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Abstract: This paper highlights the capability of materials informatics to recreate 
“property phase diagrams” from an elemental level using electronic and crystal structure 
properties. A judicious selection of existing data mining techniques, such as Principal 
Component Analysis, Partial Least Squares Regression, and Correlated Function 
Expansion, are linked synergistically to predict bandgap and lattice parameters for different 
stoichiometries of GaxIn1−xAsySb1−y, starting from fundamental elemental descriptors. In 
particular, five such elemental descriptors, extracted from within a database of highly 
correlated descriptors, are shown to collectively capture the widely studied “bowing” of 
energy bandgaps seen in compound semiconductors. This is the first such demonstration, to 
our knowledge, of establishing relationship between discrete elemental descriptors and 
bandgap bowing, whose underpinning lies in the fundamentals of solid solution 
thermodyanamics.  

Keywords: III–V materials; semiconductor compounds; bandgap engineering; crystal 

stoichiometry; structure-property relationships; phase diagrams; high dimensional data; 

data mining; materials informatics 

 

1. Introduction 

Design and characterization of materials has traditionally been approached using thermodynamic 

principles of free energy to capture the relationships between various thermodynamic properties 

through phase diagrams [1]. Such descriptions are obtained from continuum representations of bulk 
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materials [2] and are often adequately expressed in terms of low order polynomial equations involving 

phenomenological parameters obtained heuristically or as fit to experiments [3]. However, it is widely 

recognized that such an approach tends to become approximate with the rapid discovery of new and 

complex materials, especially in the nanoscale regime. A classic example is the “effective-mass” 

description of semiconductor materials that starts losing relevance with the loss of periodicity at the 

nanoscale level, compounded with additional effects such as defects, doping, strain, etc. A natural 

solution to address the challenges of characterizing such complex materials across the misfit scale is to 

shift towards an atomistic description such as using first principles techniques [4]. However, despite 

rapid advances in computing, the first principles-based techniques for predicting properties of 

materials is extremely time consuming. Also, in many cases, the search process for new materials itself 

requires some direction. The problem becomes quite acute when dealing with multicomponent alloys 

that are potential candidates for many interesting applications. Thus, there is a lack of systematic 

guidelines that can allow experimentalists to investigate interesting composition spaces. Consequently 

the experimental approach has been to utilize a high throughput sample creation from different 

elements as a means of screening materials. 

Here, we implement a different strategy [5] for materials modeling, wherein we seek to establish 

structure property relationships, i.e., behavioral relationships between known discrete scalar 

descriptors associated with crystal and electronic structure, and the observed properties of the material. 

From this we can extract design rules that allow us to quantitatively describe the exact role of specific 

combination of materials descriptors towards governing a given property, such as the bandgap. This 

information could then be linked to a targeted first principles modeling step to provide a physical 

interpretation of mechanisms controlling bandgap.  

To drive home this point we select techniques from existing work on different data-mining 

approaches and demonstrate in the GaxIn1−xAsySb1−y system that an initial set of 21 elemental 

descriptors can be reduced to a set of five critical descriptors that capture the widely studied 

“bowing” [6] of energy bandgaps in compound semiconductors. Our primary focus in this paper is to 

demonstrate that using a judicious combination of materials informatics techniques can provide a novel 

bottom-up viewpoint of property phase diagrams for complex materials. 

2. A High Dimensional Data Approach to Bandgap Engineering  

2.1. Negotiating through Continuum Representations—e.g., Correlated Function Expansion 

The conceptual and mathematical development of correlated function expansion (CFE) has already 

been in use for some time now [7]. We summarize the technique briefly and review how such a 

technique can be applied to investigate properties throughout the composition space of complex 

materials. The underlying principle of CFE is that, when dealing with complex physical and chemical 

systems with dependencies on multiple independent and correlated components, the effects of these 

components on a particular property, e.g., bandgap, can be deduced from a “systematic procedure to 

render a high dimensional composition space down to a rapidly convergent hierarchical sequence of 

lower dimensional subspaces” [7]. A rigorous description of each of these subspaces can then be 

combined to estimate the material property value anywhere in the entire composition space. 
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Following the work in [8], we consider the example of the quaternary semiconductor alloy 

