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Abstract: Although substantial progress has been made in treating patients with advanced melanoma
with targeted and immuno-therapies, de novo and acquired resistance is commonplace. After
treatment failure, therapeutic options are very limited and novel strategies are urgently needed.
Combination therapies are often more effective than single agents and are now widely used in
clinical practice. Thus, there is a strong need for a comprehensive computational resource to define
rational combination therapies. We developed a Shiny app, DRepMel to provide rational combination
treatment predictions for melanoma patients from seventy-three thousand combinations based on a
multi-omics drug repurposing computational approach using whole exome sequencing and RNA-seq
data in bulk samples from two independent patient cohorts. DRepMel provides robust predictions
as a resource and also identifies potential treatment effects on the tumor microenvironment (TME)
using single-cell RNA-seq data from melanoma patients. Availability: DRepMel is accessible online.

Keywords: multi-omics; melanoma; drug repurposing; microenvironment

1. Introduction

Cutaneous melanoma is the deadliest form of skin cancer, with a tendency to ag-
gressively metastasize to multiple organs [1]. Melanoma has long been a poster child
for personalized medicine with targeted therapies such as the BRAF inhibitors and the
BRAF-MEK inhibitor combination being highly effective against the 50% of melanomas
with activating BRAF mutations. Despite this, targeted therapies are lacking against NRAS
mutant melanoma and the approximately 25% of melanomas that have no identified onco-
genic driver mutations. Recently, immunotherapies such as anti-PD1 and anti-CTLA4
have shown great promise to improve patient outcomes. However, after treatment fail-
ure, limited treatment options are available. Drug combinations have been developed
and approved for overcoming treatment resistant to targeted and immunotherapies, yet
computational methods and resources have been limited for predicting drug combinations.
Here, we developed three multi-omics approaches to predicting effective combination
therapies using two independent cohorts of melanoma patient data, and the results are
displayed through a user-friendly Shiny app DRepMel. Machine and deep learning ap-
proaches have been shown to be powerful for predicting anti-cancer combination therapies
using cancer cell line data [2–4]. To assess potential treatment effects of targeted and im-
munotherapies, we used omics data from melanoma patients which consist of both tumor
and immune/stromal cells instead of cancer cell line datasets. Furthermore, targeted tumor
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immune microenvironment (TME) derived from scRNA-seq data of melanoma patient
samples [5] was included in the app for understanding the potential combination therapy
impact on TME.

2. Methods

We developed an integrative approach for drug repurposing and predicting combi-
nation therapies for melanoma patients and applied them to two independent melanoma
patient cohorts with matching Whole Exome Sequence (WES) and RNA-seq datasets from
the same patients: the TCGA (N = 459) and Moffitt Melanoma cohorts (N = 135; Figure 1).
The Moffitt Melanoma Cohort (N = 135) was described in our previous work [6]. Briefly, this
study (MCC# 19147) was conducted in accordance with recognized ethical guidelines (e.g.,
Declaration of Helsinki, CIOMS, Belmont Report, U.S. Common Rule) and was approved
by Chesapeake Institutional Review Board (IRB). A waiver of consent was granted by
Chesapeake IRB. We include additional information on Whole Exome Sequence Analyses
(WES) and RNA-seq analyses here. Summary information is included in Table 1.
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Table 1. Information on sample size, available meta-data, and DNA/RNA sequencing of the TCGA
and Moffitt cohorts.

TCGA (N = 459) Moffitt (N = 135)

Mutation Cohorts n (%)
BRAF 236 (51.4) 59 (43.7)
NRAS 125 (27.2) 34 (25.2)
Triple Wild type 88 (19.2) 28 (20.7)

Age mean (sd) 61.5 (15.0) 62.7 (15.3)
IPI/NIVO treatment n (%) 15 (3.6) 51 (38.8)

BRAF treatment (%) 5 (1.1) 29 (21.5)
Gender n (%)
Female 175 (38.1) 49 (36.3)
Male 284 (61.9) 86 (63.7)

