
Fungi
Journal of

Review

The Role of the Cell Integrity Pathway in Septum Assembly
in Yeast

Cesar Roncero *, Rubén Celador , Noelia Sánchez, Patricia García and Yolanda Sánchez *

����������
�������

Citation: Roncero, C.; Celador, R.;

Sánchez, N.; García, P.; Sánchez, Y.

The Role of the Cell Integrity

Pathway in Septum Assembly in

Yeast. J. Fungi 2021, 7, 729. https://

doi.org/10.3390/jof7090729

Academic Editors: María Molina and

Humberto Martín

Received: 30 July 2021

Accepted: 31 August 2021

Published: 6 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Departamento de Microbiología y Genética, Instituto de Biología Funcional y Genómica,
CSIC/Universidad de Salamanca, C/Zacarías González, s/n, 37007 Salamanca, Spain;
rubencelador@usal.es (R.C.); nsn@usal.es (N.S.); pgr@usal.es (P.G.)
* Correspondence: crm@usal.es (C.R.); ysm@usal.es (Y.S.)

Abstract: Cytokinesis divides a mother cell into two daughter cells at the end of each cell cycle and
proceeds via the assembly and constriction of a contractile actomyosin ring (CAR). Ring constriction
promotes division furrow ingression, after sister chromatids are segregated to opposing sides of the
cleavage plane. Cytokinesis contributes to genome integrity because the cells that fail to complete
cytokinesis often reduplicate their chromosomes. While in animal cells, the last steps of cytokinesis
involve extracellular matrix remodelling and mid-body abscission, in yeast, CAR constriction is
coupled to the synthesis of a polysaccharide septum. To preserve cell integrity during cytokinesis,
fungal cells remodel their cell wall through signalling pathways that connect receptors to downstream
effectors, initiating a cascade of biological signals. One of the best-studied signalling pathways is the
cell wall integrity pathway (CWI) of the budding yeast Saccharomyces cerevisiae and its counterpart
in the fission yeast Schizosaccharomyces pombe, the cell integrity pathway (CIP). Both are signal
transduction pathways relying upon a cascade of MAP kinases. However, despite strong similarities
in the assembly of the septa in both yeasts, there are significant mechanistic differences, including
the relationship of this process with the cell integrity signalling pathways.

Keywords: yeast; cytokinesis; actomyosin ring; septum; cell integrity

1. Maintaining the Shape: The Cell Integrity Signaling Pathways

The cell integrity signalling pathways are usually described as fairly linear, they chan-
nel the signal from the cell surface to the nucleus without significant branching (Figure 1).
Cell wall stress is detected by two conserved families of single-pass transmembrane cell
wall sensors of the WSC and MID types. Their role is well documented in S. cerevisiae,
where these sensors can detect the mechanical tension between the cell wall (CW) and
the plasma membrane (PM) [1,2]. They function as upstream triggers of the cell integrity
pathway and activate membrane-associated RhoA type GTPases through specific GEFs,
the ScRom2p and SpRgf1p [3,4]. In S. cerevisiae, signalling is also associated with Tus1p,
another Rho1p-GEF and a functional homologue of SpRgf3p, whose relevance in CIP
activation is unknown. Signalling in S. cerevisiae is directly translated to the MAP kinase
cascade through the GTPase Rho1p and its effector the Pkc1p kinase (Figure 1B). In S. pombe,
the situation is a bit more complex (Figure 1A), there are two different Rho A homologues
(Rho1p and Rho2p) and two Pkc kinases (Pck1p and Pck2p), participating in signalling.
The major signal input is channelled through Pkc2p, which receives different inputs, the
main one through the Rho2p GTPase and a minor one through Rho1p, which also transmits
a minor signal through the Pkc1p branch [5,6]. In both yeasts, the signal from the PKC
kinase is transmitted to a MAP kinase cascade that ends with the MAP kinases ScSlt2p
and SpPmk1p. These kinases participate in phosphorylation events of specific nuclear
transcription factors. The S. pombe Pmk1p phosphorylates Atf1p and Mbx2p transcription
factors, but to date, only a few downstream targets have been characterised. In S. cerevisiae,
the MAP kinase Slt2p phosphorylates the Rlm1p transcription factor that mediates a strong
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transcriptional response. This response encompasses genes involved in chitin and glucan
synthesis as well as genes encoding cell wall remodelling activities, among others [7,8].
ScSlt2p also phosphorylates the heterodimeric SBF transcription factor that promotes the
G1/S transition [9].
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Figure 1. The cell integrity cascade in yeast. (A) The cell integrity pathway (CIP) in Schizosaccha-
romyces pombe. (B) The cell wall integrity pathway (CWI) in Saccharomyces cerevisiae. Both cascades
signal from the mechanosensors in the PM (Mid/Wsc) to the transcription factor in the nucleus (N).
Red boxed proteins are those for which expression is transcriptionally regulated by the cascade and
are involved in the cell wall and/or septum assembly. Black boxed proteins represent cytosolic targets
of the cascade at different levels that are related to septum assembly. For additional description of
the cascade, see text.

