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A B S T R A C T

Dengue is a severe emerging arthropod borne viral disease occurring globally. Around two fifths of the world's
population, or up to 3.9 billion people, are at a risk of dengue infection. Infection induces a life-long protective
immunity to the homologous serotype but confers only partial and transient protection against subsequent in-
fection caused by other serotypes. Thus, there is a need for a vaccine which is capable of providing a life- long
protection against all the serotypes of dengue virus.
In our study, comparative genomics of Dengue virus (DENV) was conducted to explore potential candidates

for novel vaccine targets. From our analysis we successfully found 100% conserved epitopes in Envelope protein
(RCPTQGE); NS3 (SAAQRRGR, PGTSGSPI); NS4A (QRTPQDNQL); NS4B (LQAKATREAQKRA) and NS5 pro-
teins (QRGSGQV) in all DENV serotypes. Some serotype specific conserved motifs were also found in NS1, NS5,
Capsid, PrM and Envelope proteins. Using comparative genomics and immunoinformatics approach, we could
find conserved epitopes which can be explored as peptide vaccine candidates to combat dengue worldwide.
Serotype specific epitopes can also be exploited for rapid diagnostics. All ten proteins are explored to find the
conserved epitopes in DENV serotypes, thus making it the most extensively studied viral genome so far.

1. Introduction

Dengue virus or as commonly called DENV is a single stranded RNA
virus that infects approximately 390 million people each year (Achee
et al., 2015), putting more than two-fifth of the world's population
under the threat of this efficacious virus. The dengue fever has, thus
become one of the most widespread disease (Sukhralia et al., 2018).
The virus belongs to the family Flaviviridae and genus Flavivirus
(Westaway et al., 1985; Back and Lundkvist, 2013). DENV is an arbo-
virus, having two known mosquito vectors Aedes aegypti (Gratz, 1999)
and Aedes albopictus (Lambrechts et al., 2010). The positive stranded
RNA genome of dengue virus is of 10.7 Kb size and composed of three
structural proteins (Envelope, Capsid, Membrane) and seven non-
structural proteins (NS1, NS2A, NS2B,NS3, NS4A, NS4B, NS5) (Imrie
et al., 2010; Guzman et al., 2010; Sukhralia et al., 2018). There are
atleast four serotypes and they show 65% similarity in the genome
structure (Azhar et al., 2015; Ramanathan et al., 2016).
The dengue infection is caused by one of the four serotypes of DENV

that are spread by Aedes mosquito (Kalayanarooj, 2011). During pri-
mary infection, the body develops immune responses in the form of
antibodies against the particular serotype attacked (Schmid et al.,
2016). But the main complexity of DENV arises during the secondary
infection with another serotype, leading to serious version of dengue
infection like Dengue Haemorrhagic fever (DHF) and Dengue Shock
Syndrome (DSS) (Dar and Ghosh, 2015; Matheus et al., 2005; Schmid
et al., 2016). This is caused due to the antibodies produced during
primary attack which complicate the secondary DENV infection by a
phenomenon known as Antibody Dependent Enhancement (ADE)
(Durbin and Whitehead, 2011; Flipse et al., 2016). During ADE, there is
a cross reaction between the antibodies of the primary infection and
virus of secondary infection such that there is an increased infection in
macrophages and monocytes (Whitehorn and Simmons, 2011; Durbin
et al., 2010). These challenges bring the importance of an archetypal
dengue vaccine which can provide life time immunity against all the
serotypes (Thomas, 2011; Russell and Halstead, 2016).
Currently, the vaccine candidates that are under various stages of
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clinical trial are the live attenuated viruses (Thomas et al., 2012),
chimeric vaccine (Guy et al., 2015), recombinant vaccine with ad-
juvants (Hertz et al., 2017), reverse vaccinology (Baliga et al., 2018),
purified and inactivated virions (Fernandez et al., 2015), subunit pro-
teins and plasmid DNA (Thisyakorn and Thisyakorn, 2014). Among
these, live attenuated DENGVAXIA or CYD-TDV, a tetravalent chimeric
dengue vaccine (Scott, 2016), developed by Sanofi Pasteur in December
2015, is the first licensed vaccine in some Asian and Latin American
countries (Pitisuttithum and Bouckenooghe, 2016; Flaschw et al.,
2016). These clinical manifestations caused by the vaccine are ascribed
to inefficiency of the vaccine in producing competent T- cells that
protect against DENV disease (Kim et al., 2010). Moreover, the vaccine
does not encode any non- structural proteins which are required by the
virus to evade immune response of the host (Halstead, 2017; Morrison
et al., 2012). All these studies imply that a vaccine that is tetravalent
and simultaneously prevents antibody- dependent enhancement (ADE)
needs to be designed urgently. These concerns led to the need for a
relatively new technique of vaccine development i.e. Epitope or syn-
thetic peptide based vaccines. As DENV has both structural and non-
structural proteins for its viral activity (Oliveira et al., 2014), conserved
epitopes may prove to be useful in designing synthetic peptide based
vaccine. This can be easily initiated in today's time, as there is no dearth
of information about genome sequences in the databases (Hasan et al.,
2013; Sharmin and Islam, 2014).
Our study provides answers to all above mentioned concerns as we

