspary et al., 1994; Kopp-Scheinpflug et al., 2002;

Dehmel et al., 2010; Kuenzel et al., 2011; Keine and Rübsamen, 2015; Keine et al., 2016). In a

previous study, we demonstrated that inhibition on spherical bushy cells (SBCs) renders their output

sparser and more reproducible than their auditory nerve fiber (ANF) input (Keine et al., 2016).

These transformations persist over a wide range of acoustic stimuli and sound intensities, and can be

approximated by an inhibition which we modelled as a scaled subtraction. Functionally,

this inhibition emphasizes reliable events and controls the response gain across a wide range of

sound levels.

Since in most previous studies, the neuronal activity was recorded either during simple or com-

plex, but synthetic acoustic stimuli, it remains unknown if the inhibitory effect on sound encoding

persists also in natural acoustic environments. Here, we extend the range of tested stimuli to natural

sounds approximating a gerbil’s environment. In such a natural context, the inhibitory influence on

the SBC output activity proves even stronger than under complex, but non-natural stimulus condi-

tions tested before. In particular, while for most synthetic stimuli the SBC firing rates generally

increase, they remained constant under natural acoustic stimulation.

While transformations of this kind can emphasize certain aspects of the sensory input, they may

also deemphasize others. We study this trade-off directly by performing stimulus reconstruction

from the population of cells, a technique which has already been successfully applied in cortical
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recordings (Stanley et al., 1999; Mesgarani et al., 2009). In contrast to single-cell analysis, this pop-

ulation-based technique provides an estimate of the overall stimulus information available in a group

of neurons. Reconstructions of this type have previously been successfully employed to identify the

effect of attention on the neural response (Mesgarani and Chang, 2012). We employ the respective

reconstructions to analyze the effect of inhibition in the represented stimulus spectrogram.

We find stimulus reconstructions based on the ANF input to be overall more accurate than those

from the SBC output. Surprisingly, the share of ANF inputs which are not transmitted to the SBC

output (partly blocked by inhibition, Kuenzel et al., 2011; Keine and Rübsamen, 2015;

Keine et al., 2016) delivered the most accurate reconstructions, but were temporally more variable.

We find that the overall fidelity of representing the stimulus is reduced in SBCs due to the inhibitory

gain control, resulting in a lower variance in stimulus reconstruction. Consistent with their role in

sound localization, the SBCs’ inhibition-shaped output appears to be more focused on restricted,

short-term signal representation during variable stimulus conditions, while the overall information

about the stimulus is reduced.

Results
We recorded from spherical bushy cells (SBCs) in the AVCN of anesthetized gerbils in vivo to under-

stand the influence of neuronal inhibition on the encoding of complex acoustic sounds. For this pur-

pose, we presented real environmental sounds (e.g. walking on gravel, singing birds), and

performed an explicit population decoding which allows the analysis of the stimulus representation

in its original form.

Modulation of SBC responses under natural acoustic stimulation
To directly investigate the transformation at the ANF-SBC synapse, the neuronal response was sepa-

rately analyzed for EPSPs which trigger an output spike (EPSPsucc) and EPSPs which fail to trigger

SBC activity (EPSPfail) as described previously (Figure 1A) (Keine et al., 2016). As shown before,

these failures of transmission are mostly caused by inhibition at the ANF-SBC junction

(Kuenzel et al., 2011; Keine and Rübsamen, 2015; Keine et al., 2016). The acoustic stimulus was

composed of seven different segments of varying spectral breadth and featuring rapid amplitude

modulations (Figure 1B+C). First, we recorded the change in firing activity of ANF input and SBC

output for simple pure tones at the units’ characteristic frequency. Both ANF input and SBC output

rates increased during pure tone stimulation (ANFspont = 71.3 ± 31.8 Hz vs.

ANFtone = 234.3 ± 53.9 Hz; D = 163 ± 59.3 Hz, p<0.001; SBCspont = 43.4 ± 18.3 Hz vs.

SBCtone = 97.3 ± 33.9 Hz, D = 53.9 ± 27.9 Hz, p<0.001, see Table 1 for additional details of statistical

tests, and Figure 1—source data 1, Figure 1Di). During natural acoustic stimulation, the ANF input

firing rates also increased (ANFspont = 71.3 ± 31.8 Hz vs. ANFnatural = 129.7 ± 38.4 Hz,

D = 58.4 ± 25.5 Hz, p<0.001), however, contrary to pure tone stimulation, the SBC output activity

remained unchanged (SBCspont = 43.4 ± 18.3 Hz vs. SBCnatural = 43.1 ± 22.1 Hz, D = 0.3 ± 15.5 Hz,

p=0.9, Figure 1C for representative trace and Figure 1Dii for population data). This effect

was persisted when the different stimulus segments were analyzed separately (Figure 1Diii). While

the increase in SBC firing rates for tones is consistent with previous studies using various synthetic

stimuli (Kopp-Scheinpflug et al., 2002; Kuenzel et al., 2011; Keine and Rübsamen, 2015;

Keine et al., 2016), the constancy for natural stimulation has not been demonstrated before.

The unchanged average firing rates of the SBC output during natural acoustic stimulation was

accompanied by an increase in threshold EPSP (Spont = 7.5 ± 2.4 V/s vs. Stim = 9 ± 2.8 V/s,

D = 1.4 ± 0.8 V/s, p<0.001, see Figure 2—source data 1) and failure fraction (Spont = 0.36 ± 0.2 vs.