GaxIn1−xAsySb1−y. The material property of interest (in this case the bandgap or lattice constant) is 
expressed as ( )x  where 1 2{ , ,..., }Nx x x x  is the collection of N component fractions. In the CFE, the 

model output property for a multicomponent system 1 2( ) ( , ,..., )Nx x x x  is expressed as a hierarchical 

correlated function expansion in terms of the input composition variables,  

0 1,2,3, , 1 2
1 1 1

( )    ( ) ( , ) + + ( , , , )
N N

i i ij i j N N
i i j

x x x x x x x    
   

       

Here, 0  is a constant, ( )i ix  describes the independent role of the ith component, ( , )ij i jx x gives the 

correlated action of the variables xi and xj, etc. In the case of GaxIn1−xAsySb1−y this quaternary 
compound can be chemically resolved into constituent binary and ternary combinations. The constant 

0  would relate to the constituent binary compounds (Table 1) while the function ( )i ix  would relate 

to the next higher order term, i.e., the constituent ternary compounds. 

Although this equation looks similar to the standard Taylor series expansion, the functional form of the 

correlation terms can be highly nonlinear making it different. A truncation of the CFE, even to first order, can 

be nonlinear due to the nonlinear nature of the functions ( )i ix  (Figure 1) as can be seen from the functional 

expressions in Table 2. In the context of bandgap it is this non-linear nature that is widely referred to as 

“bowing”, i.e., the bandgap of an alloy does not change linearly as a function of the fraction of its constituent 

elements. The deviation from Vegard law behavior that is associated with the bowing is manifested through a 

complex combination of microstructural phenomena such as phase separation, clustering and spinodal 

decomposition. Subsequent sections of this study show how, through data mining, we can identify key 

parameters associated with the electronic structure of elements that contribute to the bowing behavior. 

Table 1. Bandgap and lattice constant of binaries ( 0 ). 

Binary Bandgap (eV) Lattice Constant (Å)

GaAs 1.43 5.653 
InAs 0.36 6.058 
GaSb 0.68 6.095 
InSb 0.17 6.478 

Table 2. Bandgap and lattice constant of ternary compounds [9] (used in constructing ( )i ix ). 

Ternary Bandgap (eV) Lattice Constant (Å) 

GaxIn1−xAs 0.61x2 + 0.46x + 0.36 6.058 − 0.405x 
GaxIn1−xSb 0.415x2 + 0.139x + 0.172 6.478 − 0.383x 
InAsySb1−y 0.58y2 − 0.14y + 0.18 6.478 − 0.420y 
GaAsySb1−y 1.2y2 − 0.5y + 0.73 6.095 − 0.442y 
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Figure 1. The constituent ternary compounds that combine in different ratios to form the 

quaternary semiconductor GaxIn1−xAsySb1−y. Here, the bandgap of each ternary compound 

is plotted as a function of stoichiometry using phenomenological expressions (Table 2) 

obtained from fits to experiments (a) GaxIn1-xAs; (b) GaxIn1-xSb; (c) InAsySb1-y; and  

(d) GaAsySb1-y. 

 

Once the values for the constant 0    and non-linear functional forms of ( )i ix  are obtained, the 

bandgap/lattice constant ( ) x  for the quaternary combination can be determined. The details of the 

work are presented in [7,8]. We provide a simple reproduction of the results in this paper. For the 

reader’s convenience we would like to mention that the mathematics of the CFE formulation, in this 

case, essentially leads to calculation of the bandgap of the quaternary semiconductor GaxIn1−xAsySb1−y 

as an interpolation of the values obtained from the ternary compound equations (Table 2) with the 

constant binary compound values as the boundary conditions. The result shown in Figure 2a represents 

the estimated bandgap throughout the composition space of the quaternary compound. The contour 

lines represent regions having the same bandgap. The corners represent the values of the binary 

compounds, which form the “boundary condition” for the system, while the line joining any two binary 

compounds along the edges represent the bandgap for a ternary compound and visually follows the 

trend plotted in Figure 1. The bowing seen in Figure 2 obviously arises from the basis functions plotted 

in Figure 1, which are obtained as phenomenological fits to experiment and inherently have bowing 

incorporated in them. In the case of the lattice constants in Figure 2b, it can be seen that the 

relationships are very linear because they are based on a Vegard’s Law treatment. In the next section 

we will present treatment of this problem at a lower level of abstraction, namely using a set of 

elemental descriptors that form a discrete set, to determine the cause of the bowing. 
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Figure 2. (a) Estimated bandgap for the quaternary semiconductor alloy GaxIn1−xAsySb1−y 

following the correlated function expansion (CFE) procedure in [8]. The contours truncated 

at 1.1 eV represent iso-“bandgap” regions; (b) Estimated lattice constants for the 

GaxIn1−xAsySb1−y.  

