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A B S T R A C T

In this work, we propose a diffusion MRI protocol for mining Parkinson's disease diffusion MRI datasets and recover
robust disease-specific biomarkers. Using advanced high angular resolution diffusion imaging (HARDI) crossing fiber
modeling and tractography robust to partial volume effects, we automatically dissected 50 white matter (WM)
fascicles. These fascicles connect deep nuclei (thalamus, putamen, pallidum) to different cortical functional areas
(associative, motor, sensorimotor, limbic), basal forebrain and substantia nigra. Then, among these 50 candidateWM
fascicles, only the ones that passed a test-retest reproducibility procedure qualified for further tractometry analysis.
Leveraging the unique 2-timepoints test-retest Parkinson's Progression Markers Initiative (PPMI) dataset of over 600
subjects, we found statistically significant differences in tract profiles along the subcortico-cortical pathways between
Parkinson's disease patients and healthy controls. In particular, significant increases in FA, apparent fiber density,
tract-density and generalized FA were detected in some locations of the nigro-subthalamo-putaminal-thalamo-cor-
tical pathway. This connection is one of the major motor circuits balancing the coordination of motor output.
Detailed and quantifiable knowledge on WM fascicles in these areas is thus essential to improve the quality and
outcome of Deep Brain Stimulation, and to target new WM locations for investigation.

1. Introduction

The number of studies relying on tractography statistics has grown at a
steady pace. While some are exploratory and use a single population da-
taset (García-Gomar et al., 2016; Johnson et al., 2014), most compare
healthy to non-healthy populations by either trying to find significant
group differences (Sharman et al., 2013; Yeatman et al., 2012; Dayan et al.,
2016; Mole et al., 2016; Mezer et al., 2013; Son et al., 2016) or trying to
classify subjects as being healthy or not through machine learning (Kim
and Park, 2016; Dyrba et al., 2015). These studies often focus on neuro-
degenerative diseases such as multiple sclerosis (MS) (Dayan et al., 2016;
Mezer et al., 2013), Alzheimer's disease (AD) (Dyrba et al., 2015; Lo et al.,
2010) or Parkinson's disease (PD) (García-Gomar et al., 2016; Sharman
et al., 2013; Mole et al., 2016; Kim and Park, 2016; Son et al., 2016).

One objective of such studies is to find a biomarker, i.e. a specific
imaging signal characteristic whose presence is strongly correlated to a

neurodegenerative disease. As such, several papers have shown that dif-
fusion MRI (dMRI) and tractography can provide metrics sufficiently dis-
criminative to be used as PD biomarkers (Sharman et al., 2013; Ziegler
et al., 2014; Mole et al., 2016; Son et al., 2016). Studies have looked at the
effect of PD on motor pathways and the substantia nigra. Fractional ani-
sotropy (FA) values were found to increase in the motor tracts (Mole et al.,
2016) and decrease in the nigrostriatal and nigropallidal pathways (NSP)
(Tan et al., 2015). Furthermore, increases in tract-density (Ziegler et al.,
2014), free-water compartment (Ofori et al., 2015), mean diffusivity (MD)
and radial diffusivity (RD) (Tan et al., 2015) were found around the
substantia nigra. Some studies have tried to correct for free-water partial
volume effect without identifying significant differences in free-water
corrected FA in PD patients (Tan et al., 2015). Others have examined more
closely sensorimotor connections within the cortico-basal ganglia thala-
mocortical system and found decreases of anatomical and functional
connectivity in some of these regions (Sharman et al., 2013).
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Unfortunately, many of these studies are based on small sample
sizes, similar to AD studies before the creation of the ADNI (Alzheimer's
Disease Neuroimaging Initiative) dataset.1 Another problem is that
most existing studies are based on voxel-wise protocols and classical
diffusion tensor imaging (DTI) metrics. Furthermore, studies all rely on
the assumption that dMRI metrics as well as white matter (WM) fas-
cicles are discriminant by nature. In other words, these studies assume
that subjects of a homogeneous healthy group share a similar brain
structure whose configuration is locally different from the brains of a
group suffering from a neurodegenerative disease (Sharman et al.,
2013; Mole et al., 2016; Mezer et al., 2013). As a result, one usually
concludes that a shift in the observed dMRI metrics is an indication of
the disease. However, WM fascicles extracted from dMRI suffer from a
certain level of noise and distortion as two tractography pipelines do
not always produce the same results (Wang et al., 2012; Kristo et al.,
2013; Cousineau et al., 2016). This may be due to different pre-
processing algorithms, different fiber tracking algorithms or hy-
perparameters, or simply the way the fascicles have been extracted
(Côté et al., 2013). Also, dMRI is by nature a noisy and artefact-prone
imaging modality (Descoteaux, 2015a). WM tracts and fascicles are
thus vulnerable to accumulated noise and distortions in the many
processing steps involved in population group analyses. Although this
situation has been studied in the past, the fact that tractography results
provide a distorted picture of the real anatomy of the brain has never
been thoroughly investigated in applied WM studies. While some stu-
dies do integrate some sort of reliability assessment in their analysis
(Mezer et al., 2013; Mole et al., 2016; Yeatman et al., 2012), without
state-of-the-art reliability measurements, one cannot disregard the hy-
pothesis that statistically significant variations in diffusion measures
may be due to the processing pipeline rather than an actual biological
phenomenon.