Stim = 0.65 ± 0.17, D = 0.29 ± 0.1, p<0.001, Figure 2A) (see also Keine et al., 2016). Together with

previous results, this indicates a strong influence of inhibition, which limits the increase in average

SBC firing and thereby effectively regulates the SBC output gain. The quality of the neuronal

response was assessed by calculating the sparsity (Figure 2B) and response reproducibility

(Figure 2C) for both the complete natural stimulus and the different stimulus segments individually.

Consistent with our previous results using synthetic sounds, both sparsity and reproducibility of the
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Figure 1. Acoustic stimulation with environmental sounds increases auditory nerve firing while leaving the SBC

firing rates constant. (A) Representative voltage trace of SBC recording during acoustic stimulation. Voltage

signals could be divided into EPSP followed by postsynaptic AP (blue dots) and EPSPs which fail to trigger an AP

(gray dots). The sum of both types of events comprised the ANF input. (B) The acoustic stimulus was composed of

a series of environmental sounds (i.e. rain falling, walking on gravel, bird singing, shoveling sand, ripping grass,

walking through forest, walking on fallen leaves), containing naturally occurring frequency and amplitude

modulations. Top: amplitude profile; bottom: spectrogram. The stimulus was presented at a mean sound pressure

level of 40 dB SPL. PSD = power spectral density. (C) Firing rates of one representative cell during acoustic

stimulation (CF = 2.6 kHz, bin size 0.1 s). Note that the firing rate fluctuations at the ANF level (orange) are higher

than at the SBC level (blue). Arrows at the right indicate spontaneous firing rates in the absence of sound. (D)

Population data on firing rate changes for ANF input and SBC output during pure tone and natural sound

stimulation. (i) Pure tone stimulation at the units’ characteristic frequency resulted in a firing rate increase in both

ANF input and SBC output. (ii) While during stimulation with natural sounds, the average ANF firing increased

comparably to pure tone stimulation, the average SBC firing remains at the level of spontaneous activity. (iii) This

effect was consistently observed throughout different stimulus segments of the natural sound stimulus. Horizontal

lines indicate the average spontaneous firing rate in the absence of sound.

DOI: https://doi.org/10.7554/eLife.29639.002

The following source data is available for figure 1:

Source data 1. Firing rates of auditory nerve (ANF) input and Spherical Bushy Cell (SBC) output during spontane-

ous activity, pure tone and natural acoustic stimulation.

DOI: https://doi.org/10.7554/eLife.29639.003
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SBC output were increased compared to the ANF input (sparsity: ANF input = 0.09 ± 0.05 vs. SBC

output = 0.17 ± 0.07, D = 0.08 ± 0.06, p<0.001; reproducibility: ANF input = 0.13 ± 0.09 vs. SBC

output = 0.28 ± 0.18, D = 0.14 ± 0.12, p<0.001). Notably, while the absolute values of sparsity and

reproducibility were lower for natural sounds compared to the complex, but synthetic stimuli used

previously (Keine et al., 2016), the relative increase of both metrics at the ANF-SBC junction was

larger during natural acoustic stimulation (sparsity: natural = 105 ± 98% vs. synthetic = 48 ± 49%,

p=0.004; reproducibility: natural = 118 ± 74% vs. synthetic = 80 ± 59%, p=0.024, t-test)

(Keine et al., 2016).

These results corroborate that acoustically evoked inhibition significantly shapes the SBC output

activity and results in sparser and more reproducible SBC firing compared to ANF input. Next, we

simulated a rate-dependent subtractive inhibition (see Materials and methods and Figure 2 – sup-

porting Figure 1 for details) and compared the simulation results to the experimental data. We

found that the simulated response (Figure 2Bii, green) showed changes similar to the measured

SBC output, suggesting that activity-dependent subtractive inhibition is a possible candidate mecha-

nism in shaping SBC output activity during acoustic stimulation.

Dynamic stimulus reconstruction from population responses
While the gain control at the SBC output seems beneficial for the input to coincidence detector neu-

rons in the MSO, this increase in precision and reproducibility might be achieved at the expense of

overall stimulus representation. This is already indicated by the flattened rate-level curves in SBCs

Table 1. Summary of statistical comparisons.

Source Parameter Group 1 (mean ± SD) Group 2 (mean ± SD) Test statistics Statistical test

Figure 1

Panel Di
(pure tones)

Firing Rate ANF Spont = 71.3 ± 31.8 Hz Stim = 234.3 ± 53.9 Hz t(df = 31) = –15.5, p=3.5e-16, U1=0.87 paired t test

Firing Rate SBC Spont = 43.4 ± 18.3 Stim = 97.3 ± 33.9 t(31) = –10.9, p=3.5e-12, U1=0.59 paired t test

Panel Dii
(natural sounds)

Firing Rate ANF Spont = 71.3 ± 31.8 Hz Stim = 129.7 ± 38.4 Hz t(31) = –12.9, p=4.9e-14, U1=0.3 paired t test

Firing Rate SBC Spont = 43.4 ± 18.3 Stim = 43.1 ± 22.1 t(31) = 0.12, p=0.9, U1=0.03 paired t test

Figure 2

Panel A Threshold EPSP Spont = 7.5 ± 2.4 V/s Stim = 9 ± 2.8 V/s t(31) = –10.2, p=1.8e-11, U1=0.1 paired t test

Panel B Failure Fraction Spont = 0.36 ± 0.2 Stim = 0.65 ± 0.17 t(31) = –16.3, p=9.1e-17, U1=0.28 paired t test

Panel Ci Sparsity ANF input = 0.09 ± 0.05 SBC output = 0.17 ± 0.07 t(31) = –6.9, p=8.2e-8, U1=0.17 paired t test

