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Abstract

Background

Explosive movement requires that the individual exerts force and power with appropriate

magnitude and timing. These coordination aspects have received less attention despite

being a basic prerequisite for daily mobility and physical autonomy, especially in older peo-

ple. Therefore, the purpose of this study is to characterize the effect of age on inter-joint

coordination during explosive movement.

Methods

Twenty-one elderly and twenty young participants performed three maximal vertical jumps,

while kinematics were recorded throughout each squat jump. Inter-joint coordination and

coordination variability were calculated for selected sagittal hip-knee, knee-ankle, and hip-

ankle joint couplings using the continuous relative phase method.

Results

The young participants produced significantly greater jump height performance (0.36 ± 0.07

m vs. 0.12 ± 0.04 m, p < 0.001). The mean absolute continuous relative phase for ankle-

knee and knee-hip joint couplings were significantly greater for the elderly in comparison to

the young group (p < 0.01 for the both). No significant differences between senior and

young participants in the mean absolute continuous relative phase for ankle-hip joint cou-

plings (p = 0.25) was observed. However, there was significantly more variability in inter-

joint coordination in the elderly marked by greater continuous relative phase variabilities in

ankle-knee, ankle-hip and knee-hip joint couplings (p < 0.001) than those observed in young

adults.

Conclusion

In this study, seniors demonstrated proximodistal inter-joint coordination but with different

delays in the pattern of inter-joint coordination during squat jumps compared to young
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adults. In addition, a higher continuous relative phase variability in the elderly may be

needed to improve stability or compensate for strength deficits in jump achievement.

Introduction

Previous studies have observed a strong association between explosive performance and func-

tional abilities in older adults [1, 2]. For instance, a loss of maximal and explosive force during

multi-joint tasks leads to biomechanical impairments that might affect the ability to perform

daily activities and cause disability and mortality risk [3–5]. Vertical jumping requires the abil-

ity to accelerate a mass as quickly as possible in the shortest time. Though it is not a common

daily life activity performed by seniors, the vertical jump is a simple task to investigate maximal

power production. In a previous study, lower joint power in the elderly was observed when

performing maximal vertical squat jumps [6]. This lesser power resulted from both lower

moment and angular velocity produced at each lower limb joint [6–8]. Other studies have indi-

cated that age-related deficits in joint work occurred for all lower limb joints in squat jumping

[9, 10]. However, the work distribution among the lower limb joints was not significantly dif-

ferent between old and young adults, contrary to outcomes observed during walking, running,

or sprinting activities [11–14].

The dynamic parameters of the lower limbs (i.e. joint power and mechanical work) during

explosive tasks are also influenced by inter-joint coordination effectiveness. Indeed, during

dynamic tasks in soccer, the preservation of high neuromuscular control is required to limit

the decrease in power and interlimb coordination in the elderly [15]. In addition, it was dem-

onstrated that vertical jump height is maximized in the young population when an optimal

proximodistal joint extension is performed [16, 17]. By contrast, in the elderly, Haguenauer

et al. [18] highlighted a simultaneous lower limb joint extension during the push-off phase of

the squat jump. During an explosive leg press task performed as quickly as possible, Wilson

et al. [19] observed a similar pattern in the coordination strategies between young and senior

populations. In conclusion, the differences in the movement processes and motor patterns due

to the effect of age are still unclear in the case of explosive movements.

In addition to the controversial results on inter-joint coordination cited above, Wilson

et al. [19] observed a reduced variability in joint coordination strategies in older adults during

a leg press task. For these authors, this smaller joint coordination variability may be explained

by an inability of seniors to control multiple joints when lower limbs are challenged during

fast movement, which would be related to an increase of muscle co-contraction [19]. Greater

variability may offer the movement control systems the flexibility to make adjustments in

coordination while ensuring successful completion of the intended motor act [20, 21].

Although previous studies have yielded information about the effect of age on inter-joint coor-

dination, to the best of our knowledge, the variability of inter-joint coordination has only been

explored during closed-loop tasks, such as a leg press, at relatively low forces, while open-loop

tasks, like vertical jumping at body weight, may lead to different results. In this context, the

continuous relative phase (CRP) commonly implemented to characterize inter-joint coordina-

tion for clinical and sport applications [22–24] could be used to address the lack of literature

on the effect of age on inter-joint coordination during vertical jumping.