Transcriptomics RNA-seq RNA-seq
DNA mutation WES WES

2.1. WES and RNA-Seq Sequence Analyses

WES data has been generated for tumors and matched normal samples, with a depth
of coverage averaging around 100×. Sequence reads were aligned to the reference human
genome (hs37d5) with the Burrows-Wheeler Aligner (BWA) [7], and insertion/deletion
realignment and quality score recalibration were performed with the Genome Analysis
ToolKit (GATK) [8]. Tumor-specific mutations were identified with Strelka [9] and Mu-
Tect [10], and were annotated to determine genic context (i.e., non-synonymous, missense,
splicing) using ANNOVAR [11]. Additional contextual information was incorporated,
including allele frequency in other studies such as 1000 Genomes and the NHLBI Exome Se-
quence Project, in silico function impact predictions, and observed impacts from databases
like ClinVar (http://www.ncbi.nlm.nih.gov/clinvar/) (accessed on 1 March 2016), the
Collection Of Somatic Mutations In Cancer (COSMIC), and The Cancer Genome Atlas
(TCGA). Mutation signatures (alterations across possible trinucleotide sequences) were
counted and derived as described in Alexandrow et al. [12] as implemented by decon-
structSigs [13]. WES quality control includes read metrics following each analysis step
(fraction duplicate reads, fraction mapped reads), depth of coverage assessment across
the targeted regions, and common genotype comparisons across samples to ensure proper
sample matching. Mutations were counted as follows: observed in Strelka-specific OR
(MuTect AND Strelka-sensitive), predicted to be protein altering, and <1% frequency in
1000 Genomes.

RNA-seq data has also been generated on the same tumor samples. Sequence reads
were aligned to the human reference genome in a splice-aware fashion using Tophat2 [14],
allowing for accurate alignments of sequences across introns. Aligned sequences were
assigned to exons using the HTseq package [15] to generate initial counts by region. Nor-
malization, expression modeling, and difference testing were performed using DESeq [16].
RNAseq quality control includes in-house scripts and RSeqC [17] to examine read count
metrics, alignment fraction, chromosomal alignment counts, expression distribution mea-
sures, and principal components analysis and hierarchical clustering to ensure sample data
represents experiment design grouping. TCGA whole exome data was downloaded from
the NIH TCGA website in March 2016 [18]. The MAF file was converted to VCF, and then
annotated as described for the TCC data. Mutations were counted as follows: predicted to
be protein-altering and <1% frequency in 1000 Genomes. Level 3 of RNA-seq data was used
in this study. RNA-seq expression data was de-batched between the TCGA and Moffitt
cohorts using the Combat function in the sva package in R [19].

2.2. Doublet Combination Therapy Candidates

For treatment predictions, a total of 5894 treatments and their target genes from
Drug SIGnatures DataBase DSigDB, [20], selleckchem.com (accessed on 1 March 2016),
and commonly known immune checkpoint therapies were included [20] as therapy can-
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didates. Among these, 5845 drugs were from DsigDB, 38 HDAC inhibitors were from
selleckchem.com, and 11 drugs were known immune checkpoint therapies.

