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Abstract: Construction workers executing manual-intensive tasks are susceptible to musculoskeletal
disorders (MSDs) due to overexposure to awkward postures. Automated posture recognition and
assessment based on wearable sensor output can help reduce MSDs risks through early risk-factor
detection. However, extant studies mainly focus on optimizing recognition models. There is a lack
of studies exploring the design of a wearable sensing system that assesses the MSDs risks based on
detected postures and then provides feedback for injury prevention. This study aims at investigating
the design of an effective wearable MSDs prevention system. This study first proposes the design of a
wearable inertial measurement unit (IMU) sensing system, then develops the prototype for end-user
evaluation. Construction workers and managers evaluated a proposed system by interacting with
wearable sensors and user interfaces (UIs), followed by an evaluation survey. The results suggest
that wearable sensing is a promising approach for collecting motion data with low discomfort;
posture-based MSDs risk assessment has a high potential in improving workers’ safety awareness;
and mobile- and cloud-based UIs can deliver the risk assessment information to end-users with
ease. This research contributes to the design, development, and validation of wearable sensing-based
injury prevention systems, which may be adapted to other labor-intensive occupations.

Keywords: wearable sensors; IMU; injury prevention; ergonomics; construction safety

1. Introduction

The research presented in this paper is part of a larger project directed at develop-
ing a data-driven approach for mitigating the risk of musculoskeletal disorders (MSDs)
among construction workers, such as chronic backache and over-exertion. Labor-intensive
construction tasks tend to expose workers to using awkward working postures, such as
working overhead, kneeling, and back bending. Overexposure to awkward postures can
lead to MSDs. Construction-related MSDs account for 30% of workplace injuries in the
U.S. [1]. Employers paid around US $53 billion annually on direct cost for MSDs treat-
ment [2] in 2012 to 2014. Proactive MSDs prevention is predicated on effective monitoring
of workers’ physical status. However, conventional observation-based risk-monitoring
strategies are impractical on construction sites. Safety inspectors can be overwhelmed by
jobsite complexity, such as rapidly changing working conditions and concurrent appear-
ance of various construction tasks [3]. Hence, there has been growing interest in the use of
automated motion-sensing approaches for construction risk assessment.

Advancements in wearable sensors (WSs), particularly wearable inertial measurement
units (IMUs), facilitate human-motion data capture in an effective and efficient manner.
IMU sensors are widely used in commercial wearable products for health monitoring.
A recent review by Yoong et al. [4], shows that, for posture, these products focus mainly on
recognizing daily living postures related to spine movements based on sensor output. The
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limited posture monitoring capabilities of these products generally do not cover construc-
tion workers’ full-body awkward postures. In addition, commercial products typically
provide diagnostic information (e.g., warnings and health scores from accompanying
applications) without raw IMU output for customized posture analysis.

Closely-related studies have explored automating the detection of diverse awkward
postures through the use of raw sensor output from both wearable IMUs [5–7] and smart-
device built-in IMUs [8–12]. Existing studies mainly focus on optimizing the models for
analyzing motion data and accurately detecting targeted human activities/postures [13].
Our review of closely-related studies (see Table 1) established that the application of
machine-learning (ML) models for recognizing injury-prone postures is an active area in
terms of IMU-based posture analysis for construction workers. Nevertheless, it is important
to note that posture recognition is typically the first step in the real-world application of a
WS system [14]. The captured postures should be appropriately analyzed and transformed
into diagnostic information, which can then be provided to targeted end users as actionable
feedback enabling behavior change for healthy outcomes [15].

Table 1. Review of related studies applying machine learning (ML)-based models for inertial measurement unit (IMU)
output in construction.

Models * Motion Data Collection
Placement
(Numbers)

Recognition Performance Risk Assessment and
FeedbackClasses Accuracy

NN [8]
2 workers conducted

prescribed activities in
experiments

Arm (1) 3 ~90% N/A

SVM [6]
21 workers conducted

prescribed masonry tasks in
experiments

Full-body (17) 2 ~91% N/A

SVM [7]
4 students conducted

prescribed awkward postures in
experiments

Full-body (17) 9 ~60–80% N/A

SVM [9]
10 workers

conducted prescribed masonry
tasks in experiments

Wrist (1) 4 ~88% N/A

SVM [5]
1 student

conducted prescribed award
postures in experiments

Full-body (5) 7 ~74–83% N/A

SVM [10]
25 students

conducted prescribed activities in
experiments

Leg and wrist (2) 8 89% N/A

SVM [11]
2 workers

conducted prescribed activities in
experiments

Arm and wrist (2) 3 up to 90% OSHA Rules

LSTM [16]
3 students

conducted prescribed activities in
experiments

Hip and neck (2) 11 up to 95% N/A

Convolutional
LSTM [17]

4 workers
conducted natural postures in

daily tasks
Full-body (5) 8 85% (Macro F1

Score) N/A

* The table features recognition models that achieved the highest recognition performance in the tests of corresponding studies. NN—Neural
Networks, SVM—Support Vector Machine, LSTM—Long Short-Term Memory.

In this sense, a fully functioning WS-based MSD-prevention system should integrate
sensors applicable for workplace motion data collection; posture recognition and analysis
models for injury risk assessment; and interfaces for communicating with end users
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(construction workers and safety managers in this context). The review of the closely-
related work summarized in Table 1 shows that related studies lack the consideration
of (i) MSD risks assessment based on captured postures; (ii) effective user interface (UI)
design to provide feedback and intervention for proactive injury prevention; and (iii) users’
assessment of the WSs and UI that they directly interact with. Therefore, the goal of this
study is investigating the design of an effective wearable MSD-prevention system for
construction workers.

This study proposes a wearable sensing system that integrates IMU sensors for mo-
tion sensing, a deep neural network (DNN) model for posture recognition, posture-based
ergonomics assessment models for MSD risk assessment, and UI for risk assessment feed-
back. A low-fidelity WS prototype was developed and experimentally used by construction
workers performing routine construction tasks. Exemplary injury risk assessment feedback
was then presented to workers and managers via the developed UI. Finally, the workers
and managers who participated in the study were invited to complete a system evaluation
survey, which assessed the proposed system regarding the usefulness and applicability of
the proposed prototype. The results show that (i) the proposed WS system is a promising
approach for collecting data from construction workers because it is not perceived to cause
discomfort; (ii) the resulting posture-based MSD risk assessment information has a high
potential for improving the workers’ safety awareness; and (iii) the developed mobile and
cloud-based UI can readily deliver actionable MSD risk assessment information to the
targeted end users. This study’s contribution to knowledge is the design, development, and
assessment of a WS-based MSD prevention system for use in construction. Findings from
this study can also inform the design of health monitoring systems in other labor-intensive
sectors such as manufacturing, healthcare, and agriculture.