The purpose of this study was twofold: 1) to characterize inter-joint coordination in the

elderly and 2) to determine its variability during the push-off phase of a maximal squat jump-

ing task. It was hypothesized that (1) the elderly display an altered strategy of proximodistal

Continuous relative phase (CRP) and variability with ageing
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joint extension of the lower limb and (2) display an increased variability in joint coordination

strategies.

Methods

Participants

Twenty young men (age: 23.1 ± 2.79 years, height: 1.8 ± 0.03 m, mass: 68.8 ± 6.78 kg, body

mass index (BMI): 21.8 ± 1.42 kg.m-2) and twenty-one older men (age: 74.48 ± 4.6 years,

height: 1.70 ± 0.05 m, mass: 79.2 ± 10.2 kg, BMI: 27.2 ± 2.96 kg.m-2) volunteered to participate

in this study. To differentiate between the two groups, some inclusion criteria were taken into

consideration. The seniors had to: a) be over 65 and under 85 years old (World Health Organi-

zation [25]); b) actively participate in structured group exercise (Nordic walking, yoga, gym-

nastics), individual physical activity (gardening, DIY), or sport (cycling, trekking, tennis,

boules); and c) engage in at least 150 minutes of moderate-intensity aerobic physical activity

throughout the week, or at least 75 minutes of vigorous-intensity aerobic physical activity

throughout the week, or an equivalent combination of moderate- and vigorous-intensity activ-

ity (determined by a physical activity questionnaire, the PAQUAP [26]). The young partici-

pants had to a) be between 18 and 30 years old; b) practice two hours of physical activity per

week; and c) not present recent or current musculoskeletal disorders. As proposed by Greig

et al. [27], older participants were also selected according to the exclusion criteria to define a

standard for ‘‘medically stable” subjects for exercise studies. These exclusion criteria were

designed both to ensure safety and to define degrees of freedom from diseases that could

impair physical performance. The elderly completed a questionnaire to confirm the absence of

a) severe cardiopulmonary and b) neurological impairments; c) balance disorders; or d) recent

musculoskeletal disorders. For both groups, the passive range of motion of the ankle, knee,

and hip joints was tested to ensure e) the absence of pathological joint mobility [28]. The

experimental procedures were performed in accordance with the current laws of the European

Union and were approved by the Ethics Committee of the University of Lyon. All participants

were carefully informed about the experimental procedures and the possible risks and benefits

associated with participation in this study and signed an informed consent.

Experimental procedure

Before the tests, all participants performed a standardized five-minute warm-up on a cycloerg-

ometer (Ergometer X7, Kettler, Germany). Participants also practiced maximal vertical squat

jumping with their preferred initial posture to be familiarized with the experimental test.

Then, the participants were filmed for four seconds while standing in an upright position for a

calibration process. The test consisted of performing three maximal squat jumps with the

hands on the hips and without any countermovement [29]. A three-minute rest interval

between each trial was implemented to avoid the effects of muscle fatigue. Participants were

instructed to jump as high as possible while limiting lateral and horizontal displacement. To

enable the detection of the start of the push-off (offline), the participants held the initial pos-

ture for one second.

Instrumentation and data collection

For kinematic analysis, landmarks were located by the same experimenter on the right acro-

mion, greater trochanter, lateral epicondyle of the femur, lateral malleolus, and the fifth meta-

tarsophalangeal joint, according to previous studies analyzing vertical jumping [6, 24]. Squat

jumps were filmed in the sagittal plane with a 2D camera operating at 100 Hz (Ueye, IDS UI-

Continuous relative phase (CRP) and variability with ageing
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2220SE-M-GL; IDS Imaging Development System GmbH, Obersulm, Germany). The optical

axis of the camera was perpendicular to the plane of motion, and the lens was located 4 m

from the participant. In addition, ground reaction forces were measured with a force platform

sampled at 1,000 Hz (AMTI, model OR6-7-2000, Watertown, Massachusetts, USA).

Data treatment

The dynamic data were smoothed with a zero-lag fourth-order low-pass Butterworth filter

with a cutoff frequency of 15 Hz [30] and downsampled to 100 Hz. The presence of any coun-

termovement was visually controlled for each trial. The mean and standard deviation values of

the vertical ground reaction force were determined in the first second during which the subject

held the initial position. The beginning of the push-off corresponded to the instant after the

first second when the vertical ground reaction force increased more than two standard devia-

tion values above the body weight one value [6].