For initial screening, single therapy analyses were performed for each candidate
therapy to identify plausible “seed” therapies to form the pool of doublet combination
candidates. A single therapy analysis consists of three parts and was summarized using
Fisher’s Product method (FPM). To assess the potential efficacy of every single therapy,
the analyses via mutation, expression, and patients’ overall survival (OS) were used as a
surrogate for clinical outcome. RNAseq and mutation status of target genes of a therapy
were the primary independent variables in respective Cox PH models, adjusting for age and
IPI/NIVO and BRAF treatment. The single therapy models to evaluate the association be-
tween mutation and OS is defined as SMUT(t) = βMx + βaage + βBBRAF + β I IPI/NIVO,
where x is an indicator of mutations in the target genes of the candidate drug. BRAF is
an indicator of BRAF inhibitor treatment and IPI/NIVO is an indicator of any check point
inhibitors. To evaluate the association between the gene expression data and survival
the model is SPC(t) = βExPC + βaage + βBBRAF + β I IPI/NIVO, where xpC is the first
principal component (PC1) of the gene expression data of the target genes of the candidate
drug. Since a drug often targets multiple genes, a principal component analysis was used
to summarize and reduce the dimensionality of the gene expression data for genes targeted
by a drug. PC1 explains the maximal amount of variance of the expression data from a drug
set and was used in the survival and eQTL analyses. The eQTL analysis was performed
using the Wilcoxon rank sum test using the PC1 of the expression values of the target
genes and the mutation indicators in the target genes. When there is a mutation detected
in at least one of the target genes of a drug (set) for a patient, the mutation status for this
patient is coded as 1 (in the binary 0/1 coding) for the eQTL analysis. When no mutation
is found in the target genes from a drug (set), then it is coded as zero. PC1 was used in
the Wilcoxon rank sum test for evaluating the potential association between the mutations
and expression of the target genes within a drug set. FPM was first used to synthesize
the results from three analyses for each candidate drug within each cohort. Then, FPM
was used to generate a summary of the results from the two cohorts. p-values associated
with the Chi-squared statistic from the FPM were used to prioritize the single treatment. A
false discovery rate (FDR) was used to adjust for multiple comparisons. The treatments
with FDR < 0.05 were selected as “seed” therapies to pair with each of the remaining
treatments to form the doublet candidate pool. There are 37 therapies with FDR < 0.05:
26 FDA-approved Kinases, 7 Immuno drugs, and 4 HDAC drugs. We also included two
clinically used treatments for melanoma patients: Panobinostat and Trametinib as part
of 39 seed treatments to formulate the doublet pool. Pairing each of the seed treatments
with each of the remaining treatments from the 5848 candidates results in a total of 73,007
combinations in the doublet pool.

2.3. Drug Repurposing Models for Doublets

To assess the potential treatment effects of each doublet therapy candidate, the asso-
ciation between mutation, expression, and patients’ overall survival, used as a surrogate
for clinical outcome, was examined. RNAseq and mutation status of target genes within a
therapy were the primary independent variables in respective Cox PH models, adjusting
for age and IPI/NIVO treatment and BRAF treatment (Equations (1) and (2)). The treatment
interaction was also included in the model. An expression quantitative trait loci (eQTL)
analysis was performed to assess the potential transcriptional impact of the mutations
using a Wilcoxon test (Equation (3)). Since actual mechanisms of treatment action through
DNA, RNA or their interaction is uncertain, three models/methods were formulated
based on different assumptions. Method 1 (Equation (4)) combines all evidence from
(Equations (1)–(3)). Method 2 evaluates the evidence from gene expression (Equation (5))
while Method 3 evaluates the most significant evidence with a minimum p-value among
the 3 sets of evidence (Equations (1)–(3)) within each cohort (Equation (6)). Details are
described below. Fisher’s Product method was used to combine evidence from two cohorts.
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Further filtering (p < 0.05) for each cohort was performed for Method 2 and summarized in
the Shiny App DRepMel. Subset analyses were performed for patients with BRAF, NRAS
mutations, or Triple WT cohorts.

To evaluate the association between patients’ overall survival and somatic mutation
(MUT), gene expression using the PC1, and the potential mutation impact on target genes,
the following three equations were formulated. To evaluate patients’ survival with a
mutation in target genes of each doublet:

SMUT(t) = βM1x1 + βM2x2 + βM3x1x2 + βM4age + βM5BRAF + βM6 IPI/NIVO (1)

where x1 and x2 are indicators of mutations in the target genes of drugs 1 and 2, respectively.
BRAF is an indicator of BRAF inhibitor treatment and IPI/NIVO is an indicator of any
checkpoint inhibitors. To evaluate patients’ survival with expression in target genes of
each doublet:

SPC(t) = βE1x1 + βEE2x2 + βE3x1x2 + βM4age + βM5BRAF + βM6 IPI/NIVO (2)

where x1 and x2 are the first principal component of the gene expression data of the target
genes of drugs 1 and 2, respectively. To assess the potential functional impact of mutations
on gene expression, the eQTL is performed with the Wilcoxon rank sum test. The PC1 of the
expression values of the target genes was used with the mutation indicators in the target
genes of both drugs.