In this paper, we propose a robust protocol for mining dMRI data-
sets and apply it to the Parkinson's Progression Markers Initiative
(PPMI) (Marek et al., 2011) dataset. PPMI comes with a unique test-
retest characteristic as subjects were scanned four times: twice initially,
and twice one year later. This is a rare and a very powerful feature that
can lead to more robust, reliable and reproducible tractometry and
tract-based statistics.

Our approach involves a processing pipeline extracting dMRI me-
trics along WM fascicles. DTI- and HARDI-based metrics are extracted
and projected on each fascicle to extract a vector of averaged metric
values, sometimes called tract profile (Yeatman et al., 2012). We also
propose a test-retest validation protocol to assess the reproducibility of
these metrics and fascicles. While a simple procedure, we show that it is
important to measure the inherent variability of the acquisition and
processing pipelines, which directly affects the results of subsequent
statistical analyses.

In this paper, we intend to answer the following questions:

1. How would one evaluate the test-retest reproducibility of dMRI
metrics when projected to fascicles?

2. Can this serve to perform a tractometry population study on the
PPMI dataset and are there any significant differences between the
PD and healthy populations?

We found that not all of our extracted WM fascicles are reliable
enough to be used in a population study. When comparing reliable
fascicles of PD patients and healthy controls, we found statistically
significant differences in regions located along the brainstem-substantia
nigra-basal ganglia-motor cortex connections. Tract profiling reveals
significant increases in FA, apparent fiber density, tract-density, and
generalized FA detected for the nigro-subthalamo-putaminal-thalamo-
cortical pathway. This connection is one of the major motor circuits
balancing the coordination of motor output. In PD, overactivity of the

Fig. 1. Important steps of our processing pipeline illustrated on the corticospinal tract (CST). a) Raw dMRI images are processed. b) Whole brain deterministic tractography is performed.
c) WM fascicles are extracted (CG in red, CST in blue, IFOF in green, SLF1 in yellow, UF in turquoise). d) Fascicles are processed independently (CST shown). e) Outliers are removed. f)
Centroids are extracted. g) The fascicle is subsampled in 20 equidistant parts (colored independently). h) Tract profiles are computed (with standard deviation in gray). Note: In this
example, the outlier removal threshold was slightly exaggerated in order to visually show its effect. In practice, the CST was not affected by the outlier removal. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

1 adni.loni.usc.edu/.
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striatum and subthalamic nucleus (STN) and pallidum due to striatal
degeneration results in reduced activity of the motor cortex. Clinically,
this phenomenon is reflected by hypokinesia, tremor and rigidity.
Detailed anatomic knowledge and quantification of WM properties are
of particular therapeutic importance for Deep Brain Stimulation (DBS),
an invasive neuromodulatory therapy which aims to balance dis-
organized motor circuits by applying high-frequency current to a target
nucleus within a motor circuit. In PD, the STN and GPi (globus pallidus
internus) are most frequently targeted, and recent research from
Vanegas-Arroyave et al. (2016) provides evidence for the involvement
of WM fascicles in promoting the beneficial clinical effect. Thus, de-
tailed and quantifiable knowledge of these WM fascicles is essential to
improving DBS outcome.

2. Materials and methods

2.1. Tractometry processing pipeline

Our processing pipeline is illustrated in Fig. 1. At first, fiber ODFs are
extracted with spherical harmonics of maximal order 8 using MRtrix 2 (a)
(Tournier et al., 2012). DTI/HARDI metrics are then computed using the
Dipy python package (Garyfallidis et al., 2014). These metrics are detailed
in Table 2. Then, whole brain fODF deterministic tractography (b) is
performed using MRtrix's streamtrack command with a step size of
0.5 mm and a total number of 500,000 streamlines. Seeding was per-
formed with a WM mask coming from a T1 registered to the diffusion
upsampled to 1 mm3. Next, WM pathways (c) are automatically dissected
from the whole brain tractogram with TractQuerier (Wassermann et al.,
2016) (queries available at https://github.com/martcous/ppmi-study).
From this point on, each pathway is processed independently using our
automated tractometry pipeline (d). Spurious streamlines (outliers) are
removed using hierarchical QuickBundles (e) (Garyfallidis et al., 2017). As
shown in Côté et al. (2015), outliers have a low density and are far in
terms of shape distance from other streamlines in the fascicle. They can
therefore be detected automatically, as detailed in 7.1 (Garyfallidis et al.,
2012). Then, centroids are computed as a mean streamline of the pathway
using the minimum-distance-flipped metric (f) (Garyfallidis et al., 2012).
This centroid is subsampled to N= 20 equidistant points and every point
of every streamline of the pathway is assigned to its closest centroid point
(g). Metric values are then projected to these assignments masks and
averaged in order to extract N averaged values along the pathway. Each
voxel is weighted by its relative geodesic distance to the closest centroid
point such that spurious streamlines far from the centroid do not affect the
result as much. In the end, a tract profile is extracted for every combi-
nation of metrics and pathways (h).

2.2. Reproducibility of white matter fascicles

As mentioned previously, dMRI is a noisy and artefact-prone mod-
ality. As such, tractography algorithms may return a distorted picture of
the real WM anatomy. To produce meaningful statistics, one should
take into consideration the level of distortion each fascicle is suffering

from and use only pathways that are above a certain level of precision.
Unfortunately, it is very difficult (if not impossible) to quantify to which
extent a given WM fascicle (as well as its associated diffusion metrics) is
distorted for a single subject. However, due to the multi-acquisition and
multi-timepoint nature of PPMI, we can compute a test-retest score and
measure the reproducibility of each fascicle. Although a reproducibility
score does not explicitly account for tractography distortions per se, it
nonetheless ensures the consistency of our dMRI pipeline. When a given
subject undergoes two dMRI acquisitions within a short period of time
with the same acquisition protocol, one can assume that tractography
results should not vary much. The goal of our test-retest score is to
measure the reproducibility of WM fascicles in terms of their shape and
volume, as well as their tract profile. Following this test, we keep fas-
cicles whose configuration is reproducible and thus reliable for a po-
pulation study.