 

2.2. Data Mining on Discrete Data  

When dealing with a discrete data approach for exploring the property space of complex materials 

like GaxIn1−xAsySb1−y, the strategy is to first identify a set of descriptors or parameters associated with 

the fundamental elements (in this case Ga, As, In, Sb). 

These descriptors need not be related themselves except for the fact that they each describe some 

physical characteristic that may be relevant to our desired property (e.g., bandgap). The question of 

which and how many descriptors to choose is a topic that has been extensively studied in [10–15]. 

Here we follow the procedure adopted in [11]. The properties analyzed (listed in Table 3) were 

collected primarily from [16,17]. The primary challenge when considering a variety of descriptors of 

the elements is the significant multi-dimensionality. A variety of relationships can exist between 

descriptors, many of which may not be evident. The challenge then is to develop a representation of 

the elements, which captures the complex and multiple relationships. 

Table 3. High dimensional representation of constituent atomic elements allowing the 

linking of various electronic properties with structural/crystal properties (a total of 

21 descriptors in this case).  

MB = Martynov-Batsanov electronegativity [(eV)1/2]; AN = Atomic Number; MP = Melting Point (K);  

PR = Pseudopotential core radii sum; NV = Valence electron number; RH = Hall Coefficient (10-11 m3C-1);  

CR = Covalent Radius (Å); PEN = Pauling electronegativity; SH = Specific Heat (J/gK); HV = Heat of 

Vaporization (kJ/mol); AW = Atomic Weight.  
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Element MB AN MP PR Nv RH CR PEN SH HV AW 

Ga 1.7 31 302.93 1.695 3 −6.3 1.25 1.81 0.37 258.7 69.723 

In 1.63 49 429.32 2.05 3 −2.4 1.5 1.78 0.23 231.5 114.818 

Sb 2.14 51 903.89 1.765 5 −198 1.41 2.05 0.21 77.14 121.757 

As 2.27 33 1090 1.415 5 450 1.21 2.18 0.33 34.76 74.92159 
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Table 3. Cont. 

Element C Sig DT FIP SIP EU WF AR BP D 

Ga 25.86 0.0678 320 6 26.51 20.51 4.2 1.22 2676 5.907

In 26.74 0.116 108 5.78 24.64 18.86 4.12 1.63 2353 7.31 

Sb 25.23 0.0288 211 8.64 25.1 16.46 4.55 1.82 1908 6.691

As 24.64 0.0345 282 9.81 30 20.19 5.2 1.25 889 5.78 

C = Heat Capacity (J/mol-K); Sig = Electrical Conductivity (106/cm-ohm); DT = Debye Temp (K);  

FIP = First Ionization Potential (eV); SIP = Second Ionization Potential (eV); EU = Effective U (eV);  

WF = Work Function (eV); AR = Atomic Radius (Å); BP = Boiling Point (K); D = Density at 293 K (g/cm³). 

2.2.1. Dimensionality Reduction of Discrete Data—e.g., Principal Component Analysis 

The descriptor reduction method used here is the principal component analysis (PCA) [18–20]. 

PCA provides a projection of complex datasets onto a reduced, easily visualized space (Figure 3) while 

ensuring a minimization of loss of information. By capturing the correlated behavior of the descriptors 

PCA allows transformation of the original high dimensional coordinate system onto a reduced set of 

axes called principal components (PCs). Each newly constructed axis (or PC) is orthogonal to every 

other PC, thus capturing unique information.  

Figure 3. (a) Principal component analysis (PCA) scores plot demonstrating contrasting 

behavior of the individual elements that combine to form the quaternary semiconductor 

GaxIn1−xAsySb1−y; (b) The circular arrangement of PCA loadings plot shows that each of 

the 21 descriptors plays a role in distinguishing between the atomic elements; (c) The 

histogram captures the contribution of each elemental descriptor towards each PC. The 

total variance captured by the first 2 PCs (~93%) is sufficient to describe the sample space. 
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The PCs do not necessarily have an obvious physical meaning, but rather are a combination of 

descriptors which explain the largest variation in the data. In mathematical terms, PCA decomposes 

the original data matrix containing the elements (usually termed as samples) and the associated 

properties of the elements (usually termed as descriptors) into individual scores and loadings matrices. 