Panel Di Reproducibility ANF input = 0.13 ± 0.09 SBC output = 0.28 ± 0.18 Z(N=32) = –4.9, p=8.8e-7, U1=0.2 Wilcox. sig.-rank

Figure 3

Panel K Corr. Section ANF = 0.66 ± 0.14 EPSP = 0.71 ± 0.11 Z(N=10) = –2.8, p=0.006*, U1=0.1 Wilcox. sig.-rank

Corr. Section ANF = 0.66 ± 0.14 SBC = 0.56 ± 0.16 Z(N=10) = –2.8, p=0.006*, U1=0.1 Wilcox. sig.-rank

Corr. Section EPSP = 0.71 ± 0.11 SBC = 0.56 ± 0.16 Z(N=10) = 2.8, p=0.006*, U1=0.35 Wilcox. sig.-rank

Corr. Time Section ANF = 0.68 ± 0.14 EPSP = 0.71 ± 0.14 Z(N=10) = –2.7, p=0.0117*, U1=0.1 Wilcox. sig.-rank

Corr. Time Section ANF = 0.68 ± 0.14 SBC = 0.58 ± 0.15 Z(N=10) = 2.7, p=0.0117*, U1=0.15 Wilcox. sig.-rank

Corr. Time Section EPSP = 0.71 ± 0.14 SBC = 0.58 ± 0.15 Z(N=10) = 2.8, p=0.006*, U1=0.25 Wilcox. sig.-rank

Corr. Freq. Section ANF = 0.45 ± 0.042 EPSP = 0.44 ± 0.071 Z(N=10) = 1.6, p=0.39*, U1=0.2 Wilcox. sig.-rank

Corr. Freq. Section ANF = 0.45 ± 0.042 SBC = 0.34 ± 0.058 Z(N=10) = 2.8, p=0.006*, U1=0.85 Wilcox. sig.-rank

Corr. Freq. Section EPSP = 0.44 ± 0.071 SBC = 0.34 ± 0.058 Z(N=10) = 2.8, p=0.006*, U1=0.5 Wilcox. sig.-rank

Factor 1 Factor 2

Figure 4

Panel E Autocorrelation Height: p=2.9e-25 Response Type: p=0.002 ANOVA, 2-factor

Panel F Spectra Mod. Rate: p=1.7e-6 Response Type: p=2.1e-51 ANOVA, 2-factor

Panel G Freq. XCorr Delta Freq: p=1.1e-14 Response Type p=0.023 ANOVA, 2-factor

*p-values Bonferroni-corrected for N = 3 comparisons.

DOI: https://doi.org/10.7554/eLife.29639.004

Keine et al. eLife 2017;6:e29639. DOI: https://doi.org/10.7554/eLife.29639 4 of 16

Research advance Neuroscience

https://doi.org/10.7554/eLife.29639.004
https://doi.org/10.7554/eLife.29639


compared to ANFs (Keine et al., 2016, Figure 3). We therefore estimated how well the neuronal

responses of ANFs, SBCs and also the failed EPSPs represent the acoustic stimulus.

Responses of sensory neurons covary with certain aspects of an externally presented stimulus. For

single neurons, this covariation is thus often quantified in relation to certain stimulus properties (fre-

quency, sound level, lag, etc.) establishing different types of receptive fields (as in Keine et al.,

2016). While informative about single-cell properties, these analyses fail to provide a more complete

understanding of the representation on the population level, which assesses the different stimulus

aspects jointly. For this purpose, it is convenient to combine the population responses and relate

them to the original stimulus representation. One general approach of this kind is stimulus recon-

struction (Stanley et al., 1999; Mesgarani et al., 2009; Mesgarani and Chang, 2012), which

Figure 2. SBC output exhibits increased sparsity and reproducibility compared to ANF input which can be

attributed to activity-dependent subtractive inhibition. (A) During acoustic stimulation the threshold EPSP for AP

generation (left) was increased and consequently so was the failure fraction (right), indicating strong inhibition

during acoustic stimulation with natural sounds. (B) (i) The sparsity of the neuronal response was separately

calculated for the ANF input and the SBC output. The SBC output showed consistently higher sparsity than the

ANF input. (ii) The increase in sparsity from the ANF input (orange) to the SBC output (blue) was consistently

observed for the different stimulus segments. Simulated (subtractive) inhibition (ANF +SI, green) resulted in similar

increases in sparsity. Notably, for conditions in which the sparsity of the ANF input was high (i.e. ’sand’), the SBC

output did not increase further. (C) (i) Similar to sparsity, the reproducibility of the neuronal response increased at

the SBC level. (ii) Again, this effect was consistent for the different stimulus segments and well approximated by

simulating subtractive inhibition.

DOI: https://doi.org/10.7554/eLife.29639.005

The following source data and figure supplement are available for figure 2:

Source data 1. Threshold EPSP (in V/s) and failure fraction during acoustic spontaneous activity and natural acous-

tic stimulation.

DOI: https://doi.org/10.7554/eLife.29639.007

Figure supplement 1. Comparison of different inhibition models in their ability to reproduce the response as well

as its sparsity and reproducibility.