At first, our test-retest score measures the reproducibility of the
fascicles' shape and volume. In that perspective, we compute the
overlap of every fascicle extracted from each pair of acquisitions (two
acquisitions at the baseline and two more one year later) both for
healthy and PD subjects. To do so, we register the T1 of every subject to
the MNI 2009 template (Fonov et al., 2009) using the ANTs non-linear
registration software (Avants et al., 2008). The resulting registration
function is applied to the WM fascicles obtained at step (e) of our
processing pipeline (cf. Fig. 1) using TractQuerier's tract_math tool
(Wassermann et al., 2016). Once every fascicle of every subject has
been projected to the same space, we compute a slightly modified
version of the Dice coefficient (Dice, 1945) which we call the weighted
Dice coefficient. Let Wi be a fascicle extracted from a certain diffusion
volume and Wj another fascicle extracted from another set of data. Note
that in this study, Wi and Wj are the same fascicle but extracted from
different diffusion data. The standard Dice coefficient between Wi and
Wj is

=
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where Wi and Wj contain binary values (1 inside the fascicle and 0
otherwise) and v is a voxel index. As is, the Dice coefficient greatly
penalizes for spurious streamlines that would be far from the core of the
fascicle. Given that WM fascicles have more tracts in the middle than in
their periphery, we propose a weighted Dice coefficient which accounts
for the number of streamlines per voxel. In that perspective, each voxel
inWi andWj contains a value between 0 and 1 expressing the fraction of
tracts passing through that position. Our weighted Dice metric sums the
voxels that overlap in Wi and Wj and divides by the total sum of voxels:
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where v′ stands for the voxels that are within the intersection of the Wi

and Wj fascicles. Our weighted Dice gives more importance to areas
with dense fibers.

We also quantify the test-retest reproducibility of the tract profiles.
We assume that the tract profile of a given pathway should be closer to
one from the same subject than one from any other subject. This pro-
cedure is illustrated in Fig. 2. Here, FA tract profiles of the corticospinal
tract are shown in (a), and in (b), tract profiles of fascicle #2 described
later as the connection between associative cortex and putamen. The
first two profiles (green and blue) were extracted from two acquisitions
of the same subject while the last one (in red) was extracted from an-
other subject. In (a), we have the situation where the tract profiles of
the first subject are more similar to each other than to the other subject
chosen randomly. This is in line with intuition as the brain structure of
an individual is more similar to itself than to that of another person.
Conversely, in (b), we see that the tract profile of the first acquisition of
the first subject is more similar to the tract profile of the other subject
than to its second acquisition. In this case, the tractography pipeline

Table 1
List of the 20 WM fascicles used for this study inspired from Sharman et al. (2013). All
of these fascicles are in both left and right versions.
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induced a distortion to the fascicle that makes it unreliable for a po-
pulation study. In this example, we would therefore remove fascicle #2
from the analysis.

The goal of the test-retest tract profile score is to verify that in-
trasubject acquisitions are closer to each other than to other subjects'
acquisitions. After z-score standardization using the mean and standard
deviation of each point of each profile, an Euclidean distance is com-
puted between all acquisition pairs of each subject. Since the PPMI
dataset contains 179 healthy subjects and 412 PD all with 4 acquisitions
(2 at the baseline and 2 one year later), we get to compute
(412 + 179) * 4 − 1 = 2363 tract profile distances for each tract pro-
file of each patient (more details on PPMI in Section 2.4). These dis-
tances were then averaged into two different values: (1) an intrasubject
average distance, which includes distances of scan 1 of subject 1 vs scan
2–4 of subject 1, scan 2 of subject 1 vs scan 3–4 of subject 1, etc. and (2)
an intersubject average distance, which included scan 1–4 of subject 1
vs scan 1–4 of subject 2–600, scan 1–4 of subject 2 vs scan 1–4 of
subject 3–600, etc. Finally, these two values were subtracted from each
other into what was called the average intersubject minus intrasubject tract
profile distance. Thus, a single value for each fascicle studied was ob-
tained. An ideal situation is where the difference would be high; then,
the distance between same-subject tract profiles of this fascicle is much

lower than the distance between different subjects. Should this differ-
ence be too small or even negative, the fascicle would be discarded
from the study.

2.3. Statistical analysis

The tract profiles that passed the test-retest score are then applied to
an hypothesis t-test. This is done to identify sections of the tract profiles
that are significantly different between the PD and healthy controls.
The Welch's unequal variances t-test (Zimmerman, 2004) was chosen to
account for the difference in sample sizes between the two populations,
as there were twice as many PD patients as healthy controls. To max-
imize the statistical robustness and account for multiple comparisons,
each t-test was additionally performed in 10,000 permutations by
sampling from the two populations. Furthermore, a corrected sig-
nificance threshold was computed from the 10,000 permutation t-va-
lues (Nichols and Holmes, 2002). A t-test was considered statistically
significant only if its p-value was lower than 0.05 and the absolute
value of its t-value was higher than the computed threshold.

Table 2
Diffusion metrics included in this Parkinson study.

Type Acronym Metric Description Refs.