2. Methods
2.1. Prototype Design and Development for Wearable IMU Sensing System

This section describes the prototype design and development for a wearable IMU-
based MSD prevention system. The prototype includes (i) a wearable IMU sensing system
for posture recognition; (ii) posture-based ergonomics-assessment models for MSD risk
detection; and (iii) the UI design for communicating MSD risk-assessment feedback to each
worker and construction managers. The proposed prototype design is directed at effective
MSDs prevention on construction sites. The following subsections first outline the design
criteria and metrics for system evaluation (Section 2.1.1) and then describe the design and
development for each sub-system (Sections 2.1.2–2.1.5).

2.1.1. Design Criteria and Metrics for System Evaluation

The system design criteria are related to each component of the proposed system
design with corresponding metrics outlined in Table 2. The criteria and metrics were used
for guiding the system design. Each metric was converted to question items in the end-user
survey for system evaluation, which are discussed in detail in Section 2.2.

2.1.2. Wearable IMU Sensing System for Posture Recognition

• Wearable IMU Sensor Selection

The MetaMotion C sensors [18] were identified as a promising low-cost (US $75 each)
IMU sensor for collecting motion data in a non-intrusive manner. Moreover, the sensor
has an open-source application programming interface (API) for customizing the real-time
data analysis programs. MetaMotion C can record the data to its onboard flash memory. It
also has an included software package, MetaBase, which serves as the sensor controller
interface, and can format the logged data into a .CSV file and export the data for analysis.
MetaBase enables making simultaneous connections with multiple sensors. The sensors
and UI are shown in Figure 1.
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Table 2. System criteria and metrics for evaluation.

System Design Criteria Metrics

Wearable Sensing System

Physical Discomfort Level
Mental Discomfort Level

Inconvenience Level
Intrusiveness Level

Durability and Robustness Level
Acceptability of Wearable Sensors

Risk Assessment and
Information Delivery System

Content of Assessment
Usefulness of Immediate Intervention
Usefulness of a Periodical Assessment

Trust in Proposed Assessment

Usefulness of Mobile App-based
Assessment Information Delivery

for Individuals

Incidence of the recurring awkward posture
of individuals

Daily time profile of awkward postures
Need for taking immediate intervention

Usefulness of Online
Dashboard-based Assessment

Information Delivery for Jobsite

Daily time profile of awkward postures
Incidence of recurring awkward postures by trades

Injury risk level by trade
Recommended speed of taking intervention by trade

Usefulness of Information Delivery at
Varying Frequency

Real-time
Every 30 min

Daily assessment

Holistic Evaluation of System
Design

Potential System Usefulness
System Applicability

Likelihood of Adoption
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Figure 1. MetaMotion C sensor and interfaces [5]: (a) MetaMotion C IMU sensor board with the
positive direction in each axis, (b) sensor board and battery, (c,d) are the MetaBase interfaces for
configuring sensors on a smartphone.

• Sensor Deployment

Sensor placement has a significant impact on posture recognition performance [19]
and is correlated to the postures of interest for recognition. Sensors can be placed on
the body parts corresponding to targeted postures, such as a head sensor for neck move-
ment [20]. Previous studies placing IMU sensors around similar body landmark locations
(as defined in Plagenhoef, et al. [21]) also showed that it was feasible to use this approach
to capture motion data patterns characterizing workers’ postures [7,22]. Yan et al. [22]
and Chen et al. [7] demonstrated the use of a full-body sensor placement approach using
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17 IMU sensors. Our study selected sensor placements at the thigh, calf, chest center, upper
arm, and head areas to limit the computation requirements and intrusiveness of full-body
sensor placements. To further reduce the number of sensors used, the IMU sensors on leg
and arm were attached only to one side (e.g., the right side of a right-handed person). A to-
tal of five sensor placements were selected in this study. The selective five-sensor placement
has shown feasibility in capturing motion data for detecting construction-related postures
in the authors’ previous experiments in both laboratory (Figure 2) and construction jobsite
(Figure 3).
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• Posture Recognition Models

Posture recognition from wearable IMU output is typically formulated as a clas-
sification problem, tasks for which ML-based models are receiving increasing research
interest [17]. Applying conventional ML models (e.g., Support Vector Machine-SVM in
Table 1) for recognizing workers’ postures and activities have also shown relatively high
accuracy (within the range 60–90%) in related studies [5–11]. Applying deep learning (DL,
a branch of ML [23]) models have achieved state-of-the-art accuracy when detecting human
daily living activities from wearable IMU sensors [24–26].

The successful deployment of DL models with multi-channel IMU outputs also drives
their adoption for detection of construction activities and postures. Recent studies in
construction demonstrate that using DL-based models has the potential for improving
ML model performance in recognizing worker posture. For example, the long short-term
memory (LSTM) model achieved accuracy up to 94.7% in Kim and Cho’s test [16]. Their
previous experiment also showed that integrating convolutional neural network (CNN)
and LSTM models as a convolutional LSTM (CLN) model can improve the accuracy of SVM
(a recommended conventional ML model for posture recognition) by 3% [17]. In addition,
the DL models developed using the featured framework (such as TensorFlow) can be readily
migrated to a mobile device, which can further facilitate deploying an end-to-end posture
analysis application on a smartphone. In this sense, this study adopted the previously
developed CLN model (see Figure 4) for the proposed wearable IMU sensing system.
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2.1.3. Posture-Based Ergonomics Rules for MSDs Risk Assessment

The output of posture recognition models includes detected postures with the times-
tamp of posture occurrence for each worker (see Figure 5 as an example). The following
information can be extracted from the output, which was used for MSD assessment of
individual workers: construction trade, types of awkward posture, holding time of static
posture, the proportion of awkward work time, and distribution of awkward posture
over time.
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• Identification of Applicable MSD Risk Assessment Rules

To link detected postures with MSD risks, this study reviewed the commonly used
ergonomics assessment rules using postures and timing information for injury risk analysis
(see Table A1). The Ovako Working Posture Assessment System (OWAS) [27] and Maxi-
mum Holding Time (MHT) [28] rules were selected for MSD risk assessment considering
the following:

(i) OWAS and MHT are two of the few rules that utilize specific evaluation criteria for
predefined postures and provide information on any corrective actions to be taken.
These not only enable the quantitative assessment of injury risks but can also provide
actionable insight for injury prevention responses.

(ii) Both OWAS and MHT quantify human postures via rough relative positions between
different body segments, instead of direct measurement (for body segments deviation
or joint angles). The posture recognition models in this study were trained to recognize
working postures labeled by observation (not precise body segments measurement).
They are, therefore, suitable for use in risk assessment using the recognized postures.

(iii) The thresholds provided in OWAS and MHT can be used for tracking MSD risks in
real time and triggering effective intervention on time.

(iv) In terms of the validity of ergonomics risk assessment, the OWAS has demonstrated
high repeatability and association with MSDs in cross-correlation studies [29]. The
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MHT criteria, developed from epidemiology studies, also show high validity when
compared with discomfort levels.