In addition to their signalling through transcriptional regulation, these pathways act
through cytosolic targets. The Rho1/2p GTPases are directly involved in the biological
cycles of actin, regulating patches and filaments turnover that affect endocytosis, cell
polarisation and therefore the assembly of the yeast cell wall. Additional targets of the
signal transduction in S. pombe have been elusive, but are numerous in S. cerevisiae. The
potential effect of such targets will be described later in the context of septum assembly.

2. S. pombe, the Fission Yeast

In S. pombe, the cells are cylindrical and grow by elongation at their tips. Cell division
is accomplished by medial fission using a contractile actomyosin ring (CAR), which guides
the formation of the cell wall septum. Cell separation also involves cell wall degradation
between the two halves of the division septum that will constitute the new ends of the
daughter cells. The overall process has been deeply studied, and there are excellent reviews
on cytokinesis [10–13], septation [14,15] and cell separation [16]. In this review, we will first
summarise key steps of fission yeast cytokinesis, including ring assembly, constriction and
septum formation, before discussing emerging mechanisms that involve the cell integrity
pathway (CIP) in the regulation of cytokinesis and their biological implications.

2.1. Before Septum Assembly: Actomyosin Ring Positioning and Assembly

The CAR in S. pombe is composed of short actin filaments assembled by formins and
myosin motors (actomyosin) that produce the force to arrange the actin filaments (revised
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in [12,17]). CAR dynamics are tightly regulated in space and time and can be divided into
several steps including positioning, assembly, maintenance, constriction and disassembly
(Figure 2A, upper panel). Ring position is determined during interphase by a broad band
of cortical cytokinetic precursor nodes located at the equator of the cell [18].
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Figure 2. Septum assembly in yeasts: S. pombe (A) and S. cerevisiae (B). The schemes represent the
temporal sequence of the process, from the early stages involved in the selection of the septation
site (upper panels) to the assembly of the secondary septa (lower panels). The final stages in cell
separation are not depicted. For additional details in the process, see text.

The anillin Mid1p and the DYRK kinase Pom1p dictate CAR positioning in the cell mid-
dle [13]. At mitosis, Plo1p kinase activate Mid1p allowing its exit from the nucleus [19,20]
and Pak1p kinase promotes its association to the cortical nodes [21]. Then, Mid1p initiates
the recruitment of cytokinetic factors, including the IQGAP Rngp2, Myosin II heavy and
light chains, the F-BAR protein Cdc15p and the formin Cdc12p (Figure 2A) [13,22].

After spindle pole bodies (SPBs) separation, the cytokinesis nodes condense, and
the contractile ring is formed through dynamic interactions between the actin filaments
assembled by Cdc12p and Myo2p in adjacent nodes. Afterwards, the ring is maintained
until the completion of anaphase in an interval known as maturation that lasts ~10 min
until the onset of ring constriction. In maturation, more proteins are recruited from the
cytoplasmic pool, while others leave the ring. Mid1p disappears, and the ring adds
more polymerised actin, Cdc15p with its partners (Imp2p, Pxl1p, Fic1p and Rgf3p) [23],
unconventional myosin-II (Myp2p) [24] and the glucan synthases Bgs1p and Bgs4p [25,26]
among others. In the mature ring, proteins are ordered roughly in a three-layered structure.
Starting from the inside, the first layer contains membrane-bound proteins that anchor the
ring and act as scaffolds, an intermediate layer that contains signalling components that
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influence cell division and a distal layer that contains F-actin filaments, myosin motors and
F-actin cross-linkers [27].

2.2. Anchoring the Ring to the Plasma Membrane and the Growing Septum

To perform its function, the CAR needs to be anchored to the PM, a linkage defined
by at least three types of attachments: protein–protein and protein–lipid interactions, the
cell wall and the arrangement of microtubules at the cell equator.

Upon mitotic entry, more Mid1p binds to the PM, anchoring ring proteins (and then
the ring itself) to this structure. It has been shown that Mid1p dimerisation favours its inter-
action with membrane phospholipids, in particular phosphatidylinositol 4,5-bisphosphate
[PI(4,5)P2] [28], preventing the sliding of the CAR [29]. An additional link of the CAR to the
PM is provided by Cdc15p (S. cerevisiae Hof1p), a CAR scaffold that binds to the membrane
through its BAR domain. When cdc15 expression is repressed, the CAR slides along the
PM and disassembles [30,31]. Cdc15p helps to deliver Bgs1p to the PM [30] and binds
to paxillin, Pxl1p, Fic1p, Rgf3p (Rho1p-GEF) that also play a role in CAR anchoring [23].
Pxl1p mediates the interaction between the β-glucan synthase Bgs1p and the contractile
ring contributing to the initiation of septum synthesis [32].

A different alteration in the cell wall structure also leads to CAR sliding. This has been
shown in spherical protoplasts deprived of the wall [33], as well as in cells depleted for
Bgs4p that bear low levels of branched-β(1,3)glucan [34], suggesting an additional level of
linkage between the CAR and the cell wall. Finally, certain evidence also links the CAR
and the cytoskeleton. For instance, microtubule depolymerisation in the β-GS mutant
cps1-191, which arrests with a stable CAR, leads to CAR sliding [35], and in the absence
of the microtubule nucleator Mto2p, the cells also fail to anchor of the CAR in the medial
region under conditions that mildly perturb actin structures [36].