DTI AD Axial diffusivity Diffusion rate along the principal diffusion axis (s/mm2). Basser and Pierpaoli (2011), Descoteaux
(2015b)

RD Radial diffusivity Average diffusion rate across radial axes (s/mm2). Basser and Pierpaoli (2011), Descoteaux
(2015b)

MD Mean diffusivity Average diffusion rate across every axis (s/mm2). Basser and Pierpaoli (2011), Descoteaux
(2015b)

FA Fractional anisotropy Anisotropy measure of the diffusion tensor. Basser and Pierpaoli (2011), Descoteaux
(2015b)

GA Geodesic anisotropy Geodesic anisotropy measure of diffusion. Fletcher (2004)
Mode Tensor mode Shape of the tensor (from planar to tubular [−1, 1]). Kindlmann et al. (2007)
Norm Tensor norm Norm of the diffusion tensor. Kindlmann et al. (2007)

HARDI GFA Generalized fractional
anisotropy

Generalized FA computed from the constant-solid angle q-ball
reconstruction.

Aganj et al. (2010), Tuch (2004)

AFD max Maximal apparent fiber density Maximal value of the fODF amplitudes. Raffelt et al. (2012)
AFD total Total apparent fiber density Spherical harmonic coefficient 0 of the fODF. Raffelt et al. (2012, 2017)
NuFO Number of fiber orientations Number of local maxima of the fODF. Dell’Acqua et al. (2013)

Tract-based TDI Tract-density imaging Number of streamlines per voxel. Calamante et al. (2010)

a) b)

Fig. 2. Comparison of the FA tract profile of the corticospinal tract (CST) and fascicle #2, described in Table 1, from three different acquisitions: the first two from the same subject and
the last one from a different subject. In (a), we have the desired case where the two intrasubject acquisitions are closer to each other than to the other subject's acquisitions, while in (b)
we have the unfortunate case of the subject's first acquisition being closer to the other subject's acquisition than its second acquisition. (For interpretation of the references to color in this
figure, the reader is referred to the web version of this article.)
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2.4. Parkinson's PPMI dataset

We used the T1 and diffusion-weighted images of the publicly-
available Parkinson's Progression Marker Initiative (PPMI) dataset
(Marek et al., 2011). This dataset contains 179 healthy control subjects
and 412 patients recently diagnosed with PD. Note that for this study,
we do not include the SWEDD (scans without evidence of dopaminergic
deficit) and the prodromal subjects nor the genetic cohorts. PD and
healthy patients have a mean age of 61 and 59 years respectively. More
than 93% of the subjects are Caucasians, 71% of PD are male and 57%
of healthy patients are male. PPMI dMRI data was acquired using a
standardized protocol used on Siemens Tim Trio and Siemens Verio 3
Tesla MRI machines from 32 different international sites. Diffusion-
weighted images were acquired along 64 uniformly distributed direc-
tions using a b-value of 1000 s/mm2 and a single b = 0 image. Single
shot echo-planar imaging (EPI) sequence was used (116 × 116 matrix,
2 mm isotropic resolution, TR/TE 900/88 ms, and twofold accelera-
tion). An anatomical T1-weighted 1 mm3 MPRAGE image was also ac-
quired. Each patient underwent two baseline acquisitions and two more
one year later. The right and left-onset patients are distributed in pro-
portions of 57% and 43%. More information on the MRI acquisition and
processing can be found online: http://www.ppmi-info.org/.

2.4.1. Segmentation of white matter fascicles
Anatomical T1-weighted images are processed with the Biospective

PIANO™ atlas-based segmentation tool. As illustrated in Fig. 3, cortical
and subcortical areas can be automatically segmented, including the
left and right substantia nigra (SN). Inspired by Sharman et al. (2013),
we defined the WM fascicles in Table 1 and illustrated it in Fig. 4. In
addition, we included the first parts of the corpus callosum (CC1-CC5)
as well as the left-right cingulum and corticospinal tract. Note that this
approach was also tried by Son et al. (2016) and the differences will be
discussed later. The studied diffusion metrics are listed and briefly
described in Table 2.

2.5. Healthytest-retest dataset

Although PPMI images were acquired with the same acquisition
protocol, the fact that they come from 32 different sites and MRI ma-
chines from different manufacturers creates unavoidably some distor-
tions. To properly validate our test-retest protocol, we pre-acquired a
test-retest dataset from 11 healthy subjects with 3 different timepoints
(all within a week) at the same site, with the same technical team, and
the same MRI machine. Diffusion-weighted images were acquired along
64 uniformly distributed directions using a b-value of 1000 s/mm2 and
a single b = 0 image. Single shot echo-planar imaging (EPI) sequence
was used from a 1.5 Tesla SIEMENS Magnetom (128 × 128 matrix,
2 mm isotropic resolution, TR/TE 11,000/98 ms, and GRAPPA factor
2). An additional b = 0 image was acquired in reversed phase-encode
direction to correct for susceptibility-induced distortions using FSL/
TOPUP (Andersson et al., 2003). An anatomical T1-weighted 1 mm3

MPRAGE (TR/TE 6.57/2.52 ms) image was also acquired. Diffusion
data was upsampled to 1 mm3 resolution using a trilinear interpolation
and the T1-weighted image was registered to the upsampled b = 0
image. Quality control by manual inspection was used to verify the
quality of the registration.

Major WM fascicles were segmented using Freesurfer (Fischl et al.,
2004) and TractQuerier (Wassermann et al., 2016). Since these were
extracted to validate our method, we report fascicles in common with
the PPMI dataset namely, the arcuate fasciculus (AF), corpus callosum
(CC), cingulum (CG), corticospinal tract (CST), inferior fronto-occipital
fasciculus (IFOF), optic radiation (OR), and superior longitudinal fas-
ciculus (SLF).