The scores values classify the samples in the PC space (Figure 3a) in terms of their dependence on the 

descriptors, i.e., they effectively estimate the effect of one particular combination of descriptors on the 

samples. Similarly, the loadings values classify the descriptors (Figure 3b) in the PC space in terms of 

their separation of the elements. The advantage of PCA is that, since each PC uniquely captures the 

effect of a certain combination of relevant descriptors, typically a few PCs are sufficient for describing 

a system. For example, in the bivariate histogram in Figure 3c where the blue regions correspond to 

PC1 and the red regions correspond to PC2, the two PCs together capture ~93% of the variance of the 

data in Table 3. Therefore, a dataset of n-dimensions (21 initial descriptors in this case) can be reduced 

to a few dimensions (2 PCs) while capturing ~93% of the original information. The reduction in 

dimensionality makes trends and correlations, which are “hidden” in the data, become easily visualized 

and described in PC space as can be seen in Figure 4. 

Figure 4. A close inspection of the loadings plot reveals that the 21 descriptors can be 

grouped into clusters comprising correlated variables. Each such cluster can be represented 

by a single descriptor, thus greatly reducing the dimensionality of the problem.  

 

Once the correlations in the data are captured, each correlated group can be represented by a single 

descriptor that can be investigated closely to determine if it contributes to a structure-property 

relationship. Similarly, the descriptors which are diagonally opposite in the PC space are negatively 

correlated and can also be reduced into a single descriptor. Following the procedure in [11] we use a 

reduced set of five descriptors: (1) Martynov-Batsanov electronegativity (EN); (2) Atomic Number (AN); 

(3) Melting Point (MP); (4) Zunger’s Pseudopotential radii (PR); and (5) Number of Valence electrons (NV).  
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2.2.2. Characterizing Ternary Compounds Using the Reduced Set of Elemental Descriptors 

We now show how the discrete data description at the elemental level can be combined to 

encompass complex materials. We would like to reiterate here that the overall goal is to link the 

elemental descriptors of Figure 4 to the “bowing” of bandgaps in bulk semiconductors (Figure 2). To 

do so, we first derive a new set of discrete values for the ternary compounds in Figure 2, using the 

same descriptors as was used for their constituent elements. The parameterization of these descriptors 

for the ternary compounds is done using a relatively simple strategy originally proposed by  

Villars et al., which involves a linear weighting model [21]. The formulations are given below for 
ternary compounds of type x y zA B C  if x y z   and 1x y z   : 

      2 2 2A B A C B CEN x EN EN x EN EN y EN EN       

      A B C
AN x AN y AN z AN    

      A B C
MP x MP y MP z MP    

      2 2 2A B A C B CPR x PR PR x PR PR y PR PR       

      v v v vA B C
N x N y N z N    

In order to determine the effect of these descriptors on the properties of a ternary compound, say 

e.g., GaxIn1−xAs, we generate a dataset of properties for different stoichiometries of the compound (for 

x = [0,1] in steps of 0.1) using the rules mentioned above. It is seen that the quantity vN  remains a 

constant, independent of x. Therefore, it plays no role and can be dropped. A PCA analysis of the 

remaining descriptors combined with the stoichiometry parameter “x” is shown in Figure 5.  

Figure 5. PCA analysis using the reduced dimensionality of descriptors (a) Scores plot for 

GaxIn1−xAs: The data-points labeled 1 through 11 represent increasing concentration of Ga 

(i.e., x = 0, 0.1, …, 1). It is clear that the samples where the In concentration exceeds the 

Ga concentration form a separate “orthogonal set”; (b) The possible reasons for such 

behavior are captured by the histogram indicating that descriptors 2 (EN) and 5 (PR) 

potentially play a role since they contribute significantly to PC2 (which is orthogonal to PC1). 

 

A two PC model captures nearly 100% of the variance. The scores plot shows how the samples can 

be grouped into two sets, one with majority Ga concentration and the other with majority In 
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concentration, forming two distinct “phases”. One of the phases depends strongly on PC1 while the 

other varies with PC2. There is a possibility that such “phase” formation might contribute to bowing of 

the bandgap. The variance plot shows that the likely causes might be descriptors 2 (EN) and 5 (PR), 

since they contribute more significantly to PC2. Descriptors 1, 3 and 4 show an almost similar trend, as 

expected, since AN and MP vary linearly with stoichiometry. If we remove the descriptors 2 and 5 

from the initial data set and run a PCA solely on descriptors 1, 3 and 4 it is seen that these descriptors 

follow the same pattern and are captured by just PC1 with a 100% variance, as shown in Figure 6. 