• Real-Time Maximum Holding Time Assessment for Individuals

The real-time MHT assessment is directed at reducing overexposure to prolonged
static awkward postures. The continuous holding time of certain postures can be captured
and compared with the corresponding assessment threshold. Once the safety threshold
is breached, warning signals can be triggered to make a posture correction recommen-
dation. The developed model uses motion data collected for every second to recognize
the corresponding postures. The breach of the MHT threshold can be detected in real
time by counting the number of consecutive identical postures and comparing it with the
corresponding threshold. A real-time warning for individual workers can be sent for timely
posture correction once the threshold is exceeded. The algorithm’s pseudo-code for the
assessment program is presented in Table A2.

• Periodic MSD Risk Assessment for Individual

A periodic assessment was performed to evaluate an individual worker’s risk of
MSD during a unit of working time. A posture profile can be built through recognizing
all the postures from a span of working time (e.g., 30 min). The MSD risk is evaluated
by comparing the captured postures with thresholds. Table 3 presents the information
captured periodically from the posture recognition model and applicable MSD assessment.
The output from the periodic assessment can be used as feedback to workers about their
MSD risk. This keeps them informed about potential risks accrued from overused postures.
This information can also be packaged into recommendations for posture correction. The
algorithm pseudo-code for the periodical assessment program is presented in Table A3.

Table 3. Periodic MSDs risk assessment for individual workers.

Captured Information Risk Assessment of MSDs

Total count of posture i 1 breaching MHT
Informing the construction workers about their prolonged postures

used in the unit working time interval.
Measuring the repetitiveness of awkward posture in unit time.

Note: No associated criteria or threshold for posture
correction suggestion.

The total duration of posture i breaching MHT

Max time of holding posture i

Average frequencies of posture i occurrence in one minute

The max holding time of posture i

Proportion of posture i Comparing with OWAS to assess risks of MSDs and infer the urgency
for making corrections.

1 i represents a certain posture.

• Periodic MSDs Risk Assessment for Jobsite

The MSD risk assessment for the jobsite was designed for identifying construction
trades with the highest MSD risks and the cumulative time of high-risk overexposure
during one workday. The jobsite-level assessment was based on synthesizing the individual
worker’s posture recognition results from different trades over time. A 30-min interval
was used as an example to summarize all the postures recognized from each trade. The
participants were from different trades. The average number of postures (for one worker in
a specific trade) was obtained for comparing the awkward postures among trades. Table 4
shows the information used for jobsite MSD risk assessment.

2.1.4. Mobile Application UI for Delivering Individual Assessment Information

A mobile application UI, developed for the Android operating system, was deployed
to communicate the results of MSD risk assessment result to each worker (Figure 6).
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Table 4. Periodic MSDs risk assessment on jobsites.

Synthesized Information Risk Assessment of MSDs on Jobsite

A daily summary of awkward posture distribution

• Obtain the average number of detected awkward postures in
every 30 min for each trade

• Combine the detected awkward postures from each trade in
the same 30-min interval

• Extend the every-30-min assessment to one day’s shift

Identifying the time of the day with the highest
overexposure to awkward postures.

Identifying the trades with the highest number of awkward
postures in a certain timespan.

Obtaining a time profile of awkward posture distribution on
construction jobsite.

The proportion of awkward posture by trade

• Obtain the proportion of awkward postures in one-day’s work
• Comparison of awkward posture proportion across trades

Identifying the construction trades with the greatest
proportion of awkward postures on jobsite in one-day work.

Identifying the awkward posture accounting for a high
proportion of a worker’s postures.

The urgency for posture correction

• Obtain the proportion of awkward posture by trade
• Compare the awkward posture proportion with assessment

rules (OWAS) for each trade

Identifying the awkward postures that need timely
correction for mitigating MSDs risks for each trade.
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The UI includes the following features: a login interface, sensor placement instructions,
a 30-min assessment feedback, and a daily assessment feedback. The assessment results
were based on exemplary posture data for demonstration purposes. Each worker is re-
quired to type in their user information before logging into the application (Figure 6a). This
is designed for collecting worker’s trade information for further jobsite-level assessment.
After logging into the application, there is an instructions page (Figure 6b) that shows how
to place the sensors properly.

The assessment summary (Figure 6c) is provided after every 30 min of work and
includes: (i) posture profile for the last 30 min; (ii) postures held for too long; and
(iii) overused postures and suggestions for correction based on ergonomic rules. Sim-
ilarly, the daily summary (Figure 6d) reports: (i) distribution of awkward postures over
time, (ii) proportion of different award postures, (iii) ranking of postures breaching MHT
thresholds, and (iv) suggestions for further posture correction. The source code for the
UI design is available online [30]. This study aims to proactively intervene in the devel-
opment of MSDs by delivering the individual-level assessment information. Specifically,
the real-time alarm can be used for the timely correction of prolonged awkward postures.
The proposed periodic assessment can improve the targeted workers’ awareness of the
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awkward postures and encourage them to adopt self-correction practices to reduce the risk
of developing MSDs in the long term.

2.1.5. Cloud-Based Dashboard UI for Delivering Jobsite Assessment Information

The MSD risk assessment information on jobsites is provided to the construction
managers so they can make a holistic evaluation of and mitigate potential MSD-related
injury risks. A cloud-based dashboard prototype was proposed to synthesize and deliver
the jobsite assessment information. Figure 7 depicts the system architecture of the cloud-
based dashboard.
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The jobsite-level assessment information is designed to be delivered on a daily basis.
Captured postures from each workers’ daily work are stored on their smartphones. Daily
posture recognition results are uploaded to a cloud-based file management system, such as
Google Drive, for further processing. Each worker’s trade information is recorded when
they log into the application. Individual workers’ postures are grouped by trade without
revealing identifiable personal information. The deployed “group-by-trade” process was
designed to be implemented via the cloud-based file system. The captured postures from
all trades are synthesized and reported via a cloud-based dashboard from a webpage.

Our proposed cloud-based dashboard prototype was developed using Plotly Dash
(https://plot.ly/dash/ (accessed on 28 November 2019)), which visualizes assessment
results as an interactive dashboard for checking detailed assessment reports. An exemplary
demonstration dashboard was created (see Figure A1). The delivered assessment informa-
tion was built on the synthesizing strategy presented in Table 4. The following detailed
assessment information was delivered to the construction safety manager via dashboard:
(i) awkward posture distribution over time and trades; (ii) proportion of awkward posture
by trades; (iii) urgency for posture correction among trades; and (iv) daily summary and
safety recommendations. The interactive UI example is available online [31].