3. Results

3.1. Test-retest of the healthy dataset

The test-retest measures were first computed on our healthy dataset.
Fig. 5 shows, in (a), a visual example of the overlap between two CST
from different subjects (in red and blue), in (b), the volume overlap
weighted Dice coefficient for all the fascicles, and in (c), the tract
profile distance difference between intersubject and intrasubject. Note
that these reproducibility results are considered optimal since they
were computed from major WM fascicles on young, healthy subjects,
acquired within the same week, with the same scanner, the same se-
quence, and the same technician. But despite this highly constrained
acquisition protocol, some fascicles have a weighted Dice coefficient
significantly lower than others (e.g. SLF1) while some have a tract
profile distance that is suspiciously large. These observations highlight
the fact that dMRI is by nature a noisy procedure that needs to be
handled with care.

According to these results, a threshold for a good weighted Dice
coefficient can be set to 72% and a threshold for the tract profile dis-
tance intra and intersubject difference can be set to 3.2, two values
corresponding to the lowest measured values (illustrated as the red
lines in Fig. 5). In this study, we considered that a fascicle passed our
test-retest reliability assessment when both their Dice coefficient and
their tract profile distance difference were above these two thresholds.

3.2. Test-retest of the PPMI dataset

After having validated our test-retest procedure on the healthy da-
taset, we applied this methodology to the PPMI dataset on the fascicles
of interest, namely the 20 identified in Table 1 as well as the corpus
callosum (CC1-5), cingulum (CG left-right) and left-right corticospinal
tracts (CST). Similar to Fig. 5, Fig. 6 shows the weighted Dice coeffi-
cient overlap in (a) and the distance difference between inter and in-
trasubject FA tract profiles in (b). First, we note the fairly good test-
retest reproducibility of most large WM fascicles in common with the
healthy dataset such as the CC1, CC2, CC4 and CST. However, Fig. 6
shows that more complex WM fascicles as defined in Table 1 are much

Fig. 3. To extract specific WM fascicles, specific regions were segmented using an atlas, illustrated in (a) sagittal and (b) coronal view: , , , , and .
Some fascicles extracted also connected various regions of the cortex which are illustrated in (c): , , , , and . (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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less reproducible and this will be discussed later. When looking at both
graphs of the figure, only fascicles #’s 14 to 16 seem reproducible out of
the 20. Other fascicles were discarded from the tractometry analyses.

Moreover, we looked at the influence of volume reproducibility on
the tract profiles inter and intrasubject distance difference. In other
words, to what extent does fascicle overlap influence tract profiles
specificity. The results and correlation are shown in Fig. 7. A clear
linear correlation can be seen where fascicles with a good overlap have
a higher chance of providing a better metric-based test-value score.

3.3. Statistical analysis on segmented WM fascicles

Results of the permutation t-tests with significantly different regions
are illustrated in Table 3. Recall that each fascicle was split in N = 20
different regions. Most significant regions had at least 2 or 3 direct
neighbors significant as well. In Table 3, the arrows indicate whether
PD patients metric values were higher (↑) or lower (↓) than healthy
controls. Thicker arrows (⇑ and ⇓) signify that more than 25% of the 20
parts of the fascicle were significant. Among major trends, we found
significant increases in fractional anisotropy (FA), generalized frac-
tional anisotropy (GFA), geodesic anisotropy (GA), and maximal ap-
parent fiber density (AFD max) for PD patients as compared with
controls in pathways connecting the subsantia nigra. In these same
pathways, we also found that these significant increases are driven by
significant decreases in mean diffusivity (MD), radial diffusivity (RD)
and tensor norm for PD patients. Finally, parts of the corpus callosum
and corticospinal tracts had comparable trends in motor regions. While
both hemispheres showed similar trends, statistically significant dif-
ferences appeared more frequently in the left hemisphere.

Selected combinations of fascicles and metric values with significant
differences are shown in Fig. 8. These show representative results of
most fascicles qualified by the test-retest and for at least one metric of
interest. Yellow (p-value ≈ 0.10) to red (p-value ≈ 0.0001) regions
indicate increases in PD populations (t-value > 0) while green (p-
value ≈ 0.10) to pink (p-value ≈ 0.0001) regions indicate decreased
values (t-value < 0). Smaller fascicles 14 to 16 have most of their re-
gions significantly different between populations while bigger fascicles
CC and CST have more localized differences.

3.3.1. Studying the progression of the disease
Since the PPMI dataset contains two different timepoints, one at the

baseline and another one year later, the progression of the disease was
studied by separating the acquisitions in these two populations. The
exact same metrics and fascicles were considered, and the same per-
mutation t-test statistical analysis was performed. While similar trends
as when comparing PD patients to healthy controls were found, none of
them were statistically significant at p-value < 0.05.

4. Discussion

Our results are promising and confirm some existing trends (Mole
et al., 2016; Son et al., 2016). Significant differences between controls
and PD groups are located along the brainstem, substantia nigra, basal
ganglia and motor cortex connections. Tract profiling reveals that sig-
nificant WM alterations between both groups appear within specific
anatomic regions, namely the substantia nigra (SN), the striatum and
subthalamic nucleus (STN), pallidum, putamen and thalamus. Here, we
detect a significant increase in FA, apparent fiber density, tract-density,
and generalized FA. These changes are also driven by a reduction in
radial diffusivity and mean diffusivity. These phenomena are also pre-
sent in the motor and premotor part of the CC and CST near the ends of
the fascicles.