eQTL : PC11 ∼ x1 o f target genes in drug 1 PC12 ∼ x2 o f target genes in drug (3)

To enhance the robustness of the inference, analyses were performed using two in-
dependent melanoma patient cohorts: TCGA (N = 459) and Moffitt Melanoma cohorts
(N = 135). Fisher’s Product method was used to synthesize the results from each of the
analyses above (Equations (1)–(3)) with the following notation: p(β) is the p-value of the
coefficient β in equations 1 or 2 or p-value of eQTL analysis (3).

M = “Mutation” model, E = Expression model.
“1” = drug 1, “2” = drug 2
“t” = TCGA cohort, “m” = Moffitt cohort
Since the actual mechanisms of treatment action through DNA, RNA or their interac-

tion is uncertain, three models were formulated based on different assumptions.
Method 1 combines all evidence from Equations (1)–(3):
Meta P (It includes all eight terms from both cohorts)

χ2
2k ∼

−2 ∑(
ln(P(βM1t)) + ln(P(βM2t)) + ln(P(βM3t)) + ln(P(βE1t)) + ln(P(βE2t)) + ln(P(βE3t)) + ln(P(eQTL1t)) + ln(P(eQTL2t))

+ ln(P(βM1m)) + ln(P(βM2m)) + ln(P(βM3m)) + ln(P(βE1m)) + ln(P(βE2m)) + ln(P(βE3m)) + ln(P(eQTL1m)) + ln(P(eQTL2m))

) (4)

Method 2 evaluates the association evidence using expression data alone: CombinedP-
Expression (It includes the main effects from expression Equation (2)).

χ2
2k ∼ −2 ∑

(
ln(P(βE1t)) + ln(P(βE2t)) + ln(P(βE1m)) + ln(P(βE2m))

)
(5)

Since the mechanism of action could differ among treatments so, within each cohort,
the minimum p-value of the test among 3 tests (Equations (1)–(3)).

Method 3 combines the minimum p-value of the tests between two cohorts. For
example, if Min p-value is from the same model, say the SMUT(t) models in TCGA and
Moffitt cohorts, then the interaction term p-values are used.

χ2
2k ∼ −2 ∑(ln(P(βM3t)) + ln(P(βM3m))) (6)
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2.4. Potential TME Targeted by the Predicted Doublet Therapies

Potential TME targeting by the predicted doublet therapies was inferred using the
scRNA-seq data of 28,078 single cells from 43 patient samples [5]. All analyses and the
Shiny App were performed and implemented using R.

3. Web Application and Results

The predicted doublets by Method 2 of version 1.0 of the Drepmel are available for vi-
sualization using the Shiny application at http://drepmel.moffitt.org/, which will be main-
tained for at least 3 years (contact zachary.thompson@moffitt.org or ann.chen@moffitt.org
with technical issues). The R code defining the server-side logic of the Shiny application is
available in Supplemental File S1. The R code controlling the layout and appearance of the
application is available in Supplemental File S2.

The input for the app includes two drop-down menus of treatments and radio buttons
to choose the (sub-) group of patients corresponding to the major melanoma genotypes
(All, NRAS, BRAF, Triple WT). Two additional drop-down menus provide target genes to
select in each treatment for single gene expression heatmaps to understand the potential
treatment effect in the TME.

The Shiny application includes a tab for introduction, method, and the following
results tabs:

• Tables of top doublet combinations summarized the overall results and those for each
of the major melanoma genotype groups.

• TME: Heatmap and Violin Plot Highlight Potential Targeted Cells Populations by
Each Therapy

• The mutation and survival tab displays Kaplan–Meier plots of overall survival based
on mutation status in the target genes of the selected doublets in each cohort.

• The PC1 and survival tab shows the tables of genes and PC1 loadings in the target
gene sets of each treatment for each cohort along with the KM plots of PC1 and overall
survival for each treatment in both cohorts. The PC1 values are dichotomized at
the median.