2.2. End-User Evaluation Survey

The targeted end-users (construction workers and managers) were invited to interact
with the wearable IMU sensing system and UI prototype that was developed. Feedback
on their experience was captured via a structured survey to evaluate the usefulness and
applicability of the proposed prototype. The following describes the survey design and
implementation procedures.

https://plot.ly/dash/
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2.2.1. Design of the Evaluation Survey

We collected demographical information regarding trade of worker; job position of
manager; years of experience in current trade or position; and work-related injuries of
workers in the past five years. Based on the design criteria and metrics proposed in Table 2,
a structured survey questionnaire was designed using five-level Likert scale questions (see
Table A4). This questionnaire was used to collect the subjects’ evaluation and perception
of the design of the proposed prototype. The survey questions were set up to evaluate
the performance of the wearable sensing system with respect to MSD risk assessment and
the delivery of information to workers. The questions were directed at supporting the
participants to perform a holistic evaluation of system usefulness, applicability, and accep-
tance. The questionnaire also included open-ended questions allowing the participants to
explain the reasoning behind their responses. The participants were also invited to provide
feedback and suggestions for system improvement.

2.2.2. Implementation of the Evaluation Survey

We recruited both worker and manager subjects from a residential building project
under construction on the University Park campus of The Pennsylvania State University.
Figure 8 outlines the procedure used to conduct the survey.
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Construction workers participated in the following major steps:

Step 1: Workers were first invited to a trial use of wearable IMU sensors during their daily
tasks for 15 to 30 min with video recording. Five sensors were then deployed
on the surface of the workers’ clothes and hardhat (as shown in Figure 3) after
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obtaining the workers’ consent. The workers then conducted their routine tasks
for 15 to 30 min while wearing the sensors.

Step 2: The individual-level motion data analysis and MSD risk assessment results were
presented to each worker. Each worker experienced interacting with the mobile
application UI (see Figure 6). In this case, the workers obtain a better understand-
ing of the content of individual-level MSDs assessment information, approaches
for information delivery, and how the assessment information can help them
prevent injuries.

Step 3: The evaluation survey was then conducted for each worker.

Construction managers (including construction engineers and management personnel)
from the project management team were invited to participate the following steps:

Step 1: All managers were invited to join the evaluation survey session through a meeting
room on the jobsite.

Step 2: The wearable IMUs sensing system prototype was presented to the managers
in detail. They watched recorded videos of workers wearing the sensors while
they performed their routine tasks. This helped the managers understand how
the WS-based motion data collection system works on jobsites. They were also
shown the deployed mobile application UI demonstrating how our approach can
be used to deliver individual MSD risk assessment information. The managers
accessed jobsite-level MSD risk assessment information through interaction with an
online dashboard. They were also presented with a demonstration of the potential
application of the proposed approach as a decision support system for construction
health and safety. This process was designed to enhance the construction managers’
understanding of how the proposed system could be implemented for use in
MSD prevention.

Step 3: The managers were invited to complete the evaluation survey.

3. Results and Discussion

This section presents and discusses the results based on the targeted end-users’ eval-
uation of the proposed system. Posture recognition performance of the proposed CLN
model is also discussed.

3.1. Summary of the Demograhical Profile of the Subjects

Thirty subjects enrolled in the evaluation survey, a mix of 18 workers and 12 managers.
Figure 9 describes the distribution of subjects with respect to trades, positions, and years
of working experience. Subjects’ responses (median of response) were summarized based
on the previous Likert scale. The Wilcoxon Test [32] was applied for statistical inference
analysis, considering (i) the subjects provided an ordinary response (one to five) in the
survey; and (ii) the sample size for both worker (18) and manager (12) are relatively small.
In this sense, the Wilcoxon Test is appropriate, given that the subjects’ responses may not
satisfy the normality assumption [33].

3.2. Workers’ Evaluation of Wearable Sensing System

Table 5 presents the analysis of all subjects’ responses to the wearable sensing sys-
tem evaluation.

3.2.1. Comfort

The captured physical and mental discomfort ratings reflect the workers’ perceived
level of physical inconvenience when using WSs, e.g., a high rating represents a high
level of discomfort. Results presented in Table 5 show that: (i) both physical and mental
discomfort ratings were significantly lower than a moderate level, except that manager
subjects expected a moderate level of mental discomfort for workers, and (ii) both physical
and mental discomfort ratings of workers were significantly lower than those of the
managers. The results suggest that workers believe that using WSs during construction
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tasks cause a low level of discomfort. Workers who experimentally used the sensors tended
to feel a lower level of discomfort than what the construction managers expected.
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Table 5. Evaluation of wearable sensors.

System Design Criteria Metrics 1 Response (Median)

Worker 2 Manager 2

Wearable Sensing System
(1—Very Low, 5—Very High)

Physical Discomfort Level *** 1 *** 2 **
Mental Discomfort Level *** 1 *** 2 *

Inconvenience Level 2 *** N/A 3

Intrusiveness Level * 2 *** 2 ***
Durability and Robustness Level *** 3 * 3.5 **
Acceptability of Wearable Sensors * 3 * 3 *

1 Unpaired Wilcoxon Test for whether the response is different between workers and managers for the same item. 2 Unpaired Wilcoxon
Test for whether the subjects’ response is different from “moderate level (3)” for each item. 3 N/A denotes the question item was not
provided in this group of subjects. *** 0.05 level of significance, ** 0.1 level of significance, * not significant at level of 0.1.

We also compared the responses from the workers and managers for the open-ended
questions to examine their perception about the sensors. The miniaturized size of IMU
sensors was unlikely to cause severe physical and mental discomfort, according to the
managers’ response. However, the managers also raised concerns over the mental discom-
fort of workers as they might feel that they were being monitored. They might also be
distracted by the fears that sensors could fall off if the attachment was loose. Educating the
workers on the use of the sensor system could help with reducing their mental stress, as
suggested by one manager. One worker also mentioned that understanding the reasons for
using the sensor system could help avoid mental discomfort. In summary, the proposed
wearable sensing system elicited a low level of mental and physical stress for workers.
Training or education for workers could alleviate potential mental stress when using the
sensor system.

3.2.2. Intrusiveness, Inconvenience, and Durability

The intrusiveness and inconvenience metrics measure the potential adverse effects on
the performance of workers’ daily tasks. The results show that workers rated the level of
intrusiveness and inconvenience as low. The workers indicated that the sensors did not
greatly lower their productivity because they can still do their daily tasks. Nevertheless,
two workers also mentioned that certain sensor placement, such as those placed at chest
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center (interfering with lifting task) and knee areas (interfering with the use of knee pads),
might interfere with their daily tasks.

In terms of the sensors’ durability to the harsh jobsite environment, workers who
experimentally used the sensors gave significantly lower ratings than construction man-
agers. Seven workers and three managers indicated that they had some concerns that the
sensors (currently attached by hook-and-loop tape) might fall off and go missing, which
would be inconvenient and decrease durability. Suggestions from the subjects show that
such concerns could be addressed through better attachment, such as pining, clipping, and
wrapping the sensor onto personal protective equipment (PPE).