As mentioned earlier, the progression of the disease was also studied
by comparing profiles of patients at the baseline timepoint and one year
later. While nothing was statistically significant, similar trends than
when comparing patients to healthy controls were found, which in-
dicates that the disease indeed affects the regions highlighted in this
paper. It is not significant perhaps because PD evolves slowly and one
year is not enough to see major changes in specific regions. The PPMI
dataset is planning to follow patients every year in order to acquire
more timepoints. This will allow future studies to better research the
progression of this disease.

4.1. Similarities with other processing pipelines

Our processing pipeline is quite similar to the automated fiber-tract
quantification (AFQ) software (Yeatman et al., 2012). Both procedures
extract tract profiles using the centroid of a fascicle. The main

a) b) c)

Fig. 4. Some of the 20 specifically extracted WM fascicles in blue, named in Table 1. In (a), we have the fascicles connecting the cortex (fascicles #’s 1, 2, 3 and 18). In (b), we
have the fascicles connecting the cortex (fascicles #’s 4, 5, 6 and 19). In (c), we have the fascicles connecting the cortex (fascicles #’s 7, 8, 9 and 20). Then, in the second row,
we have the four fascicles connecting the (fascicles #’s 14 to 17). Fascicles #’s 10 to 13 are not shown because they were too short for proper visualization. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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difference between the two, despite the fact that ours is written in
Python and not in MATLAB, is that our pipeline does not require
manual regions of interests (ROIs) nor a template for each WM fascicle
to cut the extremities of fibers. Indeed, our pipeline keeps the WM tracts
in the subjects native space, which means registration is not required
once you have the fascicle extracted for computing tract profiles. In
order to avoid any spurious parts not caught by our outlier removal
processing step to affect the resulting profile, each voxel of the metrics
are weighted by the geodesic distance to the closest centroid point and
the number of streamlines that pass through this voxel. AFQ weighs
instead at the fiber level by using the Mahalanobis of each fiber to the
centroid.

4.2. Differences from similar Parkinson studies

The approach of comparing the tractography results extracted from
the PPMI dataset using fascicles defined by Sharman et al. (2013) was
also attempted in a paper by Son et al. (2016) published during the
writing of this manuscript. That said, our approaches differ sig-
nificantly, mainly on six aspects. First, as opposed to us, their analysis
includes SPECT as well as dMRI images. Second, they correlated their
results with a nonimaging metric/the clinical disease severity rating
scale, namely MDS-UPDRS. Third, they used the older tractography

method of FACT DTI as opposed to HARDI. This means that their
tractography pipeline is less robust to fiber crossings and partial volume
effects. Fourth, instead of using the entire PPMI dataset, they only used
the baseline acquisition of 90 subjects. Fifth, while we studied many
types of diffusion metrics, they only reported changes in the fiber
density (FD), which is known to have several important limitations
when considered as a quantitative measure (Calamante et al., 2015).
This value was computed once per fascicle as opposed to a vector of
values along the fascicle like our tract profiles. Finally, they have no
test-retest validation protocol and, as such, of the 6 fascicles they found
significant differences, 5 of them did not pass our test-retest analysis
(namely fascicles 4, 5, 6, 11 and 12). This is not surprising since these
fascicles are hard to define, have variable spatial extent and are hard to
recover robustly. As more papers use dMRI tractometry to perform
population statistics, it is important to remember that results are of
value if the exact same regions of the brain are statistically compared.
Given the strong anatomical priors injected in the segmentation of WM
fascicles, test-retest is critical to assess the specificity and reproduci-
bility of the extracted tracts.

However, similar to us, Son et al. did find significant differences for
the putamen, globus pallidus and thalamus levels, which corresponds to
3 regions associated to our 3 most significant fascicles (fascicles 14, 15
and 16).

b) c)

a)

Fig. 5. Our test-retest scores on our healthy dataset. In (a), the overlap of two CST from different subjects (in red and blue) are shown. Dice coefficient measures the overlap in purple. In
(b), the average fascicle weighted Dice coefficient across all intrasubject and in (c) the average difference between the inter and intrasubject FA tract profile distance are plotted. The red
line is the minimum value measured across all fascicles. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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a)

b)

Fig. 6. Our test-retest scores on the PPMI dataset. In (a), the average fascicle weighted Dice coefficient across all intrasubject and in (b) the average difference between the inter and
intrasubject FA tract profile distance. The red line is the chosen threshold measured from the test-retest dataset in Fig. 5. Fascicles #1 to 20 refer to the fascicles introduced in Table 1. The
bolded fascicles are the ones that are above both thresholds and therefore passed our test-retest assessment. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 7. Average intra and intersubject tract profile distance difference given the average
fascicle weighted Dice coefficient across all intrasubject acquisitions. A linear correlation
is also shown.

Table 3
Summary of the significant differences between populations. Only results with a p-value
of <0.05 and a t-value bigger than the significance threshold are reported. The arrows
indicate whether PD patients metric values were significantly higher (↑) or significantly
lower (↓) than healthy controls. Thicker arrows (⇑ and ⇓) signify that more than 25% of
the 20 parts of the fascicle were significant.