could successfully find conserved epitopes in structural as well as non-
structural proteins. These conserved epitopes can be used for further
analysis and exploited to develop the vaccine against the deadly dengue
virus as well as in rapid diagnostics.

2. Materials and methods

2.1. Retrieval of sequences and alignment

A sum total of 23,622 partial sequences of structural and non-
structural proteins of dengue virus were retrieved from NCBI (www.
ncbi.nih.gov) (Table 1). After retrieving, the sequences were aligned
using multiple sequence alignment program CLUSTAL_X (Thompson
et al., 1997). These aligned sequence files were then used for further
analysis.

2.2. Search for conserved sequences

Sequences were used for detecting the species-specific signature
sequences or motifs. Motifs were obtained for each serotype of DENV
individually using an online tool multiple em for motif elicitation or
MEME Suite (Bailey et al., 2009). Motifs common for all serotypes were
also obtained using the same method. In order to get a maximum
number of motifs, the default setting was adjusted from 3 motifs to 10
motifs.

2.3. Linear B-cell epitope prediction

The motifs were then analyzed for the presence of B cell epitopes.
The linear B cell epitopes were found using BCPRED and BEPIPRED
tools of immune epitope database with default settings. Bepipred used
Hidden Markov model for the prediction of B cell epitopes (Larsen
et al., 2006; Potocnakova et al., 2016).

2.4. IEDB analysis

The immunogenicity of each epitope was checked using Kolaskar
and Tangaonkar antigenicity method (Kolaskar and Tongaonkar, 1990)
with a default threshold value 0.9. Hydrophilicity of the antigenic
epitopes, required to check the accessibility were found using Parker
Hydrophilicity method (Parker et al., 1986) at a threshold value of
3.448 (Sharmin and Islam, 2014). Epitopes were checked for their
surface accessibility using Emini surface accessibility method (Emini
et al., 1985) with a threshold value of 1.00. Flexibility and Beta turns
were checked using Karplus and Schulz Flexibility (Karplus and Schulz,
1985) and Chou and Fasman Beta-turn methods (Chou and Fasman,
1978) respectively, with a threshold of 1.00 for both (Sharmin and
Islam, 2014). Conservancy of epitopes was checked using Epitope
Conservancy Analysis tool (Bui et al., 2007).