3.2.3. Acceptance

Table 5 shows that both workers and managers gave a moderate rating for the level
of acceptance of WSs on jobsites. The moderate level of acceptance was further examined
through the subjects’ responses to open-ended questions. Two workers indicated that they
were willing to wear the sensors if needed or as required. Two workers also expressed con-
cern that the sensors could get lost or broken, which could be an issue for user acceptance.
The managers participating in the study suggested that user acceptance levels could be
higher if workers keep using the sensors and get used to them. These results suggest that:
(i) the WS durability and robustness, particularly the sensor attachment method, should
be discussed further with both the workers and managers to increase acceptance levels;
(ii) the results obtained from the interactions with the end-users should be used to develop
and deploy education and training programs directed at motivating workers’ interest in
WS technology–based safety management. Such an approach will ensure that targeted
workers are aware of the reason and importance of using this approach to MSD injury
prevention, which will, in turn, increase the adoption rates for the proposed WS-based
safety management practices.

3.3. Evaluation of Injury Risk Assessment and UI

Table 6 describes all subjects’ responses to the content of injury risk assessment, which
is discussed further in the following sections.

3.3.1. Content of Assessment Information

Usefulness of immediate intervention: The trigger for immediate intervention in
our proposed injury prevention approach is through a real-time alarm notification to
workers who are overexposed to high injury risks (e.g., breaching MHT). Both workers and
managers gave a high usefulness rating for such intervention. The managers observed that
such an approach could help with the difficult task of tracking bad postures and enhancing
the workers’ awareness of potential injuries, thus taking preventative actions (e.g., taking
a short break). The workers also indicated that the alarm for intervention was useful for
correcting bad postures. However, workers also raised two practical concerns: (i) not
everyone carries smartphones during their work for accessing the assessment information
and (ii) frequent false alarms from errors in posture detection can be annoying.

Usefulness of periodic assessment: Both worker and manager subjects gave a high
usefulness rating for the periodic assessment report on awkward postures at the individual
or entire jobsite, which as designed can be delivered either every 30 min or daily. Two
workers indicated that this would allow them to know risky postures that can have a
bearing on their health in the long term and understand how they can adjust their postures
to prevent injury. One manager commented that the time profile of awkward postures
on the jobsite could help with safety planning. Moreover, knowing the trades with high
awkward postures exposure and types of these postures can help a construction company
conduct proactive injury prevention, through, for example, implementing safety equipment
for targeted trades. Managers also expressed an interest in periodic assessment across
longer time periods (e.g., weekly reports) as this allows them to track tracking long-term
behavior patterns.
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Table 6. Evaluation of risk assessment information and UI for information delivery.

System Design Criteria Metrics 1 Response (Median)

Worker 2 Manager 2

Risk Assessment and Information
Delivery System (1—Very Low,

5—Very High)

Content of Assessment

Usefulness of Immediate Intervention ** 4 *** 4 ***

Usefulness of Periodic Assessment 4 *** 4—Refine Schedule ***
4—Evidence-based Intervention ***

Mobile App-based
Assessment Information
Delivery for Individuals

Incidence of the recurring awkward posture
of individuals * 4 *** 4 ***

Daily time profile of awkward postures * 4 *** 4 ***

Need for taking immediate intervention *** 3 ** 4 ***

Rank of Preference 3 Incident = Profile > Immediate *** All equal

Online Dashboard-based
Assessment Information

Delivery for Jobsite

Daily time profile of awkward postures

N/A4

4 ***
Incidence of recurring awkward postures

by trades 4 ***

Injury risk level by trade 4.5 ***
Recommended speed of taking intervention

by trade 3.5 ***

Rank Daily Profile = Incident = Risk
Risk > Speed ***

Frequency of
Information Delivery

Daily summary for jobsite N/A 4 ***
Real-time for workers *** 3 ** 4 ***

Every 30 min for workers ** 3 * 3 *
Daily assessment for workers *** 4 *** 4 ***

Rank of Preference 3 Daily > 30 ** Daily = Real-time > 30 ***
1 Unpaired Wilcoxon Test for whether the response is different between workers and managers for the same item. 2 Unpaired Wilcoxon Test for whether the subjects’ response is different from “moderate level
(3)” for each item. 3 Paired Wilcoxon Test for whether the subjects’ response is different for comparable items, e.g., whether the worker subjects prefer “Real-time warning” over “Daily assessment” in terms of
information delivery frequency. 4 N/A denotes that the question item was not provided in this group of subjects. *** 0.05 level of significance, ** 0.1 level of significance, * non-significant at level of 0.1.
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3.3.2. User Interfaces for Delivering Assessment Information

Mobile application: The mobile application UI was designed to communicate (i) the
incidence of recurring awkward postures (every 30 min or daily), (ii) the daily time profile
of awkward postures, and (iii) the need for taking immediate intervention with the workers.
Both workers and managers gave high usefulness ratings for the mobile UI. The subjects
mentioned that this could help workers correct their bad postures and prevent potential
injuries over the long term, and it is particularly useful for workers who already have
chronic injuries. One worker also shared that his previous experiences with wearable
sensing products and mobile applications made him willing to adopt using the mobile UI.

Notably, the workers gave a significantly lower usefulness ratings for immediate inter-
vention (with a median rating of level 3) as compared to the other two pieces of information
(both with a median rating of level 4) delivered on the mobile UI. Two considerations were
listed by the workers to support their lower ratings for real-time alarm via the smartphone:
(i) not every worker carries a smartphone during work and (ii) there are some postures
that workers cannot change for the task—it is the way they are done. One manager also
mentioned that workers tend to ignore the alarms if there were too many. A real-time alarm
might not work effectively in these situations. Providing a record of awkward postures
periodically to workers might be a better option.

On-line dashboard: The usefulness of the assessment information delivered via the on-
line dashboard was perceived to be high. Managers had a higher preference for knowing
awkward postures distributed among trades and their associated risk levels (with the
median rating of level 4.5). As discussed previously, knowing these can help with better
safety planning and supporting company-level safety decision making.

3.3.3. Frequency of Delivering Assessment Information

How frequently the assessment information should be delivered to users is an impor-
tant consideration when designing an effective feedback mechanism. We compared the
ratings for different frequencies of feedback given to both workers and managers. The
managers perceived the jobsite-level assessment information delivered daily as highly
useful. Both workers and managers gave a higher rating for daily information delivery and
a lower rating for a frequency of every 30 min. One manager commented that delivering
an assessment report every 30 min was too often and that workers will not look at it. The
workers’ responses also showed their preference for a daily assessment summary delivered
at the end of every day’s work shift. These re-affirm the evaluation results in the preceding
sub-section. Although real-time or frequent assessments may provide more timely feed-
back and intervention, the end users prefer to be presented with assessment feedback after
finishing their work shift, instead of being interrupted too often by feedback during their
shift. Additionally, both workers and managers showed a preference for additional weekly
assessment summaries. This can help with tracking long-term trends of awkward posture
exposure and correction.