Type Metric Fascicles

DTI AD B15 ↓, CC1 ↓, CC2 ⇓, CC4 ↓, CST ↓
FA B14 ⇑, B15 ⇑, B16 ⇑, CC1 ↑, CC2 ↑, CC4 ↑, CST ⇑
GA B14 ⇑, B15 ⇑, B16 ⇑, CC1 ↑, CC2 ↑, CC4 ↑, CST ↑
GFA B14 ⇑, B15 ⇑, B16 ⇑, CC1 ↑, CC2 ↑, CC4 ↑, CST ⇑
MD B14 ⇓, B15 ⇓, B16 ⇓, CC1 ⇓, CC2 ⇓, CC4 ⇓, CST ⇓
Mode B14 ⇑, B15 ↑, B16 ↑, CC4 ↑, CST ↑
Norm B14 ⇓, B15 ⇓, CC1 ⇓, CC2 ⇓, CC4 ⇓, CST ↓
RD B14 ⇓, B15 ⇓, B16 ⇓, CC1 ⇓, CC2 ↓, CC4 ↓, CST ⇓

HARDI AFD Max B14 ⇑, B15 ⇑, B16 ⇑, CC1 ↓, CC2 ↓, CC4 ↓
AFD Total B14 ⇑, B15 ⇑, B16 ⇑, CC1 ⇓, CC2 ⇓, CC4 ⇓, CST ⇓
NuFO B14 ↓, B15 ↓, B16 ↓, CC1 ↓, CC2 ↓, CC4 ↓

Tract-based TDI B14 ⇑, B15 ⇑, B16 ↑, CST ↑
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4.3. Limitations of the low b-value

In this study, acquisitions were done at a b-value of 1000 s/mm2,
which can be considered low. Higher b-values are usually re-
commended in high angular resolution diffusion imaging (HARDI)
(Tournier et al., 2007; Tuch et al., 2002). However, using spherical
deconvolution with a properly data-driven response function
(Descoteaux et al., 2009; Tournier et al., 2007), high angular resolution
and good fiber crossing reconstruction was achieved while maintaining
a high signal to noise ratio of more classical DTI metrics derived from
the b = 1000 data.

4.4. Choice of reproducibility metric

The Dice coefficient is a popular metric in the field of image seg-
mentation (Zijdenbos et al., 1994; Zou et al., 2004). To come up with a
quantitative reproducibility assessment based on this coefficient, we
had to choose a way to compare these different values among subjects.
The first hurdle was that each subject did not have a consistent number
of acquisitions. Some acquisitions failed our initial visual inspection
because of excessive movement or major artifacts. Furthermore, most
subjects had more than 2 acquisitions. This meant that many popular
repeatability measures such as Bland and Altman's repeatability

coefficient (Bland and Altman, 1986) or the intra-class correlation
coefficient (Marenco et al., 2006) were not suited for this task. Instead,
averaging all the combinations of intrasubject Dice coefficients proved
to be the most versatile solution. The effect of multicenter acquisitions
(Friedman et al., 2008; Harrison et al., 2011) was not studied in the
current work but would warrant a study of its own. In the end, we
proposed a simple quality assessment criterion that could be easily
implemented by a vast majority of population studies. The chosen Dice
coefficient threshold was chosen empirically, but emphasis was not on
the threshold itself but rather on the need to do such an assessment. The
threshold can be adjusted to each study's needs.

4.5. Good reproducibility of major large WM fascicles

Due to the probabilistic nature of tractography, large and well-es-
tablished WM fascicles in the literature are expected to be easier to
extract from whole-brain tractograms, and therefore be more re-
producible. Measuring the volume overlap of streamlines can result in
dramatically low reproducibility in case the fascicle does not contain a
minimum number of streamlines. It is nonetheless essential to assess
streamline volumes, as tractometry projects metrics to volumes defined
by these streamlines, and population statistics assume that we are
comparing the exact same regions in the brain.

Fig. 8. Heatmap of p-values projected on different pathways of a specific subject. Yellow to red signifies higher metric values in PD subjects than controls, red values being the most
significant (p-value very close to a perfect 0). Green to pink signifies lower metric values in PD subjects than controls, pink values being the most significant (p-value very close to a
perfect 0). For the CC, the left of the figure signifies the left side of the patient. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
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We first validated our reproducibility analysis using a dataset of
healthy subjects and extracting major WM fascicles (Cousineau et al.,
2016). We then replicated this analysis on the PPMI dataset, and got
similar good results for the major WM fascicles included in this analysis.
For example, the corticospinal tract (CST) scored a weighted Dice
coefficient of over 90% in the healthy dataset and over 80% on the
PPMI dataset. The difference can be explained by the fact that the PPMI
dataset contains considerably older subjects and not all scanned within
a few days like the healthy dataset. Despite being slightly lower, it re-
mains a rather satisfactory reproducibility for the PPMI dataset. Gen-
erally, we considered Dice of over 70% satisfactory based on the lowest
value obtained from the test-retest dataset.

4.6. Poorreproducibility ofsome WMfascicles

Several of the extracted fascicles based on Sharman et al. (2013)
obtained quite poor reproducibility. For example, fascicle 7 connecting
the sensorimotor cortex to the caudate got an overlap of under 20%.
This can be explained by the fact that these fascicles connect small and
deep nuclei (caudate, putamen, thalamus) to large functional cortical
areas (associative, limbic, sensorimotor), which makes a good overlap
very difficult to achieve. The poor reproducibility highlights a certain
level of “ hardness to track” for these connections, even with advanced
crossing fiber HARDI techniques. Furthermore, the regions they connect
are quite complex such as the limbic cortical areas, the subcortical areas
and the basal ganglia, and their area of termination depends on the
quality of automatically segmented atlases. All of these factors are ex-
acerbated by potential partial volume effects, motion, and poor re-
solution of acquisitions.