2.3. Triggering Septation: The Role of the Septation Initiation Network (SIN) in CAR Maintenance
and Constriction

Once the CAR is assembled at the division site, it must constrict to guide and power
membrane ingression and cell wall synthesis (Figure 2A). The regulation of CAR assem-
bly/maintenance and constriction coupled to septum synthesis depends on a signalling
cascade of the septation initiation network (SIN) [37–39]. The SIN induces cytokinesis only
after the decrease in CDK activity in anaphase, guaranteeing that cytokinesis occurs after
chromosome segregation. A pathway similar to the SIN, termed the mitotic exit network
(MEN), exists in S. cerevisiae [40]. In addition, SIN/MEN orthologues also exist in mammals
that conform to the HIPPO pathway [41]. In yeasts, these networks monitor the position of
the spindle pole bodies (SPBs), the yeasts equivalent to centrosomes, throughout the cell
cycle to coordinate cytokinesis with other cell cycle phases.

The SIN signal begins with the activity of the GTPase Spg1p and involves a regulatory
GAP complex, a scaffold complex that anchors the pathway to the SPBs and a linear cascade
of three kinases (Cdc7p, Sid1p and Sid2p), in order of their activation [39]. Insufficient SIN
results in improper assembly of the contractile ring and failure of cytokinesis, generating
multinucleated cells without rings or septa [42]. On the opposite, ectopic activation of the
SIN triggers formation of a contractile ring and septum at any point in the cell cycle [43].

How does the SIN achieve CAR assembly and maintenance? What are the SIN sub-
strates that direct CAR constriction and septum synthesis? Most of these questions are still
not solved. Among the SIN components, only Sid2p kinase (a nuclear Dbf2-related (NDR)
kinase) and its counterpart Mob1p associate with the CAR in mid-late anaphase [44]. Sid2p
phosphorylation of Clp1p (S. cerevisiae Cdc14p) keeps the phosphatase out of the nucleolus,
allowing the protein to operate on cytoplasmic targets. Clp1p reverses Cdk1p phospho-
rylation of itself, Cdc25p and other Cdk1p substrates antagonising CDK [45]. Clp1p also
dephosphorylates Cdc15p, inducing its oligomerisation and the scaffolding activity nec-
essary to recruit CAR components [46]. In addition, Sid2p targets CAR components such
as the essential formin Cdc12p, triggering an oligomeric switch that positively modulates
formin function [47]. The SIN pathway directly targets the SAD kinase Cdr2p, promoting
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its dissociation from the cortex [48]. Similarly, Sid2p phosphorylation of Mid1p disrupts
Mid1p interaction with membrane [49]. In both situations, removal of these landmark
proteins from the cortex cytokinesis resets the division plane for the next cell cycle.

Finally, the SIN should coordinate many aspects of CAR and septum regulation during
late cytokinesis, although the molecular mechanism of this regulation remains unexplored.
It has been shown that upregulation of the GTPase Rho1p partially rescues the lethality of
sid2 mutants at a low-restrictive temperature [50,51]. Based on these results, it has been
proposed that the SIN activates Rho1p, which in turn activates the Bgs enzymes. However,
the SIN target(s) involved in septum assembly remain unknown. Therefore, identifying
SIN targets [52] and elucidating the consequence of known phosphorylation events at the
ring will be central tasks in advancing our understanding of S. pombe cytokinesis.

2.4. Furrow Ingression and Septum Deposition

Initiation of furrow ingression by S. pombe depends on an intact CAR, a signal from
the cell cycle clock and septum synthesis (Figure 2A). CAR constriction provides the
pulling force for membrane and primary septum deposition, although septum synthesis
also contributes to the membrane ingression [17]. The actin and myosin-dependent forces
from the ring promote septum deposition and maintain the circularity of the pore [53,54];
in that sense, mutations compromising contractility slow furrow ingression, suggesting
that the ring may positively modulate the rate of ingression [24,55]. One of the problems
of the CAR being the principal force of ingression is the huge turgor pressure inside the
cell that forces the ring to work against this pressure [56]. In addition, furrow ingression
and septum growth can still occur in the absence of F-actin. These findings suggest that
cell-wall assembly pushing from the outside of the membrane could afford the force for
furrow ingression [57]. Moreover, the delivery of exocytic vesicles and membrane edge
expansion [58–60] could provide stream-like forces, as has been shown in animal and
plant cytokinesis [61,62]. A conciliatory model for septum synthesis proposes a two-phase
motion. In the first phase, the septum ingresses slowly, remains immature and depends on
the CAR integrity; in the second phase, the ingression rate increases, and the CAR becomes
dispensable [63].