We observed a consistently low rating for usefulness or preference for real-time injury
risk warning, feedback, and intervention when evaluating mobile UI and information
delivery frequency. Real-time feedback was proposed as a proactive intervention in the
cumulative injury development process. Providing timely intervention is theoretically
valuable if the workers make immediate responses after receiving warning feedback, as
assumed. However, there exist practical issues for deployment in the workplace, such as
access to smartphones (which deliver feedback warnings). Moreover, some psychological
factors should also be considered. Warnings that are perceived as being too frequent can be
annoying and are most likely going to be ignored by workers, as mentioned by the subjects
of the survey.

A periodic assessment summary (on a daily and even weekly basis) can better serve as
the facilitator of behavior change and proactive injury prevention. The daily risk assessment
information after a work shift can be well perceived by workers, thus improving safety
awareness and instigating behavior modification over time. It is worth noting that workers
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who are constantly subjected to increased pressures for productivity improvement are
more susceptible to adopting awkward working postures. These observations and findings
can be used as guidance for developing a behavior intervention approach for increasing
productivity on the jobsite in a way that also improves the health and safety of the workers.

3.4. Holistic System Evaluation

Table 7 describes the holistic evaluation of the perceived usefulness, applicability, and
likelihood of adopting the proposed wearable IMU sensing system for MSD prevention
among workers and managers.

Table 7. Holistic assessment.

System Design Criteria Metrics 1 Response

Worker 2 Manager 2

Holistic Evaluation
(1—Very Low, 5—Very High)

Potential System Usefulness * 4 *** 4 ***
System Applicability N/A 3 4 **

Likelihood of Adoption * 3 * 3 *
1 Unpaired Wilcoxon Test for whether the response is different between workers and managers for the same item. 2 Unpaired Wilcoxon
Test for whether the subjects’ response is different from “moderate level (3)” for each item. 3 N/A denotes that the question item was not
provided in this group of subjects. *** 0.05 level of significance, ** 0.1 level of significance, * non-significant at level of 0.1.

3.4.1. Potential System Usefulness

Both workers and managers rated the usefulness of the proposed system as high. The
managers perceived the proposed system to be a good alternative approach for safety
monitoring. Because it allows gathering health and safety-related data for proactive
prevention, instead of relying on manual observations, the managers also mentioned that
the captured information could improve the workers’ awareness of their postures and
train workers for self-correction, thus preventing injuries over the long term. Furthermore,
reducing employee injury was also perceived as a beneficial undertaking for a construction
company, considering that this can show the company’s care for workers’ health and reduce
insurance costs over the long run.

Notably, both workers and managers mentioned a common potential issue limiting the
effectiveness of the proposed system. The WS system and delivered assessment information
may affect the workers’ productivity and progress. The productivity pressure may require
workers to return to awkward postures. Further longitudinal studies should be done to
investigate whether a worker’s productivity will be affected when they use WSs during
daily tasks.

3.4.2. System Applicability

The managers were asked to evaluate the system’s applicability for deployment on
the construction jobsite. The results show an applicability level between moderate to high.
The most salient issue with system application is the sensor durability on construction
sites based on the subjects’ responses. The subjects mentioned that sensors should be
both durable and reusable for construction workers. Such results are consistent with the
feedback from workers. Addressing the observed concerns over the durability of the sensor
(e.g., attachment method) is a critical factor for the successful deployment of the system on
the construction site.

3.4.3. Likelihood of Adoption

The results also showed a moderate level of system adoption among workers and man-
agers. The following issues were identified via the survey: (i) sensor robustness/durability
to harsh conditions (e.g., tight working spaces); (ii) sensor interference with other safety
equipment (e.g., harnesses and knee pads); (iii) workers’ accessibility to a smartphone dur-
ing work; (iv) cost (e.g., who should pay for the sensors); and (v) awareness of injury risks
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from awkward postures—some subjects do not think awkward postures are risk factors for
injuries. Despite the high perceived system usefulness, further work is required to increase
system adoption. Sensor durability should be enhanced for use on construction sites, such
as being integrated into PPE so as to not interfere with other safety equipment. Moreover,
both construction workers and managers should be aware of the risks of overexposure to
awkward working postures. Health and safety education is helpful in building a mindset
for preventing long-term injuries via a proactive approach.

3.5. Performance Evaluation of Posture Recognition Model
3.5.1. Description of Collected Motion Data

Workers’ postures were video-taped as the ground-truth reference during their ex-
perimental use of WSs. The video reference and sensor output were synchronized after
data collection. Then, we labeled each subjects’ motion data with corresponding working
postures using video reference. Table 8 presents a summary of all the labeled postures
from 19 subjects. In addition to the 18 worker subjects that participated in the survey,
another worker joined the motion data collection without participating in the survey. The
motion data used for testing the posture recognition model were collected from a total of
19 workers.

Table 8. Description of collected motion data.

Posture Label Percentage (%) Posture Label
Explanation

BT 14.1 Static bending, minor movement with bending, minor lateral bending, and picking up.
KN 7.3 Kneel on one leg and both legs.
MO 0.8 Postures used when climbing ladders.
SQ 0.3 Squatting.
ST 39.7 Standing with minor movement.

WK 18.0 Walking.
WO 19.7 Overhead work with at least one arm.

3.5.2. Test of Posture Recognition Model

The CLN model proposed in our previous work [17] was adopted in this study as the
recognition model. The CLN model comprised one convolutional layer and two LSTM
layers, which has shown promising recognition performance in our experiment with four
workers [17]. This study further tested the model performance using posture data from
19 workers during their daily tasks. Specifically, all the 19 subjects’ posture data were
combined and randomly split as training (72%), validation (18%), and testing (10%) subsets.
We repeated the test for five rounds with different random seeds to obtain the average
model performance. The model performance test results and confusion matrix are provided
in Table 9 and Figure 10.

Table 9. Summary of recognition performance.

Posture Precision Recall F1-Score

BT 0.86 0.86 0.86
KN 0.97 0.97 0.97
MO 0.62 0.57 0.59

SQ 0.89 0.94 0.91
ST 0.90 0.91 0.90

WK 0.86 0.84 0.85
WO 0.94 0.94 0.94

Overall Accuracy 0.90
Macro F1 Score 0.86
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Results in Table 9 show an overall recognition accuracy of 0.9. Such a result indicates
that 90% of the postures performed by the subjects can be correctly recognized by the
proposed CLN model. The awkward postures (such as BT, KN, SQ, and WO) were also
detected with relatively high F1 scores (all over 0.9 except for 0.86 for BT), which suggest
promising results for detecting these injury-related postures, despite that they were the
minority in the collected postures. A close examination of recognition errors (in Figure 10)
shows that the BT posture tended to be misclassified as MO. One possible reason is that
the MO comprised a series of postures, such as BT, ST, and SK, when workers climb up
and down, which may lead to the misclassification between BT and MO. Additionally, the
limited MO data (0.8% as show in Table 8) may also impede adequate learning and result
in high recognition errors of MO.