Figure 6. The removal of EN (Martynov-Batsanov electronegativity) and pseudopotential 

radius (PR) from the set of descriptors (a) removes the orthogonality and (b) the remaining 

descriptors are captured by a 1 PC model (i.e., PC1 = 100% variance). 

 

2.3. Relating the Elemental Descriptors to Bandgap Bowing  

We now discuss how one can relate the effect of the discrete elemental descriptors, discussed in the 

earlier section, to the continuum representation for bandgap given by the expressions in Table 2. The 

technique we adopt is Partial Least Squares (PLS) regression [22,23] using the elemental descriptors as 

“predictor variables” and the bandgap as a “predicted variable”. The working of PLS is quite similar to 

PCA, whereby the dataset is reduced into a set of orthogonal vectors that eliminate the effect of latency 

and collinearity. In order to predict the behavior of an output quantity (predicted variable) as a function 

of input variables (predictor quantities) an initial “training” data set is created that finds a relationship 

between the predictor and predicted variables by maximizing the covariance between them.  

In order to generate such training data for GaxIn1−xAs, we include an additional column representing 

the predicted quantity (bandgap), calculated from the expressions in Table 2 for the same range of 

compositions (i.e., x = 0, 0.1, …, 1). In continuation with the PCA analysis in the earlier section we 

initially generate two PLS models (Figure 7a,b) one of which uses predictors X, AN and MP, while the 

other uses EN and PR. The predicted results are then compared with the nonlinear heuristic equation 

for bandgap of GaxIn1−xAs. The first model shows a bowing trend in the opposite direction while the 

second one shows orthogonal behavior due to the effect of EN and PR. However, when all predictor 

variables are considered together, a more realistic trend begins to appear, showing that all the predictor 

variables indeed have some contribution to the bowing trend of bandgap. A similar analysis was 

carried out with the other combinations of ternary compounds, namely GaxIn1−xSb, GaAsySb1−y and 

InAsySb1−y, leading to identical results in all these cases.  
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Figure 7. PLS (NIPALS) validation of PCA results and investigation of correspondence 

between bowing and elemental descriptors. The heuristic equations are plotted as a 

continuum (black line) and some samples (red circles) are chosen to train the Partial Least 

Squares (PLS) model. The prediction of PLS (blue diamonds) are then plotted for 

comparison. (a) Using the descriptors governed by PC1 (X, AN, MP) alone results in an 

inverse bowing trend; while (b) using MBEN and PR alone (PC2) shows orthogonal trends 

in the PLS prediction, clearly not in line with the continuum trend; (c) A “complete” set of 

descriptors including the contributors to PC1 and PC2 shows how the combination of 

results of (a) and (b) add up to give a more realistic trend.  

 

It is important to note that each of the predictor variables is representative of a cluster of correlated 

variables as shown in Figure 4. The refinement of these descriptors and the potential discovery of new 

and yet to be anticipated descriptors can be accomplished through an ensemble of informatics based 

methods as we have shown in previous work on other classes of materials chemistries [24,25]. Such 

approaches will be explored in future studies. The next step is to determine the quantitative relation 

between each of these descriptors and the thermodynamics of the solid solubility problem, which we 

leave for future work. In summary, this study serves to emphasize the value of data mining methods 

for capturing the underlying physics of “bowing” of bandgaps, which can be generalized to capturing 

property phase relationships of complex materials starting from discrete elemental descriptors, thus 

providing a bridge for representations from discrete to the continuum. 
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3. Conclusions  

This paper has demonstrated the potential of data mining to redefine how we view property phase 

relationships starting from a basic elemental description. The example of the quaternary semiconductor 

compound GaxIn1−xAsySb1−y was chosen to elucidate this point wherein, a combination of five 

elemental descriptors was shown to relate to the “bowing” of bandgaps of compound semiconductors. 

The mathematical techniques presented in this paper such as PCA, PLS and CFE are by no means 

exhaustive but rather are representative of a wider class of techniques that collectively form the field of 

materials informatics. Such a framework for establishing property phase relationships can be 

particularly relevant for the accelerated discovery of complex materials or to analyze complex 

nanostructured systems lacking periodicity due to a variety of effects. Further, from a basic science 

perspective it provides the opportunity to map the standard continuum representation of materials onto 

high dimensional discrete representation, thus providing the opportunity to investigate potentially 

unexplored structure-property relationships and novel underlying physics.  
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