The fission yeast septum is made of β and α-glucans and lacks chitin. Under electron
microscopy, it looks like a three-layered structure with a primary septum (PS) in the middle
of two secondary septa (SS). The PS is mainly composed of linear-β(1,3)glucan synthesised
by glucan synthase Bgs1p/Cps1p and contains branched-β(1,3)glucan [64,65]. This linear-
β(1,3)glucan would play a role similar to chitin in budding yeasts (see below and Figure
2B) and other fungi in the synthesis of the PS. The secondary septum (SS) forms the cell
wall once the cells are separated and consists of 1,6 branched β-1,3-glucans synthesised by
Bgs4p, α-1,3-glucans synthesised by Ags1p and β-1,6-glucans [15].

One of the most studied aspects of septum synthesis at the PM is the regulation
and deposition of the β-glucans. The enzyme responsible is the β–GS complex that
consists of four catalytic subunits, Bgs1p-4p, and a unique regulatory subunit, the GTPase
Rho1p [66]. Bgs1p, Bgs3p and Bgs4p are essential transmembrane proteins. Bgs1p localises
as a ring, tightly associated with the CAR, at the edge of the septum membrane (PM)
during ingression and is responsible for the synthesis of the PS. Bgs3p and Bgs4p follow
the CAR but remain localised as a disk along the invaginated PM and are required for the
synthesis and assembly of the SS [66].

Rho1p activates all three β-glucan synthases and is positively regulated by three
guanine nucleotide exchange factors (GEFs): Rgf1p, Rgf2p and Rgf3p [67–69]. Rgf3p-GFP
is a CAR component and is the main candidate to regulate Rho1p function in septum
synthesis. Moreover, rgf3 depleted cells lyse as couples during cell separation, mimicking
the characteristic phenotype of rho1 depleted mutants and mutants of Pck1p and Pck2p
(S. cerevisiae Pkc1p homologues). In addition, it is possible that Rgf3p acts as a physical
link between components of the CAR and the membrane–bound Bgs-mediated septum
growth [27]. CAR-localised proteins, such as Cdc15p, Imp2p and Art1p, recruit Rgf3p,
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probably activating the regulatory subunit of the β-GS [70,71]. As mentioned before,
Cdc15p participates in the transport of Bgs1p to the septum membrane and Rga7p (a Rho
GAP) also contributes to the transfer of the Bgs4p to the same area [25,30]; therefore, it
is possible that the concerted action of these proteins also regulate traffic of the Bgs1p to
the PM. To date, it remains unclear whether Rgf3p regulates only Bgs1p activity or if it is
involved in the regulation of all β-glucan synthases.

By contrast, Rgf1p follows the ring from outside, leaving behind a trail as division
proceeds [72], making it a likely candidate for regulating the β-glucan synthesis forming the
SS. Interestingly, Rgf1p is the most abundant GEF and activates the cell integrity pathway
(CIP) in response to cell wall damage and osmotic stress [73,74].

The enzyme responsible for the synthesis of α–glucans in the SS septum is Ags1p,
whose activity is regulated by the GTPase Rho2p. Ags1p localization to the CAR is very
similar to that of Bgs4p and together with Bgs4p grants to the PS the robustness needed to
counteract the turgor pressure for a gradual cell separation [66].

In S. pombe, the septin ring apparently does not have a function to recruit proteins for
the assembly of the CAR, as occurs in S. cerevisiae (see below). This difference is probably
associated with the mechanism used by each yeast for the selection of septum position. S.
pombe septins form a ring structure at the septum during the constriction of the CAR, which
serves as a scaffold to recruit the GTPases and glucanases that ultimately mediate daughter
cell separation [16]. The glucanases are funnelled by the exocyst and concentrated by the
double septin ring. Cell wall degradation starts with the erosion of the wall material that
surrounds the septum driven by the α-1,3 glucanase activity of Agn1p [75,76]. After that,
cell turgor pressure and the action of the endoglucanase Eng1p [77] finish the dissolution
of the PS. Interestingly, the lysis phenotype characteristic of the rgf3 (ehs2-1) mutants is
suppressed by elimination of Eng1p but not Agn1p (unpublished results). This result
suggests that Rgf3p is involved in PS synthesis and that a balance between cell wall
synthesis and degradation is necessary to accomplish cell separation safely.

2.5. Integrating Septum Assembly and the Cell Integrity Pathway during Cytokinesis in
Fission Yeast

What is the role of the CIP in cytokinesis? Are there cytoplasmic targets of Pmk1p
with a potential role in cytokinesis?

In S. pombe, the cell integrity pathway (CIP) is composed of a module of three MAP
kinases, the MAPKKK Pek1p, the MAPKK Mkh1p and the MAPK Pmk1p, which are
regulated by upstream activators, as Rho GTPases and PKC homologues (Figure 1A) [4].
In general, the CIP null mutants display lysis and multiseptated phenotypes characteristic
of cell separation defects; however, there are significant differences between mutants in
the upper part of the pathways from others in the lower parts. We have described before
how Rho1/2p and Pck1/2p regulate the synthesis of the main components of the cell
wall, thereby organising the synthesis and/or assembly of the primary and secondary
septa. Not surprisingly, most of these mutants shrink as doublets during cytokinesis.
In addition, cells of rgf1, pck1 and pck2 null mutants show monopolar growth [68,78];
suggesting problems in the recognition of a faulty disassembled end [79], a factor that
could also affect septum assembly.