The reflective markers defined a 2D kinematic model composed of four body segments

(feet, lower legs, upper legs, and “head-arm-trunk”) and four degrees of freedom, by gathering

the left and right sides (Fig 1). Joint angles were obtained by multibody kinematic optimization

to limit the negative effects of soft tissue artifacts [31]. Such an algorithm consists of minimiz-

ing the sum of the quadratic difference between the measured and reconstructed marker posi-

tions. Finally, the ground reaction force and kinematic signals were synchronized and cut to

keep only the push-off phase for analysis.

Vertical jump height and continuous relative phase

The vertical jump height was defined as the difference between the height of the body mass

center (determined from Winter et al. [30]) at the apex of the jump and its height when the

participant was standing upright with heels on the ground.

The CRP was calculated between each joint according to Hamill et al. [32] to assess inter-

joint coordination during squat jumping. The phase plot was obtained for each joint (j) by rep-

resenting the normalized angular velocity ð _yÞ with respect to its corresponding normalized

angle (θ), according to Eq 1 and Eq 2:

y
norm
j ¼

2 � ½yj � minðyjÞ�
maxðyjÞ � minðyjÞ

Eq 1

_ynorm
j ¼

_y j

max½maxð _y jÞ;maxð� _y jÞ�
Eq 2

Then, the phase angle (φ) ranging between 0˚ and 180˚ was calculated as the four-quadrant

arctangent angle formed between the normalized angle velocity and joint angle (Eq 3). Finally,

the CRP was calculated between each joint by the difference between the phase angles (Eq 4)

φj ¼ tan� 1ð _ynorm
j =y

norm
j Þ Eq 3

CRPa� k ¼ φankle � φknee

CRPk� h ¼ φknee � φhip

CRPa� h ¼ φankle � φhip

2

6
6
4

3

7
7
5 Eq 4

Continuous relative phase (CRP) and variability with ageing
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Consequently, the CRP ranged between -180˚ and 180˚. A CRP close to 0˚ meant that both

joints evolved in phase, while a CRP close to 180˚ or -180˚ corresponded to an anti-phase[32].

A negative value meant that the proximal joint was leading the distal joint [32]. Finally, two

parameters were considered to compare inter-joint coordination between senior and young

adults during the push-off phase of a squat jump. Firstly, the mean absolute CRP (MACRP)

for each joint coupling was computed [33]. Secondly, for each joint coupling, the standard

deviation of the absolute CRP of the three jumps was computed at each time point, and the

mean standard deviation was calculated to assess the CRP variability [33].

Statistics

The difference in vertical jump height between the two groups was tested with independent

Student’s t-tests. The linear mixed model was implemented to assess the effect of the group

(young vs. elderly) and the joint coupling (knee-hip vs. ankle-knee vs. ankle-hip) on the

MACRP and the CRP variability. As within-participants repeated measures were performed

for the joint coupling fixed effect, participants were entered as random intercepts. In addition,

the BMI of the participants was also entered as a fixed effect to assess whether this parameter

may influence the MACRP and CRP variability. The p-values were obtained by likelihood

ratio tests of the full model against the model without the effect in question. The level of signif-

icance was set at p< 0.025 (Bonferroni correction: 0.05/2 dependent variables). When a main

or interaction effect was revealed by the linear mixed model, post-hoc comparisons were per-

formed using the Tukey’s honestly significant difference procedure. The linearity, homosce-

dasticity, and normality of the residuals were graphically controlled. For post-hoc

comparisons, effect sizes (ES: Cohen’s d) and 95% confidence interval were calculated. The sta-

tistics were performed with R software (R 3.2, RCore Team 2014, package lme4 [34]).

Results

Young adults jumped, on average, about three times higher than senior adults (0.36 ± 0.07 m

vs. 0.12 ± 0.04 m, p< 0.001; 95% confidence interval [-0.28, -0.20]; ES: 4.31).

The linear mixed model revealed no effect of the BMI on the MARCP, while the interaction

effect between the group and joint coupling on the MACRP was observed. Post-hoc tests

showed no significant differences between the elderly and young groups for ankle-hip joint

couplings (p = 0.25; Table 1 and Fig 2). However, the MACRP for ankle-knee and knee-hip

joint couplings were significantly higher for the elderly in comparison to the young adult

group (p< 0.01 for both).

Fig 1. Biomechanical model. Setup of the experimental procedure combined with the kinematic model and the

corresponding joint angles.

https://doi.org/10.1371/journal.pone.0221716.g001

Table 1. Mean and Standard deviation of the mean absolute continuous relative phase of the young and elderly groups.