2.5. 3-D structure prediction

Models of the 3D structures of DENV proteins were downloaded
from RCSB PDB server (https://www.rcsb.org/) for mapping the epi-
topes. Then the location of predicted epitopes in the 3-D model was
found using CHIMERA visualization tool (Pettersen et al., 2004). For
DENV proteins where no 3D strcture was available, I-TASSER server
was used to predict the 3-D structures (Zhang, 2008; Roy et al., 2010).
The predicted models were saved in pdb format files, which were later
used to generate Ramachandran plot using PDBsum –PROCHECK soft-
ware (Laskowski et al., 2001). This was done to verify the models
generated by I-TASSER.

3. Results

In the present study, comparative genomics was performed on
DENV sequences to find novel vaccine targets. For this purpose, all the
ten proteins (3 structural and 7 non-structural) of DENV-1, DENV-2,
DENV-3, DENV-4 were analyzed individually by retrieving their partial
protein sequences and motif analysis was performed by using MEME
SUITE. These conserved motif sequences were then used for B-cell
epitope analysis (Table 2). For the matter of space and clarity, we are
reporting the figures for one of the conserved epitopes in the main text,
while the others are presented in the supplementary materials
(Figs. 1–3, Supplementary data).
In total 13 epitopes were found which were further checked for

antigenicity, hydrophilicity and surface accessibility. The B-cell epi-
topes on native proteins are generally composed of hydrophillic amino
acids on the protein surface that are topographically accessible to
membrane-bound or free antibody. These epitopes tend to be located in
flexible regions of an immunogen and display site mobility of epitopes
which maximizes complementarity with the antibody's binding site,
permitting an antibody to bind with an epitope that it might bind in-
effectively if it were rigid. Surface accessibility and hydrophilicity of
these predicted epitopes was therefore determined (Table 3). The
flexibility of these epitopes and the presence of beta turn in their
structure were also evaluated. Predicted epitopes of Envelope, NS1,
NS3, NS4A, NS4B and NS5 proteins were found out to be antigenic as
their score was found out to be higher than the threshold value
whereas, few antigens were found to be non-antigenic (Table 3). All the
predicted epitopes were found to be flexible in nature (Table 3).

Table 1
Number of sequences for each protein of different serotypes of DENV analyzed
for this study.

Proteins DENV-1 DENV-2 DENV-3 DENV-4

Envelope (E) 500 500 500 500
Membrane (Prm) 1000 1000 1000 250
Capsid (C) 1000 1000 857 285
NS1 1000 1000 797 201
NS2A 100 100 250 100
NS2B 1000 100 500 100
NS3 1000 500 500 100
NS4A 500 800 1000 1000
NS4B 1000 500 500 100
NS5 1000 500 882 100
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3.1. Conserved epitope in RNA-dependent RNA polymerase (RdRp) of
DENV

Among all the proteins of dengue virus, RNA-dependent RNA
polymerase (RdRp) is encoded by non-structural gene NS5 and consists
of 20 important enzymatic activities needed for viral propagation.
Studies have been conducted on RdRp for designing drug against
dengue virus as it is known to be the largest and highly conserved
protein (Noble et al., 2010; Noble et al., 2013; El Sahili and Lescar,
2017; Lim et al., 2015). Conserved motif ‘YQNKVVRVQRPAKNGTVM-
DVISSRDQRGSGQVGTYGLNTFTNMEAQLIRQ’ was found in NS5
(Fig. 1), which when inspected for presence of potential epitope re-
sulted in ‘QRGSGQV’ (Table 2). Linear B-cell epitope prediction, Anti-
genicity prediction, Surface accessibility prediction, Hydrophilicity
prediction and flexibility prediction of this region (Fig. 2A–E) showed
‘QRGSGQV’ as the most desirable epitope. The epitope was further
checked for conservancy using IEDB Conservancy analysis and was
found to be 100% conserved in all serotypes of DENV (Table 3), thus
making it one of the most efficient epitope for vaccine development
based on in silico analysis. PDB protein structure of dengue virus NS5
protein (4V0Q) (Zhao et al., 2015) was used to map this epitope and the
epitope was found to be located in beta turn region of the RNA-directed
RNA polymerase of DENV structure (Fig. 3), thus making it accessible
for interaction.