DOI: https://doi.org/10.7554/eLife.29639.006

Keine et al. eLife 2017;6:e29639. DOI: https://doi.org/10.7554/eLife.29639 5 of 16

Research advance Neuroscience

https://doi.org/10.7554/eLife.29639.005
https://doi.org/10.7554/eLife.29639.007
https://doi.org/10.7554/eLife.29639.006
https://doi.org/10.7554/eLife.29639


Figure 3. Stimulus representation in the SBC responses is less accurate than in the ANF activity or in the inhibited EPSPs (EPSPfail). (A) Stimulus

reconstruction was performed by estimating linear reconstruction kernels (2) for ANF-, EPSPfail- and SBC responses (1), separately. The respective

reconstructions were then used to predict stimulus reconstructions (3), which were then compared to the real stimulus used in the estimation (4). (B)

Spectrogram of the real stimulus. The frequency range was reduced from its original range of 16 kHz (see Figure 1B) to the range represented in the

ANFs’ receptive fields (0.3–4.4 kHz, CFs shown as blue dots on the left). Color scales are identical for all spectrograms. PSD = power spectral density.

(C) The population response of the ANFs sorted by CF (top) and the ANF-reconstructed stimulus (bottom). The global structure and even the envelope

fine-structure is preserved in the reconstruction. For more finely resolved spectrograms see Figure 4. (D) The rate of EPSPfail sorted as above (top) and

the EPSPfail-reconstructed stimulus (bottom). Again, global structure and envelope fine-structure are preserved with inaccuracies in the overall range. (E)

The SBC AP population response (top) and the SBC-reconstructed stimulus (bottom). While the envelope fine-structure appears again preserved, the

range of the reconstruction is much more limited, i.e. relatively faint parts appear louder in the reconstruction louder than expected (e.g. around 9 s),

and vice versa loud parts appear fainter (e.g. after 6 s). (F) The joint histogram across levels between real (abscissa) and reconstructed (ordinate) for

ANF responses. The correlation between the two is evident (compare to grey diagonal representing x = y), with a slight deviation below �23 dB, were

the reconstructed stimulus did not cover low enough levels (yellow line indicates linear regression). (G) The EPSPfail-based joint histogram with true level

exhibits an overall similar shape as the SBCs (see panel J for detailed comparison). (H) The SBC-based joint histogram is more widely distributed

around the diagonal and limited in range (see panel I for detailed comparison). (I) Subtraction of the SBC-based from the ANF-based histogram

indicates an increase in width apparent by the negative (blue) margins and the positive (red) spine. (J) Subtracting instead the EPSPfail-based from the

ANF-based histogram, leads to a much smaller difference with an even better correlation around the diagonal for EPSPfail (blue parts on diagonal) for

low and high levels. (K) The correlation between the real and the reconstructed stimulus was significantly worse for SBCs compared with either ANF or

EPSPfail. Correlation was mostly governed by temporal (middle), rather than spectral (right) variations for all three signals (n = 10 cross-validation

sections, based on 32 neurons, *p<0.05, **p<0.01, see Table 1 for exact p-values).

Figure 3 continued on next page
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performs a prediction of the stimulus based on a multitude of neural responses (see Figure 3A for

illustration and Materials and methods for details).

Stimulus reconstruction based on the ANF responses (Figure 3C) provided a faithful estimate of

the original stimulus (Figure 3B, reconstructed frequency range was restricted to encompass the

cell’s receptive fields, see Figure 4 for zoomed samples), in particular representing large fluctuations

in sound level. EPSPfail-based reconstructions (Figure 3D) appeared similar with even more pro-

nounced representation of sound level, apparent in the population dynamics (top, grey). The SBC-

based reconstruction (Figure 3E), on the other hand, showed decreased overall representation of

Figure 3 continued

DOI: https://doi.org/10.7554/eLife.29639.008

The following source data and figure supplement are available for figure 3:

Source data 1. Correlation between real acoustic and reconstructed stimulus based on ANF input, SBC output and EPSPfail signals.

DOI: https://doi.org/10.7554/eLife.29639.010

Figure supplement 1. For certain postsynaptic response properties, the effect of inhibition appears to be accounted for well by activity-dependent

subtractive inhibition (Figure 2, and Keine et al., 2016).

DOI: https://doi.org/10.7554/eLife.29639.009

Figure 4. Envelope fine-structure properties of the reconstructed stimulus differ between ANF and SBC responses. (A) A 250 ms snippet of the real

spectrogram (Figure 3B) zoomed in. The yellow box indicates a region for comparing the across frequency correlations across the different

spectrograms (see G). (B) The reconstructed stimulus from the ANFs shows that temporal features of the stimulus can be reconstructed down to

approximately 5–10 ms (visual estimate), which is coarser than the resolution of the spectrogram (2 ms). (C) The EPSPfail reconstruction appears similar

to the ANF reconstruction, with an overall smoother appearance. (D) The SBC reconstruction appears more ‘vertical’, that is, with more correlation

across frequencies (see G) and less modulation, but otherwise temporally sharp (see E). (E) The temporal precision of the different reconstructions was

assessed by the width of the autocorrelation (inset: width of peak), resolved at multiple heights (inset: horizontal lines, black to red) relative to the

correlation at Dt = 0 (inset: maximum). The SBC (blue) reconstruction was most precise, while the EPSPfail (grey) was least precise (2-way ANOVA with

factors ‘relative height’ and ‘response type’, see panel for p-values, n = 10 stimulus sections). (F) The emphasis of the temporal modulations was overall

similar with a significant overrepresentation of the 100–160 Hz in the SBC reconstruction (PSD = power spectral density, 2 SEM shown, however, very

small variation, see panel for p-values, black dots indicate regions of significant deviation with False-Discovery-Rates at p<0.001, Benjamini and

Hochberg, 1995). (G) The spectral correlation of SBC was larger than for ANFs and EPSPfail for large frequency separations (>2 kHz, see panel for

p-values). Correlations were computed for different frequency separations (abscissa), but within each time-bin.