• The eQTL tab displays the box plots of gene expression in both cohorts by mutation
status in the target genes. It also displays the summary statistics of the de-batched
expression on a log scale.

The results from Methods 1, 2, and 3 are included in Supplemental Files S3–S5. The top
combinations include plausible candidates. For the overall analyses, the top combinations
include known effective treatments (anti-PD1), plausible ones (Lag3, nilotinib), and addi-
tional treatment combinations which could be further investigated (Supplemental File S4).
Robust findings between the TCGA and Moffitt cohorts for patients with limited treatment
options (NRAS or triple WT patients) provides a short list of candidates for further investi-
gation. The 52 predicted combinations for the NRAS subgroup contain some interesting
candidates. The top candidate combining LAG3 and clioquinol show consistent finding
between two patient cohorts (Figure 2). This combination, while unexpected, could offer
some novel avenues for melanoma therapy. Clioquinol has effects on the proteasome as
well as copper and zinc metabolism, and has the potential to alter transcriptional activity
in both cancer cells and immune cells [21,22]. It is possible that these broadly targeted
effects on the tumor transcriptional state could increase sensitivity to more broadly used
immunotherapies, such as the anti-LAG3 antibody. Our group has already demonstrated
that immunotherapies can be used in sequence with targeted therapies to deliver long-term
anti-tumor effects in mouse melanoma models. In this instance, these effects are driven
both by modulation of signaling in the tumor and reprogramming of the immune microen-
vironment [23]. Rigorous pre-clinical evaluation of the drug combinations selected from
tools such DRepMel could lead to a robust pipeline of repurposed drug combinations for
future clinical evaluation. The TME results indicate that each therapy is likely targeting
different cell populations: lymphoid and myeloid, respectively. This provides insight
into how the candidate combinations might work. Robust predictions are also provided

http://drepmel.moffitt.org/


Cells 2022, 11, 2894 7 of 10

for the BRAF subgroup of melanoma patients (Figure 3). The tool DRepMel provides a
useful computational resource with robust findings for hypothesis generation. It also yields
insights on potential treatment impacts on the TME for further investigation.

Cells 2022, 11, x FOR PEER REVIEW 7 of 10 
 

 

myeloid, respectively. This provides insight into how the candidate combinations might 
work. Robust predictions are also provided for the BRAF subgroup of melanoma patients 
(Figure 3). The tool DRepMel provides a useful computational resource with robust find-
ings for hypothesis generation. It also yields insights on potential treatment impacts on 
the TME for further investigation. 

 

 

 
Figure 2. DRepMel predicts that the combination treatments of LAG3 and clioquinol (HL60 down)
could be considered for melanoma patients with NRAS mutations. The signals are robust and
consistent in the (A,B) TCGA and (C,D) Moffitt cohorts. (E,F) Each therapy likely targets different
cell populations, i.e., T/NK and myeloid, as shown using scRNA-seq data.
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Figure 3. DRepMel predicts that the combination treatments of LAG3 and Azathioprine (MCF7
down) could be considered for melanoma patients with BRAF mutations. The signals are robust and
consistent in the (A,B) TCGA and (C,D) Moffitt cohorts. (E,F) Each therapy likely targets different
TME compartments.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells11182894/s1, Supplemental File S1—Server.R file: R code
that contains the instructions to build the application. Defines the server-side logic of the Shiny
application. Involves creating functions that map user inputs to various kinds of output; Supple-
mental File S2—ui.R file: R code that controls the layout and appearance of the application. The R
functions are wrappers for HTML, CSS, and JS for developing responsive applications; Supplemen-
tal file S3—Method 1 results: Excel file with 3 worksheets: Results, data dictionary, abbreviations;
Supplemental File S4—Method 2 results: Excel file with 3 worksheets: Results, data dictionary,
abbreviations; Supplemental File S5—Method 3 results: Excel file with 3 worksheets: Results, data
dictionary, abbreviations.
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