3.2. Highly conserved epitope ‘RCPTQGE’ on structural protein - Envelope

As stated above, there are three structural and 7 non-structural

proteins in DENV polyprotein. Envelope protein is highly variable and
is notably displayed on the surface of DENV (Modis et al., 2005), thus
making it the crucial candidate for vaccine development (Keasey et al.,
2018). In our study, we could find two epitopes in Envelope protein
(Table 2), but among them, epitope ‘RCPTQGE’ was found not only
antigenic and surface accessible, but was also 100% conserved in all
serotypes of DENV (Table 3, Supplementary Figs. S1–S3). On mapping
this epitope on 3D structure of Envelope protein CryoEM structure of
Dengue virus envelope protein heterotetramer (pdb id 3J2P), it was
found to be present in beta turn region and therefore, is accessible for
interaction, making it yet another highly suitable candidate for vaccine
target. As the structural proteins are highly variable, therefore it was
difficult to find any conserved epitope for capsid and PrM proteins.

3.3. Other highly conserved epitopes of DENV serotypes

To our surprise, four more predicted epitopes (other than the con-
served epitopes of NS5 and envelope proteins) were found to be 100%
conserved i.e., NS3 (SAAQRRGR, PGTSGSPI); NS4A (QRTPQDNQL);
NS4B (LQAKATREAQKRA) and in all DENV serotypes (Table 3).
The three dimensional visualization of predicted epitopes of NS4A

and NS4B protein was performed using I-TASSER server
(Supplementary Figs. S12, S15) as the pdb structure was not available
for these proteins. The predicted structure of protein sequences was
validated by plotting Ramachandran graph using PROCheck software
(data not shown). Remaining epitopes were found to be serotype-spe-
cific (Table 3) and hence 3D structure prediction and validation was not
performed for these epitopes.

Table 2
Epitopes found within the conserved motif region.

Epitopes (marked in blue) found within the conserved motif region.

Fig. 1. Motif ‘YQNKVVRVQRPAKNGTVMDVISSRDQRGSGQVGTYGLNTFTNMEAQLIRQ’ containing the epitope ‘QRGSGQV’ as 100% conserved region in all se-
quences of protein NS5.
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Fig. 2. (A) Linear B-cell epitope prediction, (B) Antigenicity prediction, (C) Surface accessibility prediction, (D) Hydrophilicity prediction, (E) flexibility prediction
graphs of epitope ‘QRGSGQV’ of NS5. The graphs were plotted between the score for predicted epitope and the position of epitope in protein sequence. The red line
represents the threshold value used for epitope prediction. The yellow region indicates the possible region of B-cell epitope in the protein sequence. (For inter-
pretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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3.4. Serotype-specific conserved epitopes of DENV

For developing a successful vaccine candidate, epitope common in
all the serotypes is a perquisite. But for developing serotype-specific
drugs and in diagnostics of serotype specific strains, serotype-specific
conserved epitopes may prove to be useful. Hence, epitopes like
‘TPQAPTS’ of Envelope protein (specific for DENV-1 serotype); Capsid
protein epitopes ‘EHRREKRS’ for DENV-2 and ‘ERRREKRS’ for DENV-4;
NS1 epitope ‘GYH/F/ATQT/IA’ and ‘PN/D/ETP/S/AECPN/SA/E/T’;
NS5 epitope ‘WHYDQDHPYKT’ in DENV-2 and ‘SHWV/FPTSRTT’ epi-
tope may be exploited for developing diagnostic kits for early detection.
Among the above reported serotype specific epitopes, both the epitopes
of NS1 are potential candidates for distinguishing one serotype from
other.