DOI: https://doi.org/10.7554/eLife.29639.011

The following source data is available for figure 4:

Source data 1. Properties of the reconstructed stimulus based on ANF, SBC and EPSPfail activity.

DOI: https://doi.org/10.7554/eLife.29639.012
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level dynamics with both high and low levels closer to the average stimulus level (average gray level,

see Discussion for a mechanistic interpretation).

We compared the dynamic range of the individual reconstructions by computing conditional level

densities (CLD, see Methods for details). Each entry is a conditional probability Pcond (shown in gray-

scale) of a level in the reconstruction (ordinate), given that the same spectrotemporal bin in the real

stimulus had a given level (abscissa). The CLDs (Figure 3F–H) reflected the differences in level repre-

sentation (described above) by steeper slopes (yellow lines) for ANFs and EPSPfail. All three slopes

were differed from each other, that is the 95% confidence intervals of the slopes are non-overlap-

ping (ANF: [0.54 ,0.542], EPSPfail: [0.6 ,0.602], SBC: [0.427, 0.429]). To directly compare the CLDs,

we subtracted pairs of CLDs for two response types (Figure 3I/J). Differences in level representation

were particularly salient at the high and low-level edges (high and low level ends).

The overall reconstruction quality was quantified by cross-validated correlation (Figure 3K, Mate-

rials and methods) and was lower for SBCs (orange) than for ANFs (blue, p=0.017, Wilcoxon signed

rank test, n = 10 stimulus sections, Bonferroni-corrected, same tests and n below, see Figure 3—

source data 1). Surprisingly, EPSPfail-based reconstruction quality was better than for ANFs

(Figure 3K, left, grey, p=0.006) despite a lower number of spikes compared to the ANF input. Tem-

poral dynamics contributed most to the reconstruction quality (Figure 3K, middle, p<0.02 for all

pairwise comparisons), while the frequency representation was comparably inaccurate (Figure 3K,

right, p<0.006 for SBC vs. ANF/EPSPfail, but p=0.39 for EPSPfail vs ANF). Importantly, both temporal

and frequency correlations were decreased for SBC-based reconstructions (p<0.02 for both). This

was at least partially caused by the inhibitory gain control, reflected by a reduction in the variance of

the reconstructed stimulus (ANF: 21.1 ± 3.3 dB, EPSPfail: 22.3 ± 4.1 dB, SBC: 15.9 ± 2.0 dB, SBC vs.

ANF: p<0.005 and EPSPfail: p<0.005, EPSPfail vs. ANF: p=0.32). While the reconstruction quality

could potentially be improved with a larger sample size, notably, 32 ANFs lead to a comparable

reconstruction quality as >250 neurons in the primary auditory cortex (Mesgarani et al., 2009).

Lastly, reconstructions from SBC responses simulated as ANF responses subjected to subtractive

inhibition (as in Figure 2, ANF + SI, see Methods for details and Figure 2—figure supplement 1)

were statistically comparable to real SBC reconstructions (Figure 3—figure supplement 1).

While the SBC-based reconstruction indicates an overall less faithful representation of the acous-

tic stimulus, they also reflect the envelope fine-structure improvement (Figure 4A–D) demonstrated

previously in SBC responses (Dehmel et al., 2010; Keine et al., 2016). The autocorrelation of the

SBC reconstruction within a frequency band was sharper compared to ANFs and EPSPfail (Figure 4E,

p<0.001 for relative height, p<0.002 for response type, 2-way ANOVA), where the autocorrelation

width was assessed at different levels relative to the peak of the autocorrelation (abscissa in

Figure 4E). This sharpening is probably due to a highlighted frequency range between 100–150 Hz

(corresponding to a period of 7–10 ms) in their power-spectrum (Figure 4F, p<0.001 for modulation

rate, p<0.001 for response type, 2-way ANOVA on the range of 100–150 Hz), which may correspond

to the inhibitory time-constant measured in vivo (~10 ms, Nerlich et al., 2014; Keine and Rübsa-

men, 2015; Keine et al., 2016). Finally, the correlation across frequencies (within a given time bin)

was increased for the SBC output compared to the ANF input (Figure 4G, p<0.001 for frequency

distance, p<0.02 for response type, 2-way ANOVA). We interpret this as a focus on temporal events

in any frequency location, with a corresponding loss in representing frequency fine-structure (com-

pare also Figure 4B/D).

Taken together, we found that during natural acoustic stimulation, SBC output activity exhibited

increased sparsity and reproducibility with SBC firing rates unchanged compared to spontaneous

activity. While the SBC output encoded temporal features of the acoustic signal with higher fidelity,

the overall stimulus was represented less faithfully compared to the ANF input.

Discussion
The auditory system faces the challenge to localize and identify sounds in complex acoustic environ-

ments. We find that already at an initial stage of the central auditory system, the neural representa-

tion of natural sounds is conditioned to be sparser and more reproducible at the SBCs compared to

its ANF input. This effect was even larger compared to other complex sounds, consistent with theo-

retical predictions (Lewicki, 2002; Smith and Lewicki, 2006). While signal integration at SBCs thus
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supports the extraction of temporal features, we found that their ability to represent the stimulus

across all stimulus levels is limited in comparison to the ANF input.

The reduction in stimulus representation appears to be largely caused by a compression in the

representation, leading to a reduced dynamic range (Figure 3F–H, in particular 3I) which missed out

on the low and high levels in the stimulus (Figure 3C–E). This reduction in represented stimulus

range resulted in an overall reduced variance in the SBC stimulus reconstruction. We hypothesize

that this limitation in reconstruction gain is a consequence of the inhibitory control on the SBCs’ out-

put gain, which flattens their rate-level curves (Keine et al., 2016, Figure 3). The inhibitory modula-

tion at SBCs appears to specifically remove these extreme levels, as indicated by the improved

representation based on the blocked ANF inputs only (Figure 3D). Remarkably, the latter represen-

tation even improves in comparison with the overall ANF input, indicating that the reduced SBC

representation is not due to their lower firing rate in comparison with the ANFs.