3.5.3. Examination of Effective Sensor Position and Channels

This study further examined the effective sensor placement and channels for posture
recognition with the proposed CLN model. Direct interpretation of features (i.e., sensor
output from different positions and channels) used in the DNN-based model is challenging
as feature learning is treated as a “Black Box”. We, therefore, applied the “Feature Per-
mutation” method to evaluate the importance of different sensor channels played in the
proposed CLN model. A feature is “unimportant” if shuffling its values leaves the model
error unchanged, as the model ignored this feature for the prediction [34]. Each sensor
channel within the test subset was shuffled before feeding into the trained CLN model.
The performance reduction (from the CLN model using unshuffled test data) was used
for evaluating feature importance. The test was also repeated for five rounds. Figure 11
describes the ranking of feature importance, where the order was based on the average
importance from the five-round test.

Results in Figure 11 show that the top 14 important features were based on accelerome-
ter output. The last 14 features were from the gyroscope. These suggest that accelerometers
contribute more to characterizing workers’ postures in daily tasks. In terms of sensor
positions, the accelerometers placed at the head and calf tended to have a higher impact
on the CLN model’s performance. The arm sensor imposed less influence on posture
recognition results. The improper sensor placement may not provide useful information
for the recognition models to correctly recognize the postures and be noise for models.
Moreover, the increased number of sensors also brings more data for processing, which
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leads to increased computational complexity and implementation cost. These results may
help to guide the wearable sensing system design by further reducing the number of
required sensors with marginal impact on posture recognition performance.
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4. Conclusions

Advancement in wearable sensing greatly facilitates workplace safety monitoring and
data-driven injury prevention. This research presents the design of an effective wearable
MSD prevention system for use in the construction industry. This study first proposes
a wearable IMU sensing system, with a prototype developed for end-user evaluation.
Construction workers and managers evaluated the proposed wearable IMU sensing system
through interacting with the WSs and a UI. Then they participated in an end-user survey.
The following findings were obtained from end-user evaluation regarding the proposed
system design.

A WS system is a promising approach for collecting data from construction workers be-
cause it is not perceived to cause discomfort. Although one respondent indicated that there
was value in avoiding interference with safety equipment (e.g., knee pads), the workers
did not consider the proposed use of WSs as being intrusive. Sensor durability/robustness
is critical to further improving its applicability and acceptance on jobsites.

The resulting posture-based MSD risk assessment information has a high potential
for improving the workers’ safety awareness. An improved awareness about exposure
to awkward postures can potentially trigger posture correction by workers. The jobsite
risk assessment can help managers make more informative health and safety decisions by
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for example improving safety planning and implementing specific safety equipment for
different construction trades.

The developed mobile and cloud-based UI can readily deliver the MSD risk assessment
information to end users. A daily report is preferred among end users for accessing
assessment information, considering that: (i) workers might ignore alarms and assessment
provided at a high frequency, and (ii) not every worker carries a smartphone for accessing
alarms during daily tasks.

The proposed convolutional LSTM model shows a high potential in automated recog-
nition of workers’ postures in daily tasks. It is also important to note the insufficient
training dataset and concurrent postures (such as multiple postures involved in climbing)
may impair model performance. Additionally, accelerometers tend to be more effective for
characterizing workers’ postures than the gyroscopes. Head and calf areas can be effective
placement for posture recognition.

Our proposed wearable IMU sensing system for proactive MSD prevention has high
potential for reducing construction workers’ risk of developing awkward posture-related
injuries over the long-term, which, in turn, benefits the employer due to reduced compen-
sation costs and demonstrating care for workers’ wellbeing. Continued use of the proposed
system can be achieved by addressing some concerns about sensor durability, the risk of
adverse effect on the workers’ productivity from the proposed approach, and the overall
cost-effectiveness of potential MSD mitigation strategies.

5. Limitations and Future Work

One limitation of this study is the relatively low number of participants in the evalua-
tion survey for the proposed wearable system. Worker subjects also experimentally used
the sensors for only 15 to 30 min while performing routine tasks. Wearing the sensors for
longer sessions during workers’ daily shifts might provide more evidence regarding the
usability of sensors. Further work can be done by recruiting more workers from different
trades for extended trial-use sessions. Given that some trades are more susceptible to MSDs
(e.g., back pain is highly prevalent among masons), further work can focus on expanding
the sample size from these targeted trades. It is important to note that delivering the
assessment feedback to workers aims at improving their overall safety awareness and,
ultimately, instigating behavior-changes for reducing injury risks. Future research can
compare the patterns of workers’ use of awkward postures before and after providing the
injury risk assessment to them. The changing patterns of safety behavior can also be used
to evaluate the effectiveness of construction safety management practices.
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Appendix A

Table A1. Comparison of ergonomics assessment rules.

Assessment Rule Collected Information Collection Strategy Posture Quantification Evaluation Criteria

Ovako Working Posture
Assessment System (OWAS) [27]

Full-body posture
Sampling of observation at a fixed

time interval

Quantify posture by a combination
of body parts at different

approximate positions

Comparing the proportion of
classified postures (considering

force used) with predefined criteria,
deciding any corrections to be

undertaken for reducing injury risk.

Force used
The proportion of Posture

Posture, activity, tools, and
handling (PATH) [35]

Full-body posture

Same as OWAS Same as OWAS NA
Force used

Work activities
The proportion of posture

Posture Targeting [36] Full-body Posture No detailed rules for the collection
Quantify posture by deviation or

displacement of body parts from a
neutral position.

NA

Task Recording and Analysis on
Computer (TRAC) [37]

Full-body Postures Continuous recording and
sampling of observation at a fixed

time interval

Quantify posture by both gross
posture and rotation or flexion

angles of body parts.
NAForce

Proportion and Distribution of Posture

Portable Ergonomic Observation
(PEO) [38]

Full-body Posture

Continuous recording of postures Quantify posture by rotation or
flexion angles of body parts. NAForce

Proportion and Distribution of Posture

Hand Relative to
Body-HARBO [39]

Full-body Posture (mainly standing,
walking and sitting)

Proportion and Distribution of Posture
Continuous recording of postures Quantify posture by relative

position between hand and body. NA

Maximum Holding Time
(MHT) [28]

Full-body Posture Continuous recording of
static postures

Quantify awkward postures using
by relative positions of shoulder

and hands.

The MHT thresholds and
recommended holding time are

provided for varying postures with
different level of awkwardness.

Static holding time of postures



Sensors 2021, 21, 1324 22 of 28

Table A1. Cont.

Assessment Rule Collected Information Collection Strategy Posture Quantification Evaluation Criteria

Rapid Entire Body Assessment
Rules (REBA) [40]

Full-body posture

No detailed rules for the collection
Quantify posture by rotation or

flexion angles of body parts.