4.7. Clinical implications

Precise motor function relies on the balanced interplay of motor
circuits, in which the basal ganglia plays a major coordinating role. The
direct pathway, which facilitates movement by disinhibiting the tha-
lamus, courses from the STN to the GPi (globus pallidus internus), the
thalamus and to the cortex. The indirect pathway, on the other hand,
inhibits movement by interposing the GPe (globus pallidus externus) as
an additional relay station (Alexander and Crutcher, 1990; Obeso et al.,
2008a). The third, more recently discovered hyperdirect pathway, also
inhibits movement along a direct connection from the STN to the cortex
(Nambu et al., 2002).

The Parkinsonian state is characterized by neurodegeneration in the
substantia nigra (SN), which leads to reduced dopaminergic input. As a
result, overactivity of the STN and GPi enforces inhibition of thala-
mocortical motor pathways, which clinically presents as hypokinesia,
tremor and rigidity (Obeso et al., 2008b).

Detailed knowledge of the WM changes in PD is essential in order to
successfully modulate unbalanced motor circuits by Deep Brain
Stimulation (DBS) (McIntyre et al., 2004). DBS is a gold standard
therapy in drug refractory PD, which involves electrical stimulation of a
target structure, most frequently the STN and GPi. There is evidence
that the stimulation current not only affects the target structure, but
spreads within adjacent axonal connections. Analysis of DBS electrodes
in PD patients identified anatomic vicinity of clinically efficient elec-
trodes and the substantia nigra, the thalamus and the brainstem
(Vanegas-Arroyave et al., 2016). These regions correspond to the ones
where we detect most significant FA changes in our study, implying the
modulation of motor circuits. This finding is in accordance with pre-
vious studies, which detected alterations of diffusion parameters along
the nigrostriatal circuit (Péran et al., 2010).

However, there remains some controversy concerning the role of
striatal diffusion changes, in particular, FA changes in PD. Some studies
detected a reduction in FA values (Du et al., 2011; Péran et al., 2010;
Vaillancourt et al., 2009), whereas others did not report on any sig-
nificant FA alterations (Esterhammer et al., 2015; Schwarz et al., 2013)

or FA increases (Wang et al., 2011). A systematic review on all studies
of FA changes revealed methodological differences as the main reason
accounting for the divergent results, such as selection of ROI size, dis-
ease duration among patients and number of diffusion directions
(Schwarz et al., 2013). In our study, these methodological differences
are overcome by careful test-retest qualification of the fascicles of in-
terest and tractometry of an extensive list of DTI, HARDI and tract-
based metrics.

Pathophysiologically, PD is characterized by a progressive neuro-
degenerative process leading to nigral iron accumulation (Lotfipour
et al., 2012; Sian-Hülsmann et al., 2011), which was seen to increase FA
values (Awasthi et al., 2010). Another possible mechanism of FA in-
crease may be the progressive degeneration of the nucleus and sub-
sequent invasion by adjacent fiber tracts (Lenfeldt et al., 2015). These
effects could explain our significant increases and decreases observed in
the diffusion metrics.

4.8. Interpretations of diffusion measure changes

The biological interpretation of diffusion measure changes is ex-
tremely challenging (Jones et al., 2013). While the trends of the
changes can be understood and well explained in terms of the funda-
mentals of diffusion tensor modeling and other local reconstruction
methods, such as the increased FA and apparent fiber density driven by
reduction of radial and mean diffusivity, it is very hard to specifically
apply a biological interpretation to these diffusion measure changes.
Potential explanations for the increased FA in PD include: i) increased
fiber density caused by axonal hypertrophy, ii) decreased fiber density
on crossing pathways to the main motor connections from SN to motor
cortex, and iii) alterations of the extra-cellular space (e.g. due to neu-
roinflammation).

In order to further probe these possibilities, it is necessary to go
beyond single b-value high angular resolution diffusion imaging.
Advanced diffusion imaging and sophisticated modeling with multiple
shells and multiple diffusion times (Burcaw et al., 2015; Fick et al.,
2015; Nilsson et al., 2009, 2013; Szczepankiewicz et al., 2016; Zhang
et al., 2012) may bring new answers in the near future and show the
way to better interpretations. Further, imaging-pathologic correlations
in appropriate animal models of PD would serve to further elucidate the
biological underpinnings of the diffusion alterations.

5. Conclusion

We have established a reliable dMRI protocol for extracting robust
disease-specific biomarkers. By taking advantage of the multi-timepoint
aspect of the PPMI dataset and using state-of-the-art processing
methods, we have computed reliable DTI and HARDI diffusion metrics
along WM fascicles connecting motor and pre-motor regions from the
basal ganglia, substantia nigra and brainstem. Using robust permuta-
tion statistics to compare healthy controls and PD populations, we have
found statistically significant discriminant regions confirming existing
literature. Tract profiling reveals that these changes do not appear ev-
erywhere along the WM fascicles, but are rather localized in precise and
reproducible locations. There were significant increases in FA, apparent
fiber density, tract-density, and generalized FA in the central part of
connections between basal ganglia and substantia nigra as well as the
extremities of the motor and premotor part of the corpus callosum and
corticospinal tract. These WM integrity changes are driven by a re-
duction in radial diffusivity and mean diffusivity.

Our confidence in these findings was confirmed by our proposed
test-retest reproducibility measures that assess the reliability of ex-
tracted WM fascicles, and we stress the importance of future tract-based
population studies to perform a similar analysis before reporting any
statistics. The design of dataset for tractometry studies should consider
test-retest acquisitions to assess variability of measurements.
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