Mutants lacking Mkh1p, Skh1p/Pek1p and Pmk1p show separation defects when
grown in nutrient-limiting conditions, at high temperature and in hyperosmotic medium [80–82].
Apparently, these cells had almost finished cytokinesis but had not completely lysed the
external wall, suggesting late defects in cell wall remodelling. Specifically, the phenotype
of Pmk1p mutants may reflect fine-tuning of septation, as expected for mutations in CIP
repairers of cell wall damage caused under environmental stresses. The differences in the
phenotypic penetrance of the different mutants resembled that observed in S. cerevisiae.

2.6. The Role of the CIP beyond Septum Assembly

In S. pombe, contrary to S. cerevisiae, the transcriptional response mediated by the
CIP seemed rather weak. Upon activation of the route, Pmk1p phosphorylates at least
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two transcription factors: Atf1p and Mbx2p. Atf1p is also phosphorylated by the SAP
MAPK Sty1p in response to various stresses [83]. Atf1p mutants show sensitivity to
antifungal agents and the vic (viable in the presence of immunosuppressant and chloride
ion) phenotype characteristic of null mutants in bonafide components of the CIP [84,85].
Mbx2p is the closest homologue to Rlm1p in fission yeasts; mbx∆ mutants displayed only
a modest sensitivity to cell wall-damaging agents, suggesting that Mbx2p plays a minor
role in this process. While in S. cerevisiae, it is known that Rlm1p regulates the expression
of tens of genes, most of which have been implicated in cell wall biogenesis [86], in S.
pombe, the only well-known target of Atf1p and Mbx2p is Ecm33p. Ecm33p is a glycosyl-
phosphatidylinositol (GPI)-anchored cell surface protein; Ecm33p deletion mutants display
abnormal morphology and hypersensitivity to antifungal agents, although the relationship
between the CIP, Ecm33 and cell wall assembly remains uncertain.

Pmk1p phosphorylation varies periodically during the cell cycle, reaching its maxi-
mum activity during cytokinesis. In fact, 15–20% of a population of pmk1∆ synchronised
cells were unable to complete cytokinesis, suggesting that the Pmk1p pathway is activated
to control septum formation and/or dissolution [87]. However, to date, we do not know
how this is accomplished. Pmk1p localises to the mitotic spindle and the septum during
cytokinesis and constitutively resides in both cytoplasm and the nucleus [88]; however, the
role of Pmk1p in cell separation seems mostly independent of its nuclear localisation [89].
Among the few known cytoplasmic targets for Pmk1p in vivo are the RNA-binding proteins
Nrd1p and Rnc1p. Nrd1p binds and stabilises the essential myosin II light chain mRNA,
thereby playing an important role in the regulation of CAR synthesis and contraction [90].
The potential participation of Rnc1p is unknown.

It has been known for a long time that the MAP kinase Pmk1p becomes activated
within minutes by cell wall stress [5,87]; however, it is still unclear how the CIP integrates
this stress input with successful cell separation [91]. A quick response is required when
the cell’s genome has already split, and the cell becomes ready to separate its cytoplasm.
Recently, it has been shown that cell wall damage inflicted during cytokinesis triggers a
checkpoint-like response, promoting a delay right before CAR constriction [72]. This delay
depends on Rgf1p/Rho1p and Pck2p and was also abolished in the absence of the MAP
kinase of the CIP. Because inactivation of this pathway in stressed cells causes defects in
septation [80–82], it is possible that the CIP signalling delays CAR constriction in response
to cell wall perturbations to ensure that cytokinesis reaches completion only after the cell
has adjusted to the new conditions.

Finally, there is a connection between the checkpoint response to cell wall damage and
the SIN [72]. It has been shown that the cell wall cytokinesis checkpoint depends on the
SIN to be achieved. Moreover, the cell wall delay correlates with a prolonged SIN signal.
Given that Sid2p is required for CAR maintenance when the cytokinesis checkpoint is
active [50], it is very likely that the prolonged SIN activity serves to maintain the CAR in a
competent state to achieve constriction safely.

3. S. cerevisiae, the Budding Yeast

In S. cerevisiae, the building of a septum is initiated very early in the cell cycle. Bud
site selection is mediated by the landmark proteins inherited during cell division [92].
Then a cascade of GTP-GDP-bound proteins recruits and activates the Rho family GTPase
Cdc42p, which in turn stimulates actin cable polarisation, targeted exocytosis and septin
ring formation [93]. Here, we shall focus on the assembly of the septin ring that in S.
cerevisiae acts as a scaffold structure for the sequential recruitment of the components that
build up a septum.

The initial septin ring recruits the major chitin synthase, Chs3p, and its activator
Chs4p, to the mother site of the neck. There, they will promote the synthesis of the chitin
ring that serves as a scaffold for the septum, although it is not strictly a part of it. The initial
septin ring undergoes significant structural modifications monitored by the morphogenesis
checkpoint that finally result in the split of the septin hourglass structure into a double
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ring. Formation of this structure is not essential for cytokinesis, but it could set the limits
of the area for septum assembly [94], favoring the correct positioning of the ingression
progression complexes (IPCs) to trigger the synthesis of the primary septum. In addition,
the double septin ring acts as a landmark to redirect the polarised secretion in the daughter
cell to the neck region, facilitating the assembly of the septum [95,96].