All stimulus information available to the auditory system is encoded by the ANF responses and

the processing in downstream nuclei will entail emphasizing different subsets of this information.

Typically, this has detrimental effects on the non-emphasized part. In the present case, the SBC’s

focus on temporal information limits the representation of sound level information. The latter is rele-

vant for loudness-based localization (in the azimuth via ILDs, Galambos et al., 1959; Sanes and

Rubel, 1988; Joris and Yin, 1995; Batra et al., 1997), estimation of elevations using spectral cues

introduced via head-related transfer functions (Blauert, 1997; Grothe et al., 2010), and potentially

for sound identification. The ascending input to the LSO (high-frequency SBCs, Warr, 1966;

Glendenning et al., 1985; Shneiderman and Henkel, 1985; Cant and Casseday, 1986;

Smith et al., 1993) as well as signal processing in other regions of the cochlear nucleus (e.g. cells in

the DCN, Nelken and Young, 1994) may emphasize other features of the acoustic stimulus by inte-

grating information differently. For the processing of stimulus envelope, relevant in ILD-based sound

localization in the LSO (for review see Tollin, 2003 and Grothe et al., 2010), the optimal processing

strategy appears less clear: improving the temporal precision in representing the envelope may be

relevant in addition to accurately representing stimulus level.

The increase in sparsity from ANF to SBC for natural stimuli exceeded the increase for synthetic

stimuli (Keine et al., 2016) and the inhibitory gain control was more prominent for natural stimuli,

resulting in SBC firing rates comparable to spontaneous activity. Intrinsic properties of natural acous-

tic (Rieke et al., 1995; Attias and Schreiner, 1997; Nelken et al., 1999; Lewicki, 2002; Hsu et al.,

2004; Chechik and Nelken, 2012, reviewed in Theunissen and Elie, 2014) and visual (e.g.

Reinagel and Laughlin, 2001) stimuli have been highlighted before to provide specific properties of

the neural response (typically efficient coding), potentially through evolutionary adaptation. Mecha-

nistically, we think that the differences in spectrotemporal structure between the stimuli cause this

effect in multiple ways.

First, the natural stimuli exceed the artificial stimuli in spectral width in all sections. Hence, both

the excitatory and the inhibitory inputs represent integration over larger frequency ranges. In addi-

tion, since activation across frequencies is less coordinated than in the more local, synthetic stimuli,

the ANF is driven more diversely for natural stimuli, and its response is thus less sparse and repro-

ducible for almost all sections (Figure 2, compared to Figure 8, Keine et al., 2016). Therefore, a

similar absolute increase in sparsity, and a smaller absolute increase in reproducibility lead to a

larger relative increase in both cases. It remains to be investigated, whether absolute or relative

increases are more important for neurons receiving input from SBCs.

Second, the natural stimuli showed a different modulation profile, ranging from little in rain, to

nearly complete modulation for the segment sand. Again, this influences the sparsity and reproduc-

ibility already at the level of the ANF input, but will also interact with the inhibitory integration prop-

erties. Finally, correlations in the spectrogram may contribute to the differences to synthetic stimuli.

Similar findings have been reported for the visual cortex (Froudarakis et al., 2014), however, for the

auditory brainstem this remains speculation at the current stage.

The integration performed by inhibition could be viewed from the perspective of predictive cod-

ing (Rao and Ballard, 1999), where the prediction of expected information is subtracted from the

current stimulus representation, in order to minimize the number of transmitted spikes for a certain

set of statistics, e.g. natural statistics. Based on the progression of time scales represented along the

auditory pathway, it could be speculated that the inhibition provides short-term contextual informa-

tion against which a change in stimulus statistics could be compared. Hence, the integration may
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serve to detect low-level changes in the stimulus statistics, similar in principle to the integration of

evidence on the cortical level (Boubenec et al., 2017).

In summary, the present study using natural stimuli suggests a possible specific adaptation of the

inhibitory gain control, leading to unchanged firing rates and larger increases in sparsity and repro-

ducibility compared to synthetic stimuli. These results also indicate, that using acoustic stimuli

resembling natural sounds might be necessary to fully understand properties of synaptic integration

and signal processing already at initial stages of the auditory system. However, the detailed relation

between natural and synthetic stimuli needs to be further explored using hybrid stimuli which isolate

specific natural properties and combine them with synthetic stimuli (e.g. SPORCs in David et al.,

2009).

Materials and methods

Animals and surgical procedure
All experiments were performed at the Neurobiology Laboratories of the Faculty of Bioscience,

Pharmacy and Psychology of the University of Leipzig (Germany), approved by the Saxonian District

Government Leipzig (TVV 06/09) and conducted according to the European Communities Council

Directive (86/609/EEC). Animals were housed in the animal facility of the Institute of Biology with

12 hr light/dark cycle and access to food and water ad libitum.