Elderly Young p value 95% CI (E-Y) ES Power

ankle-knee 6.3 ± 2.2 4.6 ± 1.6 � < 0.01 0.43–2.91 0.86 0.78

knee-hip 7.9 ± 2.7 10.5 ± 2.8 � < 0.01 -4.32 –-0.87 0.95 0.85

ankle-hip 13.9 ± 2.4 14.9 ± 3.0 0.25 -2.72–0.73 0.40 0.24

CI: confidence interval; ES: Effect Size (Cohen’s d)

� means that Elderly are significant different from young adult group

https://doi.org/10.1371/journal.pone.0221716.t001

Continuous relative phase (CRP) and variability with ageing
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Finally, the linear mixed model revealed only an interaction effect between the group and

joint coupling on the CRP variability. Post-hoc tests indicated that the average CRP variabili-

ties for ankle-knee, ankle-hip, and knee-hip joint couplings in the elderly group were greater

(all p< 0.01) than those observed in the young group (Table 2 and Fig 3).

Discussion

The purpose of this study was firstly to characterize the inter-joint coordination in the elderly

and secondly to determine its variability during the push-off phase of a squat jumping task per-

formed maximally. The main findings were that young adults jumped on average three times

higher than seniors. In addition, both the elderly and young participants displayed proximo-

distal inter-joint coordination but with different delays of joint extension highlighted by differ-

ent MACRPs. Finally, the elderly performed their squat jumps with higher variability in inter-

joint coordination than the young adults.

The first hypothesis of this study was that the proximodistal sequential pattern of joint coor-

dination observed in young adults was altered in the elderly. Contrary to this hypothesis, these

findings support that a proximodistal coordination pattern was performed in vertical jumping

both for young adults and seniors, as already depicted in young adults [34, 35]. Considering

the age-related decline in neuromuscular function, this finding that healthy young and older

adults employ proximodistal patterns of inter-joint coordination might be somewhat unex-

pected. Indeed, elderly, compared with young adults, have deficits in muscle strength [36, 37],

muscle power [7, 38], and mobility [12, 13]. They are less able to integrate proprioceptive feed-

back [39] and to coordinate agonist–antagonist muscle pairs [40], critical in explosive move-

ment tasks. Likewise, Haguenauer et al. [18] exhibited that the initial joint extensions of the

Fig 2. Continuous relative phase. Average curves (blue line for young and red line for elderly groups) and standard deviations (blue and

red area) of the continuous relative phase with respect to push-off time. Time equal to 100% corresponds to the takeoff.

https://doi.org/10.1371/journal.pone.0221716.g002

Table 2. Mean and standard deviation of the continuous relative phase variability of the young (Y) and elderly (E) groups.

Elderly Young p value 95% CI (E-Y) ES Power

ankle-knee 2.45 ± 1.2 1.1 ± 0.4 � < 0.001 0.77–1.89 1.72 0.99

knee-hip 2.6 ± 0.9 1.6 ± 0.5 � < 0.001 0.54–1.47 1.43 0.99

ankle-hip 4.0 ± 1.8 2.3 ± 0.5 � < 0.001 0.93–2.62 1.52 0.99

CI: confidence interval; ES: Effect Size (Cohen’s d)

� means that elderly are significant different from young adult group

https://doi.org/10.1371/journal.pone.0221716.t002

Continuous relative phase (CRP) and variability with ageing
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hip, knee and ankle occurred simultaneously in seniors during squat jumping. However, the

study focused on an older population (mean age 82.6 years vs. 74.48 years) with a great age dif-

ference ranged from 79 to 100 years and reduced strength (30% lower jump height). Worsen-

ing physical performance was observed as early as the seventh decade [41, 42], which

accelerated between 78 and 81 years old [43], and might be associated with reduced function

in various daily activities [44]. This study was not designed to test this assumption, but there

were significant differences between the 70–80 age range observed in this study and the 80–89

+ age population observed in the study by Hagenauer et al. [18]. Nevertheless, these results

indicate an alteration in the proximodistal pattern of joint extension when comparing elderly

to young adults. The MACRP for knee-hip joint coupling was smaller in the elderly group,

meaning that hip joint extension followed the knee joint in comparison to the young group. In

contrast, the MARCP for ankle-knee joint coupling was greater in the elderly group, meaning

that the knee joint extension preceded the ankle in comparison to the young group. The knee

joint’s earlier involvement could be explained by the need for the elderly population to pro-

mote a faster increase in center of gravity velocity. In summary, these data suggest an adjust-

ment of motor coordination in healthy seniors, which might be an adaptation to a strength

deficit in this population.