3.1. Before Septum Assembly: Shaping the Yeast Cell through the Synthesis and Assembly of the
Cell Wall

Although this review is mainly focused on the role of CWI in septum assembly, we
could not ignore the general roles of CWI in the synthesis of the yeast cell wall. Activation
of Cdc42p at the site of bud formation triggers the synthesis of new cellular material
forming the growing bud (Figure 2B) [97]. This material includes β-glucans synthesised
by the β-glucan synthases Fks1p and Fks2p. The FKS1/2 are activated by the Rho1p
GTPase [98,99] and its GEF Rom2p recruited to the site of bud emergence by the CWI
sensors, Mid2p and Wsc1p [100]. At the same time, the main CWI Kinase PKC1 is recruited
to the site of polarised growth [101], allowing the synthesis of the major component of
the yeast cell wall. Later on, the polarisation machinery is displaced to the growing tip
(Figure 2B, upper panel), where the synthesis of the cell wall continues along the cell cycle.
Interestingly, it has been elegantly shown that the CWI is engaged in the localisation of the
cellular machinery after the local cell wall is damaged through proteasomal degradation of
critical components previously assembled at the site of cell division [102].

The structure of the septin ring is externally reinforced by a chitin ring synthesized by
Chs3p, defining the width of the yeast neck [103]. The absence of the chitin ring, which is
not essential on its own, exacerbates minor cytokinesis defects leading to severe synthetic
lethal effects [104,105]; moreover, upregulation of the chitin synthesis mediated by Chs3p
relieves multiple strong cell wall defects mediated by antifungal therapies [106]. In this
scenario, it is therefore, not surprising to find chitin synthesis under the control of the CWI.
How is this control achieved?

It has been shown that phosphorylation of Chs3p depends on PKC1 activity [107],
although there is no direct evidence that the CWI activates chitin synthesis. However,
there are multiple circumstantial pieces of evidence indicating that this could be indeed
the case. Chs3p activity depends on its polarised delivery to the neck where it binds
to the septins [108]. This localisation strictly depends on the endocytic turnover of
Chs3p [109,110]; therefore, the potential effects of the CWI on actin patch localisation
(see below) will affect Chs3p endocytosis. This effect can be direct or could be mediated
through Chs4p that links Chs3p to the septins [109,111]. A more important action of CWI
in chitin synthesis is through the transcriptional regulation of the GFA1 gene encoding one
of the enzymes required for the synthesis of the UDP N-acetylglucosamine (UDP-NAGA),
the metabolic precursor of chitin. Gfa1p is normally synthesised in limited amounts and
acts as a bottleneck in chitin synthesis [112]. Cell wall damage triggers a compensatory
response accompanied by a significant increase in chitin synthesis that relays in higher
levels of Gfa1p, promoted by the activation of the CWI response through its transcriptional
program [7]. Not surprisingly, overexpression of GFA1 by other means also alleviated
many cell wall defects. The regulation of the Chs3p related to the synthesis of chitin in the
daughter cell and in the secondary septa, will be describe later.

Finally, a potential role of the CWI in septum assembly through the ER stress surveil-
lance (ERSU) cell cycle checkpoint that ensures that cells inherit functional ER into the
daughter cell cannot be ignored; the role of CWI in this process is well documented, but the
molecular mechanisms that underlie this function are still poorly defined (reviewed in [113]).

3.2. Starting the Separation: The Building of a Primary Septum

While yeast cells progress along the cell cycle, cell growth moves from apical to
isodiametric, and the septin ring undergoes strong structural modifications that eventually
end with splitting in a double ring that would mark the position of the septa [95,96]. This
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progression is monitored by the morphogenesis checkpoint through the function of the
Swe1p kinase [93].

Progression along the cell cycle triggers the so-called mitotic exit system, which
involves the Cdc14p early anaphase release (FEAR) and the mitotic exit network (MEN)
which is the start point for cytokinesis. This signal triggers the destruction of the mitotic
kinases allowing the arrival of the chitin synthase Chs2p to the septation site [114,115]. In
addition, the mitotic exit also promotes the Rho1p-mediated assembly of the actomyosin
ring though the Bni1p formin [116,117]. Concomitantly, the symmetric relocalisation of the
polarisation machinery to both sites of the division site funnels the secretion machinery in
order to provide the building blocks for the synthesis of the new membrane units and the
septum. The primary septum (PS) is then assembled (Figure 2B) by the coordinated action
of two independent but interconnected mechanisms: the centripetal synthesis of the chitin
disk and the contraction of the actomyosin ring [118].

The chitinous nature of the primary septa in S. cerevisiae represents a strong differ-
ence with S. pombe PS, which is mainly made of linear β-(1,3)-glucan [14,64]. In fission
yeast, the CWI could control the synthesis of PS by modulating Rho1p and/or Bgs1p, the
regulatory and the catalytic subunit, respectively, of the β-glucan synthase complex [119].
In S. cerevisiae, the activation of Chs2p orchestrated by the CWI pathway has not been
described to date.