In vivo loose-patch recordings were conducted as described previously (Keine et al., 2016). In

brief, young adult Mongolian Gerbils aged 6–8 weeks were anesthetized by an intraperitoneal injec-

tion of a mixture of ketamine (140 mg/g body weight, Ketamin-Ratiopharm, Ratiopharm, Ulm, Ger-

many) and xylazine hydrochloride (3 mg/g body weight, Rompun, Beyer, Leverkusen, Germany). The

animal’s skull was exposed and a brass head post glued to the skull to fix the animal in a custom-

built stereotactic apparatus in a prone position. Recording electrodes were pulled from borosilicate

glass (GB150F-10, Science Products, Hofheim, Germany) to have impedance of 3–5 MW when filled

with the pipette solution (in mM): 135 NaCl, 5.4 KCl, 1 MgCl2, 1.8 CaCl2, 5 HEPES, pH adjusted to

7.3 with NaOH. The recording electrode was lowered through a hole in the skull into the anterior

portion of the ventral cochlear nucleus (AVCN). High-positive pressure was applied (200 mbar) when

passing through non-auditory tissue and reduced to 30 mbar when entering the AVCN. When

approaching a cell, the pressure was equalized or slight negative pressure (�5 mbar) applied. Sin-

gle-units were recorded when exhibiting a positive AP amplitude of at least 2 mV and showing the

characteristic complex waveform identifying them as large spherical bushy cells of the rostral AVCN

(Pfeiffer, 1966; Winter and Palmer, 1990; Englitz et al., 2009; Typlt et al., 2010).

Acoustic stimulation
Recordings were performed in a sound-attenuating and electrically isolated chamber (Type 400,

Industrial Acoustics, Niederkrüchten, Germany). Acoustic stimuli were generated by custom-written

Matlab (RRID:SCR_001622) functions and delivered via a custom-built earphone (DT48, Beyerdy-

namic, Heilbronn, Germany) positioned just in front of the ear canal. Acoustic stimuli were composed

of environmental sounds and consisted of seven segments of length 3.46 s with cos2 amplitude tran-

sitions of 460 ms between consecutive segments to prevent unexpected transients (see

Supplementary file 1 for the audio file containing the stimulus). The stimulus had a total length of

18.7 s and was presented at least 20 times for each cell at 40 dB SPL with maximal sound intensities

of 85 dB SPL.

Data analysis
Recorded voltage signals were digitized at 97.7 kHz (24 bit, RP2.1, Tucker-Davis Technologies) and

filtered between 5 Hz and 7.5 kHz using a zero-phase digital IIR filter. Neuronal signals were

detected by the fast upward stroke of the excitatory postsynaptic potential (EPSP) and separated

into events which successfully trigger a postsynaptic AP (EPSPsucc) and events that fail to trigger a

postsynaptic action potential (EPSPfail). Sparsity and reproducibility of the neuronal response were

separately computed for the ANF input (EPSPsucc + EPSPfail) and the SBC output (EPSPsucc).
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The sparsity of the response rate was computed as the variance-based method

described previously (Rolls and Tovee, 1995; Willmore and Tolhurst, 2001) with sparsity defined

as

S¼ 1� r tð Þh i2t = r tð Þ2
D E

t

where :h it indicates an average over time. Its values range between 0 (maximally dense)

and 1 (maximally sparse).

The reproducibility of the neural response was computed in two steps. First, the raw cross-corre-

lation was computed between two trials, divided by (S1 S2/Nbins), that is, the product of the number

of spikes in each trial, divided by the number of time bins. Second, the cross-correlation was aver-

aged across all pairs of non-identical trials, and then normalized by the number of such pairs, equal

to N (N-1)/2, where N is the total number of trials. Finally, the cross-correlation at time 0 was chosen,

and ‘1’ subtracted from it, in order to obtain a measure which equals 0 for a random process with

fixed rate (aside from the centering around 0, it is thus very similar to the correlation index

by Joris et al., 2006). Values > 0 indicate above chance correlation in the response between trials,

beyond what would be expected based on correlation in rate alone. Importantly, reproducibility can

attain values >1, with an upper limit determined by the firing rates in the different trials.

Stimulus reconstruction
The set of responses from all recorded neurons was used to re-estimate the stimulus spectrogram. A

linear reconstruction approach was implemented, which amounts to a linear regression between the

neural responses as predictors, and the spectrogram of the stimulus, computed as the absolute

value of the short-term Fourier transform, as dependent variables (Mesgarani et al., 2009;

Mesgarani and Chang, 2012). This kind of population-based approach allows a combination of the

overall information available in the neural response for accurately re-estimating the stimulus. Explicit

stimulus reconstruction provides a standardized way to compare stimulus representations along

stages of a sensory system, here between the ANF, SBC, and failed EPSPs. Clearly, the brain may

use different strategies internally to decode or transform this information, although the present

approach has proven useful for approximating the resulting percept (Mesgarani et al., 2009;

Mesgarani and Chang, 2012).

For this purpose, both the response and the stimulus spectrogram were resampled at 2 kHz. For

the stimulus this was achieved by allowing neighboring time-bins to overlap by multiple samples,

concretely the stimulus was divided into overlapping sections of 512 samples, starting at round

(it�SRsound/SRspectrogram) for each time step it, the acoustic stimulus’ sampling rate

SRsound = 97.65625 kHz, and the desired spectrogram sampling rate of 2 kHz. Neighboring stimulus

bins are thus not independent, but the match between stimulus and response sampling rate is

required for the general estimation procedure. Based on the chosen stimulus representation, no

phase-based fine-structure predictions are possible, therefore, all analyses relating to temporal pre-

cision thus relate to envelope fine-structure. All displayed spectrograms are shown in the same scale,

dB scaled (10 log10).