4. Discussion

Dengue is one of the most rapidly spreading mosquito-borne viral
disease (WHO Dengue factsheet, 2016) and has emerged as one of the
biggest threats to public health (Gubler, 2012; Thisyakorn and
Thisyakorn, 2014; Artpradit et al., 2013). There are four serotypes of
DENV which show 65% similarity at genomic level and share same
epidemics. Yet the difference in their interactions with antibodies is
enough to make the development of a common vaccine, a mammoth
task (Lalla et al., 2014). The urgent need of dengue vaccine develop-
ment is presented by the alarming rise in the dengue endemics (Deen,
2016; Wichmann et al., 2017). Although various vaccines are

undergoing clinical trials worldwide but presently, there is no specific
dengue therapeutics or vaccine available which provides overall pro-
tection against this viral infection. Recently, the only licensed DENV
vaccine Dengvaxia, has been reported as a failure as it lacks DENV non-
structural protein antigens, and is found to be incompetent to raise
antibodies against NS1 (Halstead, 2017).
In the present study, Comparative Genomics and immunoinfor-

matics was used as a tool to explore the potential candidates of dengue
virus to find novel drug and vaccine targets. The advantage of devel-
opment of an epitope based vaccine over other vaccines is its ability to
induce specific immune response without undesirable effects. Also,
both time and expenditure needed to screen a large number of epitopes
can be saved using such computational approaches (Davidson and
Doranz, 2014). Similar studies have been conducted on Human Cor-
onavirus (Sharmin and Islam, 2014), Saint Louis encephalitis virus (Hasan
et al., 2013), Rotaviruses (Morozova et al., 2018), H1N1 influenza A
virus strains (Baratelli et al., 2017) and Zika virus (Dos Santos Franco
et al., 2017), however, the analysis has been conducted for only some
selective proteins. Therefore our study is the first one to deal with all
the proteins of any viral genome for designing an efficient vaccine.
To achieve our objective, conserved epitopes have been obtained

from both structural and non-structural proteins. We could successfully
found six highly conserved epitopes, one from structural protein and
other five from non-structural proteins. Among structural proteins, only
Envelope protein showed 100% conserved epitope (RCPTQGE), in-
dicating this as a good target for vaccine designing. Other structural
proteins like PrM and Capsid did not show any conservancy among the

Fig. 3. Three-dimensional visualization of predicted epitope ‘QRGSGQV’ of NS5 protein. PDB protein structure of dengue virus NS5 protein (4V0Q) was used to map
100% conserved epitope ‘QRGSGQV’ using the Chimera Visualization tool and the epitope was found to be present on beta turn and surface accessible.
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predicted epitopes. This was expected as the structural proteins are
known to be highly variable even within serotypes (Modis et al., 2005).
The predicted epitopes of Envelope protein (RCPTQGE); NS3 (SAAQ-
RRGR, PGTSGSPI); NS4A (QRTPQDNQL); NS4B (LQAKATREAQKRA)
and NS5 proteins (QRGSGQV) were found out to be antigenic, hydro-
phillic, surface accessible, flexible and consists of beta turn. Thus, these
epitopes fulfill all the pre-requisite conditions of a desired epitope.
Moreover, the functions of these proteins can be used as an asset for
controlling the effect of the virus on the host. For instance, NS1 is an
important cofactor for the formation of replication complex, and has
also been exploited for the development of vaccine (Mackenzie et al.,
1996; Hertz et al., 2017) whereas NS4B regulates the helicase activity
of NS3 and NS4A-NS4B complex is required for genome replication
(Miller et al., 2006; Umareddy et al., 2006). NS5 is the most conserved
protein of DENV and its C-terminal containing RdRp (RNA dependent
RNA polymerase) domain is crucial for genomic replication
(Hannemann et al., 2013: Ashour et al., 2009). Therefore, we can say
that each of these proteins are essential for replication of the virus in-
side the host and therefore, they can be used as common vaccine target
for all the four serotypes of Dengue virus. Serotype specific conserved
epitopes can also be exploited for detection of Dengue at early stages.
During the Phase IIb and III trials, DENGVAXIA's specific response
against DENV2 serotype largely became negligible. So, a vaccine de-
veloped using these epitopes could overcome this problem as these
predicted epitopes are found to be conserved in all four serotypes of
DENV.