The pioneering work in Cabib and Li labs established that chitin synthesis mediated
by Chs2p and the actomyosin ring contraction are two interdependent, but interconnected
processes that led to the synthesis of the primary septa [120,121]. Chs2p dephosphorylation
promoted by the MEN substrate Cdc14p triggers its exit from the ER and its delivery to
the division site, which ensures that septum formation takes place only after the comple-
tion of mitotic events [114,115]. Then, Chs2p interacts with the SH3 domains of Hof1p
(SpCdc15p) as well as with Cyk3p (SpCyk3p), Inn1p (SpFic1p) and with the scaffold Spa2p,
favouring its incorporation to the IPC complexes, where is activated to synthesise the
chitin disk [122,123]. It has been proposed that the C2 domain of Inn1p participates in
Chs2p activation [123]. Accordingly, some hypermorphic alleles of Chs2p can bypass the
cell division defect seen in Inn1p mutants and mutants of other IPC components [124].
However, the molecular mechanism of Chs2p activation at the neck remains uncertain.

It is known that the chitin synthases stay competent for chitin synthesis after endocy-
tosis blockade [109]; therefore, modification of the endocytic turnover by the CWI pathway
through Rho1p could have a direct impact on PS synthesis [125,126]. In this sense, it has
been shown that Rho1p and Pkc1p modulate the neck localisation of Syp1p, a protein in-
volved in the negative regulation of actin patch assembly [127,128]. In addition, activation
of the CWI induces phosphorylation of the eisosome core components such as Pil1p and
Lsp1p [129], which could participate in PM compartmentalisation [130]. Altogether, this
evidence suggests a direct role of CWI in regulating the endocytic turnover of proteins
involved in septum assembly. Finally, the MEN kinase Dbf2 directly phosphorylated Chs2p,
triggers its dissociation from the neck [131].

3.3. At the End of the Process, Secondary Septa Synthesis and Cell Separation

At the end of the PS assembly, there begins the synthesis of the SS, which in S. cerevisiae
is formed by β-glucans with minor quantities of chitin. Chitin is synthesised by the chitin
synthase Chs3p [132], and its localisation at the neck is dependent on Rho1p [133], although
the details are unknown. One possibility is that the relocalisation of secretory and endocytic
machinery on both sides of the neck increased the endocytic turnover of Chs3p/Chs4p,
favouring chitin synthesis at the SS. The regulation of the β-glucan synthesis at the SS by
the CWI is achieved through Rho1p. During septation Rho1p is recruited and activated by
a distinct mechanism that involves its binding to membrane phosphoinositide’s in order
to activate the β-glucan synthases Fks1/2p [133]. In addition, SS synthesis could be also
achieved through transcriptional activation of FKS2 and GFA1 genes by the CWI pathway.
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Moreover, chitin and β-glucans are linked together at the septa by the action of
Chr1/2p transglycosidases, which are localised at the neck [134]. In the neck region, cross-
linkage occurs between the β-(1-3)-glucans and the Chs3p-made chitin, therefore linking the
SS β-glucan material to the chitin ring [135]. However, additional linkages between chitin
and β(1-6) glucans cannot be discarded as part of the SS layered out in the mother cells
of the septa, as it has been reported for the lateral cell walls [135]. Interestingly, Chr1/2p
expression is under the transcriptional control of the CWI, which could also contribute to
the strength of the septa through increased levels of chitin-glucans cross-linkages.

The last step in septum dynamics is its dissolution to achieve cell separation. This
process is triggered by the RAM pathway and involves the Ace2p mediated expression
of several hydrolytic enzymes, specifically in the daughter cell [136]. In S. cerevisiae, the
major role in cell separation is performed by the Cts1p chitinase [137] together with the
Eng1p endoglucanase [138]. These proteins are secreted in a polarised manner to the
periplasmic space surrounding the neck region of the daughter cell [138,139]. Chitinase
acts centripetally, first on the chitin ring and later on the chitin disk formed by Chs2p,
allowing the separation of chitin from the SS material mainly formed by β-glucans. The
partial degradation of β-glucans by Eng1p would contribute to the process. Interestingly,
these actions, performed only from the daughter side, leave most of the primary septa at
the mother cell as the bud scar.

Cell separation involves degradation coupled to the repair of the cell wall when
degradation takes place in an excess that could compromise cell integrity. Therefore, the
CWI performs a critical role by regulating the expression of the repair enzyme, Chs1p [7].
Interestingly, while the transcriptional response mediated by the CWI pathway is not
relevant under normal circumstances, the transcriptional regulation of Chs1p becomes
critical in the presence of an excess of chitinase activity [104,140]. More recently, it has been
described a sort of cell separation checkpoint-like named ECO (enforcement of cytokinesis
order) that down-regulates directly Cts1p secretion upon cytokinesis defects. The ECO
detects cytokinesis defects and signals through the Cbk1p kinase in order to prevent Cts1p
secretion independently of the transcriptional regulation exerted by Cbk1p trough the
RAM pathway [141]. The precise mechanism used by this pathway is uncertain and, so far,
its potential relationship with the CWI is untested.