Evaluation score is acquired by
cumulating scores regarding

different body parts’ positions
(considering force used). Injury risk

is assessed by comparing to five
different risk levels (representing

different necessity for actions).

Force used

Rapid Upper Limb Assessment
Rules (RULA) [41]

Upper limbs’ posture
Force used

Postural Loading on the
Upper-Body Assessment

(LUBA) [42]
Full-body postures No detailed rules for the collection Quantify posture by rotation or

flexion angles of body parts.

The perceived posture discomfort
score is rated for different posture

by experiment, the MHT [28] is also
used for assessment.

Chung’s posture workload
evaluation system [43] Full-body posture No detailed rules for the collection

Quantify body posture by deviation
from a neutral position for

different joints.

Calculating the whole-body
discomfort score by combining

discomfort scores from different
body parts.

Back-ES [44]
Manual handling posture related to back

A sampling of observation at a
fixed time interval

Quantify posture by rotation or
flexion angles of body parts. NAForce used

Vibration
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Table A2. Pseudo-code for real-time MHT Assessment.

Real-Time MHT Assessment

count = 0← count of consecutive postures
threshold← pre− defiended threshold for each targeted activities
motioni ← motion data collected in the ith sec ond
PR(motion)← pre− trained posture recognition model
while motioni not empty : # continuously capturing the motion data
pre = PR(motioni−1) # comparing postures detected from two consecutive seconds
cur = PR(motioni)
if cur equals pre:
count+ = 1
if count > threshold[cur]: # send the warning signal when breaching MHT threshold
count = 0 # reset the counter once breaching the MHT threshold
output “posture cur breaches the MHT threshold”
else:
count = 0 # reset the counter when consecutive postures are different

Table A3. Pseudo-code for periodical MHT and posture proportion assessment.

Periodic MHT and Awkward Posture Proportion Assessment

postures← list of postures (with timestamps) recognized
threshold← pre-defined threshold for each targeted posture
result← result of MSDs risk assessment in the unit time interval
pointer = 0← pointer for counting consecutive postures
c← number of posture classes recognized in the unit working time
n← number of postures recognized in the unit working time
count← count the continuous holding time of every posture
count [0,1] = 1← initialize the first captured posture
sub_count← buffer for saving holding time of specific posture
for i in range(n − 1):
if postures[i + 1] equals postures[i]:
count[pointer,1]+ = 1
count[pinter,0] = postures[i]
else:
pointer+ = 1 # the pointer moves to the next consecutive postures when the different posture
comes
count[poiner,0] = postures[i + 1]
count[pointer,1] = 1
count[:, column3] = (count[:, column2] + 1)×0.5 # add a third column in count to record time of
continuously held posture, the postures recognized under 50% overlap sliding window
for i in range(c):
sub_count = count[column1 equals i and column2 greater than threshold[i]] # all i breaching MHT
threshold
result [i, 1] = sub_count.length # total count of posture i breaching MHT
result [i, 2] = sub_count.sum # total duration of posture i breaching MHT
result [i,3] = count[column1 equals i].length/(count[column2].sum×60) # frequencies of posture i
in 1 min
result [i,4] = count[column1 equals i].sum/count[column1].sum # proportion of posture i
result [i,5] = count[column1 equals i].max # max holding time of posture i
return result
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Table A4. Evaluation survey question design.

System Design Criteria Metrics
Question Items and Explanation

Worker Manager

Wearable Sensing System

Physical Discomfort Level Q1: Physical discomfort when
wearing the sensors

Q4: Perceived worker’s physical discomfort
when wearing the sensors

Mental Discomfort Level Q2: Mental discomfort when
wearing the sensors

Q5: Perceived worker’s mental discomfort
when wearing the sensors

Inconvenience Level
Q3: Inconvenience caused by the

sensors, and sensor locations
causing the inconvenience.

N/A

Intrusiveness Level
Q4: Likelihood of productivity
reduction due to the intrusion

caused by sensors

Q6: Estimated likelihood of productivity
reduction due to sensors’ intrusion

Durability and Robustness Level Q5: Durability of the sensors to the
construction environment

Q7: Perceived durability of the sensors to the
construction environment

Acceptability of Wearable Sensors Q6: Likelihood of workers using
the sensors

Q8: Perceived likelihood of workers using
the sensors

Risk Assessment and
Information Delivery System Content of Assessment

Usefulness of Immediate
Intervention

Q7: Usefulness of providing
real-time intervention for

individual workers

Q12: Perceived usefulness of providing
real-time intervention for individual workers

Usefulness of a Periodical
Assessment

Q8: Usefulness of providing
periodical assessment for individual

workers (every 30 min)

Q14: Usefulness of providing daily time
profile of awkward postures for refining

break schedule
Q15: Usefulness of identifying recurring

awkward postures for trades and trades with
high awkward posture exposure

Trust in Proposed Assessment
Q9: Level of confidence that the

evaluation can give useful
information for individual workers

Q16: Level of confidence the evaluation can
give useful information for jobsite
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Table A4. Cont.

System Design Criteria Metrics
Question Items and Explanation

Worker Manager

Risk Assessment and
Information Delivery System

Mobile App-based Assessment
Information Delivery for

Individuals

Incidence of the recurring awkward
posture of individuals

Q10: Usefulness of providing
incidence of recurring

awkward postures
time profile of awkward postures

immediate intervention
for individual workers via the App

Q13: Perceived usefulness of App-based
assessment information delivery

Daily time profile of
awkward postures

Need for taking
immediate intervention

Online Dashboard-based
Assessment Information

Delivery for Jobsite

Daily time profile of
awkward postures

N/A

Q17: Usefulness of providing:
daily time profile of awkward postures

on jobsite
types of awkward postures by trade

injury risk levels of trade
recommended speed of taking intervention

for trades

Incidence of recurring awkward
postures by trades

Injury risk level by trade

Recommended speed of taking
intervention by trade

Risk Assessment and
Information Delivery System

Frequency of Information
Delivery

Real-time Q11: Perceived effectiveness of
delivering the individual

assessment information at the
frequency of:

Real-time alarm for breaching MHT
Assessment summary in every

30 min
Daily assessment summary

Q18: Perceived effectiveness of
Delivering the individual assessment

information at the frequency of:
Real-time alarm for breaching MHT

Assessment summary in every 30 min
Daily assessment summary

Delivering jobsite assessment information at
the frequency of:

Daily jobsite summary

Every 30 min

Daily assessment

Holistic Evaluatio

Potential System Usefulness Q12: Perceived usefulness of the
developed DSS system by workers

Q1: Perceived usefulness of the developed
DSS system by managers

System Applicability N/A Q2: Perceived applicability of the developed
DSS system on jobsite by the managers

Likelihood of Adoption
Q13: Likelihood of using the
developed DSS in workers’

daily work

Q13: Likelihood of using the developed DSS
in the managers’ daily work
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