The second aim of this study was to characterize the variability in coordination strategies in

vertical jumping. The inter-joint coordination variability observed in this study suggested an

alteration inside the proximodistal pattern of joint extension [45] and offered information

about physical impairment consequences due to the effect of age [46, 47]. A low CRP variabil-

ity indicated a rigid, stable pattern, while a high CRP variability suggested a more flexible or

potentially unstable pattern in inter-joint coordination. In this study, a greater variability of

inter-joint coordination was observed in seniors with a greater CRP variability for all joint

couplings in comparison to young adults. These results were opposite to those observed in

Wilson’s study [19], which investigated inter-joint coordination during a leg press task. These

authors observed lower variability in coordination of the lower limb during eight repetitions

of a leg press [19]. For these authors, the more rigid (consistent) movement strategies dis-

played by the older adults were likely adopted because of an inability to control the multiple

degrees of freedom present during the performance of a challenging coordination task [19].

When interpreting the results of this study, it is important to keep in mind that the variability

of inter-joint coordination was explored during a closed-loop task, such as a leg press, while

Fig 3. Variability of the continuous relative phase. Average curves (blue line for young and red line for elderly groups) and standard

deviations (blue and red area respectively) of the variability of the continuous relative phase with respect to push-off time. Time equal to

100% corresponds to the takeoff.

https://doi.org/10.1371/journal.pone.0221716.g003

Continuous relative phase (CRP) and variability with ageing
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vertical jumping is an open-loop task. The addition of an equilibrium constraint during lower

limb explosive movement might explain these different outcomes. Indeed, some research

results on exercise indicate a positive relationship between the task (i.e., intensity, duration)

and individual (i.e., physical, coordinative, and cognitive fitness) constraints to adjust motor

coordination [48, 49]. It could be hypothesized that the observation of high variability in the

squat jump task offers the system the flexibility to achieve stable balance in response to unsta-

ble external conditions [50]. Also, larger variability in older adults may be necessary to respond

to a combination of age-associated changes in cognitive, sensorimotor, and physiological per-

formance [51, 52]. Nevertheless, these results and the hypotheses posited require consideration

to draw conclusions. A high level of CRP variability could be characterized as a “functional

form of flexibility of the neuro-muscular system” observed in high-level athletes [50] as

opposed to a “detrimental coordinative feature” [19, 47, 53]. These results may be addressed in

terms of aging’s effect on explosive movement execution. Substantial evidence indicates that

the neural controller takes advantage of motor redundancy (motor abundance) at the joint,

muscle, and neural levels [54–57].

The main limitation of this study was the small sample size. The participant recruitment

was limited to healthy men between 69 and 85 years of age for potential safety concerns with

the jump protocol. Indeed, the choice of a healthy and active population does not provide a

complete view of aging’s effects, only an optimal one. Longitudinal assessments of jump per-

formance in a larger age range of participants are needed to complete this pilot study and to

better understand the effect of aging on variability and coordination strategies.

Conclusion

This study found that elderly compared to young participants demonstrated an altered inter-

joint coordination during squat jumping despite a preserved proximodistal pattern. These

results also displayed a higher variability in inter-joint coordination strategy in seniors. Due to

the high explosive demand of the squat jump task, it could be hypothesized that this is a strat-

egy used by the neuromuscular system to compensate for strength deficits or improve stability

in seniors.

These findings have important implications for the interventions provided to older adults

to preserve physical performance and functional abilities. The results suggest a benefit in the

practice of explosive exercises in open-loop tasks to improve the central nervous system’s abil-

ity to cope with the control of complex tasks.

Supporting information

S1 Dataset. Vertical jump height dataset. Vertical jump height of young and elderly group.

(XLSX)

S2 Dataset. MACRP and Variability of CRP dataset. Mean absolute continuous relative

phase and continuous relative phase variability of the young and elderly groups.

(XLSX)

Author Contributions
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Investigation: Sébastien Argaud, Benoit Pairot de Fontenay.

Continuous relative phase (CRP) and variability with ageing

PLOS ONE | https://doi.org/10.1371/journal.pone.0221716 September 9, 2019 9 / 13

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0221716.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0221716.s002
https://doi.org/10.1371/journal.pone.0221716


Methodology: Benoit Pairot de Fontenay, Karine Monteil.

Software: Yoann Blache.

Supervision: Yoann Blache, Karine Monteil.

Writing – original draft: Sébastien Argaud.
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