3.4. Beyond Septal Assembly: The Generation of a Remedial Septum

Besides the roles of CWI in septum assembly, the CWI participates in the synthesis
of the remedial septa [118]. These septa are assembled upon catastrophic events caused
by defects in Chs2p or in the actomyosin and septin rings. The failure in separating
mother and daughter cells compromises cell integrity and therefore triggers a strong CWI
response. This response is directed in part by the chitin synthase Chs3p, which promotes
an abundant synthesis of chitin at the neck region independently of its role in the assembly
of the chitin ring. Synthesis is triggered by up-regulation of the GFA1 gene, although the
collapse on the actomyosin ring contraction very likely favoured Chs3p accumulation at
the neck by preventing its endocytosis. In addition, FKS1/2 and CHR1/2 genes are also
upregulated [7,112], increasing chitin-glucans cross-linkages and in general favouring the
strength of the remedial septa. Moreover, the activation of CWI triggers the increased
expression of genes involved in the synthesis of β-(1,6)-glucans and mannoproteins that
could also contribute to its assembly. Altogether, these actions promote the synthesis of
abnormally engrossed septa that lack the typical layered structure but prevent cell lysis
during cytokinesis.

As stated above, the upregulation of chitin synthesis mediated by the CWI seemed to
be a cellular general response against cell wall damage that can be mimicked simply by the
addition of glucosamine to the media as a direct precursor in chitin synthesis [104].
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3.5. The Action of CWI beyond Septum Assembly

The CWI pathway has been described extensively based on its strong transcriptional
in response to cell injuries that compromised cell integrity. Due to the different phenotypic
penetrance of mutations in their components, very soon it was apparent that the CWI path-
way was not linear. The phenotypes associated with the absence of the Rlm1p transcription
factor were milder than those associated with the upper part of the route, while the pheno-
types seen in the absence of the Slt2p MAP kinase were clearly intermediate, suggesting
significant branching in the functional signalling along the route. We have highlighted
before some of the most relevant non-transcriptional effects of the CWI response in the
assembly of a functional septum, but many other aspects have not yet been addressed.

In recent years, and through different approaches, it has been shown that the CWI
mediates, directly or indirectly, the phosphorylation of multiple proteins, potentially
influencing all aspects of cell physiology, including carbohydrate metabolism, protein
synthesis and DNA repair, among others [100]. There is also a close relationship between
cell wall synthesis and cell cycle progression; therefore, a tight link between CWI and cell
cycle progression is expected, exemplified by early reports that established the SBF complex
as a direct target of the CWI [142]. This linkage is established at multiple levels that have
been reviewed recently [100]. However, we shall highlight here the close relationship
between the PP2ACdc55-Zds1/Zds2 complex and the CWI. This PP2ACdc55 complex is an
effector of Rho1p that in unperturbed growth conditions favours polarised cell growth,
inactivating the Rho1p GAP Lrg1, while preventing CWI activation by stabilising the
other Rho1p GAP, Lrg7. Upon cell wall stress, Rho1p rapidly activates the CWI, which
downregulates the PP2ACdc55 complex at multiple levels, reducing polarised growth in
favour of the stress response [143].

An additional link between the CWI and cell cycle progression has been recently
proposed through the protein Bni4p, a direct target of the MAP kinase Slt2p [144] and the
cyclin kinase Pho85p [145]. Bni4p is involved in septum assembly [146] and its location
at the neck region is cell-cycle-regulated [147], allowing a new level of the crosstalk be-
tween CWI and cell cycle progression. It is tempting to speculate a potential functional
relationship between this level of control and the new check-point-like response associated
with the cell wall damage inflicted during cytokinesis recently described in S. pombe [72].
However, the answer will have to wait until the identification of the potential target/s of
the CIP at the neck.

4. Concluding Remarks and Future Perspectives

In this review, we have highlighted the multiple interconnections between the cell
integrity signalling responses and the assembly of yeast septa using two model yeasts
with different modes of growth. We believe that though the main rules governing the
physiological relationship between cell integrity signalling and septum assembly are similar,
sometimes the molecular mechanisms underlying both processes are different.

Some of the differences described in the text may reflect the levels of knowledge
accumulated for both yeasts. However, in many others, the differences are probably
associated with how both yeasts choose the site of septum synthesis, the different structure
and composition of their cell walls and so on. In this context, it would be very interesting
to know how the CWI influences septum assembly in other fungi. The CWI response
seems conserved across fungi and participates in the response to several stresses, including
antifungal therapies and in pathogeny [148]. In addition, although some members of the
cascade have been linked with the synthesis of α and β-glucans, the precise implications of
this cascade in septum assembly have been poorly explored.

In summary, it would be interesting to gain a deeper understanding of the relationship
between CWI and septum assembly in these yeasts as well as in other fungi to define the
general rules governing them. This knowledge eventually will allow the identification of
new targets useful in the design of efficient antifungal therapies.
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