The reconstruction procedure was carried out as described in detail before (Mesgarani et al.,

2009). Briefly, with the stimulus spectrogram denoted by S(t,f), the responses by R(t,n), and the

reconstruction kernels per frequency band by gf t; nð Þ, the assumed response-stimulus relation can be

written as

Ŝ t; fð Þ ¼ t
X

n

P

gf t;nð ÞR t� t;nð Þ (1)

The kernels gf can be estimated via the classical normal equation

gf ¼ C�1

RR þl I
� �

CRSf (2)

with the cross-correlation term CRSf ¼ RSTf , and the response correlation matrix CRR ¼ RRT , including

a ridge regression term to avoid degeneracies in the inversion of CRR (see Mesgarani et al., 2009

for a more detailed derivation) with l¼ 0:1. During crossvalidation, Equation 1 is then used to

reconstruct the stimulus from estimates of gf on the non-predicted stimulus sections. Each gf is
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based on the activity of all neurons n at a range of delays t, and thus given by a matrix (see

Figure 3A middle bottom for an example). The stimulus was constrained to 300–4400 Hz, slightly

extending the range of the characteristic frequencies (CFs, [1.18, 3.05] kHz) of the present sample

(see Figure 3B, blue dots indicate the CFs of all cells).

The quality of reconstruction was assessed using correlation coefficients between the original and

the reconstructed stimulus. The displayed values (Figure 3) are averaged between the cross-vali-

dated (divided into 10 segments) and the insample estimates, based on considerations regarding

the influence of noise on estimating model-performance (Ahrens et al., 2008). Further, the original

stimulus and the reconstruction were compared using conditional level densities (see below, Fig-

ure 3), the width of the autocorrelation (Figure 4E), the frequency spectrum of the activations in the

spectrogram (Figure 4F), and the spectral auto-correlation (Figure 4G).

The conditional level densities (CLD) were computed as the joint histogram across levels between

the real and the reconstructed spectrogram, normalized by the probability of the level in the real

stimulus. The normalization was introduced to highlight the differences that occur mostly at the stim-

ulus extremes, which are less probable in the distribution of levels. Hence, a column in a CLD sums

to one, and constitutes the (empirical) conditional probability density of the estimated spectrogram,

relative to the original spectrogram. We also computed differences of two CLDs to highlight

changes between reconstructions (e.g. Figure 4I,J): the difference here indicates a relative (i.e.

between the reconstructions) prevalence/scarcity of levels in the reconstruction in relation to the real

stimulus.

The spectral autocorrelation was computed as a cross-correlation across frequencies at every

timestep, averaged over the length of the stimulus (Figure 4G). It indicates how predictable the

envelope level is across frequencies for the different reconstructions.

Simulation of subtractive inhibition
We extended our simulation of subtractive inhibition to include an estimate of previous activity in

order to match it more closely with the experimentally measured delay and temporal dynamics. Inhi-

bition was modelled to depend on the recent history of ANF firing activity in this CF range: First the

PSTH of a given ANF input was time shifted by a time tc, and then integrated with an exponential

kernel with a time-constant tI to obtain an intermediate representation AI(t). The resulting signal

was passed through a static, sigmoidal nonlinearity given by

SI tð Þ ¼
I0

1þ e�S AI tð Þ�Oð Þ

The sigmoid’s shape is controlled by I0, S and O, where I0 is the instantaneous rate of inhibition

that is maximally subtracted, S is the (inverse) slope of activation, and O the value of the integrated

signal AI, where the sigmoid reached 50% of I0, hence, controlling the horizontal offset. These three

steps account for the integration (tI ), nonlinear spike-elicitation (S, I0, O) and the conduction delay

(tc). We manually estimated a set of parameters that accounted best for each SBC’s failure rates

under spontaneous and natural stimulation, as well as the overall reconstruction quality and variance

(see Figure 2—figure supplement 1 and Figure 3—figure supplement 1): The first three parame-

ters were set fixed across all cells to tc ¼ 0:5 ms, tI ¼ 3 ms, S¼ 5. The last two parameters were set

individually per cell to match the experimentally observed failures rates (Figure 2—figure supple-

ment 1). Automatic fitting was infeasible since there appeared to be many plateaus due to the dis-

crete nature of the spikes.

The resulting output of the model constitutes a rate of spikes and was then subtracted from the

neurons instantaneous activity by deleting the corresponding number of spikes (randomly across tri-

als) in this time bin. If the number of existing spikes per bin was lower than the number of spikes

allocated to subtraction, the individual bin was set to 0.

Prior to applying the subtractive inhibition, the spontaneous failure rate was accounted for by

removing a random set of spikes, whose size was matched to the spontaneous failure rate of the

cell.
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Statistics
Data sets were tested for Gaussianity using the Shapiro-Wilk test (Shapiro and Wilk, 1965). Within-

subject comparisons were performed by paired t-test (normally distributed) or Wilcoxon signed rank

test (otherwise). For interpretation of all results, a p-value less than 0.05 was deemed significant,

where p-values<10�5 are reported as p<0.001 in the text and figures. The effect size was calculated

using the MES toolbox in Matlab (Hentschke and Stüttgen, 2011) and reported as Cohen’s U1. No

statistical methods were used to pre-determine sample size. Exact p-values and test statistics are

summarized in Table 1.

Acknowledgements
This work was supported by the German Research Foundation (DFG Priority Program 1608 ‘Ultrafast

and temporally precise information processing: Normal and dysfunctional hearing’ [RU390/19–1,

RU390/20–1]), and Marie Sklodowska Curie Fellowship 660328. The authors thank the three anony-

mous reviewers for their constructive feedback which substantially improved the manuscript. The

authors declare no competing financial interests.

Additional information

Funding

Funder Grant reference number Author

Deutsche Forschungsge-
meinschaft

RU 390/19-1 Rudolf Rübsamen
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