5. Conclusion

Dengue Virus (DENV) has emerged as a potential threat to human
health worldwide. The therapeutics against DENV are either not
available in major parts of the world or if available in some endemic
countries, are found to be inefficient. In this study we used computa-
tional approaches to find novel vaccine targets. It focuses to explore B-
cell epitopes for all serotypes for each protein of dengue virus. We

found six highly conserved epitopes in all serotypes of DENV [Envelope
protein (RCPTQGE); NS3 (SAAQRRGR, PGTSGSPI); NS4A (QRTPQ-
DNQL); NS4B (LQAKATREAQKRA) and NS5 proteins (QRGSGQV)].
Thus, our results suggest any of these proteins can be targeted to sti-
mulate a specific immune response against all serotypes of DENV. These
predicted epitopes would be the candidate target for the universal
multi-subunit vaccine.
Nevertheless, further studies are needed to confirm the utility of

these epitopes.
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Table 3
B-cell epitope analysis.

Protein Peptide sequence Antigenicity
prediction score

Hydrophillicity
prediction score

Surface accessibility
prediction score

Flexibility
prediction score

Beta turn
prediction score

Inference Conservancy

THRSHOLD SCORE→ 0.9 3.448 1.000 1.000 1.000
E TPQAPTS 1.005

Antigenic
4.171
Hydrophillic

2.599
Surface accessible

1.061 1.147 Epitope Conserved only in D1

RCPTQGE 1.00
Antigenic

4.629
Hydrophillic

1.0
Surface accessible

1.085 1.129 Epitope 100% Conserved

Capsid IPPTAGIL 1.066
Antigenic

−1.0
Non-hydrophillic

0.408
Surface accessible

1.018 0.969 Non-epitope IPPTAGVL in D3

PrM EHRRDKRS 0.923
Antigenic

5.588
Hydrophillic

7.594
Surface accessible

1.035 1.055 Epitope EHRREKRS in D2
ERRREKRS in D4

NS1 GYHTQTA 1.005
Antigenic

3.486
Hydrophillic

1.824
Surface accessible

1.038 1.03 Epitope GYHTQIA in D2
GYFTQTA in D1
GYATQTA in D4

PNTPECPNA 1.02
Antigenic

4.657
Hydrophillic

1.033
Surface accessible

1.053 1.293 Epitope PNTPECPSA in D3
PDTSECPNE in D4
PETAECPNT in D2

NS3 SAAQRRGR 0.968
Antigenic

4.400
Hydrophillic

2.371
Surface accessible

1.093 1.156 Epitope 100% conserved

PGTSGSPI 0.973
Antigenic

5.343
Hydrophillic

1.467
Surface accessible

1.130 1.426 Epitope 100% conserved

NS4A QRTPQDNQL 0.992
Antigenic

5.643
Hydrophillic

3.674
Surface accessible

1.069 1.080 Epitope 100% conserved

NS4B LQAKATREAQKRA 1.037
Antigenic

5.029
Hydrophillic

4.181
Surface accessible

1.044 1.126 Epitope 100% conserved

NS5 WHYDQDHPYKT 1.034
Antigenic

4.857
Hydrophillic

3.436
Surface accessible

1.026 1.236 Epitope 100% conserved in
D2 only

SHWVPTSRTT 1.008
Antigenic

3.529
Hydrophillic

2.635
Surface accessible

1.081 1.04 Epitope SHWFPTSRTT in D4

QRGSGQV 1.007
Antigenic

4.343
Hydrophillic

1.395
Surface accessible

1.113 1.137 Epitope 100% conserved
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