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Mitochondria are involved in many key cellular processes and therefore need to rely
on good protein quality control (PQC). Three types of mechanisms are in place to
insure mitochondrial protein integrity: reactive oxygen species scavenging by anti-
oxidant enzymes, protein folding/degradation by molecular chaperones and proteases
and clearance of defective mitochondria by mitophagy. Drosophila melanogaster Hsp22
is part of the molecular chaperone axis of the PQC and is characterized by its
intra-mitochondrial localization and preferential expression during aging. As a stress
biomarker, the level of its expression during aging has been shown to partially predict
the remaining lifespan of flies. Since over-expression of this small heat shock protein
increases lifespan and resistance to stress, Hsp22 most likely has a positive effect
on mitochondrial integrity. Accordingly, Hsp22 has recently been implicated in the
mitochondrial unfolding protein response of flies. This review will summarize the key
findings on D. melanogaster Hsp22 and emphasis on its links with the aging process.
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Introduction

Aging is associated with a decline in protein homeostasis (proteostasis) that leads to the accumula-
tion of deleterious protein damages. Mitochondrial proteins are particularly prone to accumulate
damages due in part to the close proximity of the ETC. To circumvent deleterious accumulation
of protein damages, three types of mechanisms are involved in mitochondrial PQC (reviewed in
Kotiadis et al., 2014). The first line of defense comprises both anti-oxidants enzymes that scav-
enge ROS produced as by-product of the ETC and molecular chaperones and proteases that insure
protein folding or degradation of damaged proteins (reviewed in Bozaykut et al., 2014). The third
mechanism ofmitochondrial PQC involves the clearance of highly damagedmitochondria through
mitophagy (reviewed in Osellame and Duchen, 2014; Scheibye-Knudsen et al., 2015).

Heat shock proteins are molecular chaperones found in all organisms. They are subdi-
vided in distinct families based on their molecular weight and sequence homology: HSP110,
HSP90, HSP70, HSP60, HSP40, and sHSP. Each HSP family has specific functions that have
been the subject of different reviews (Vos et al., 2008; Priya et al., 2013; Ryabova et al., 2013;
Saibil, 2013; Karagoz and Rudiger, 2015). The sHSPs are characterized by the presence of the
alpha-crystallin domain and are at the crossroad between two main process namely protein

Abbreviations: ETC, electron transport chain; HSE, heat shock element; HSP, heat shock protein; mtUPR, mitochondrial
unfolding protein response; PQC, protein quality control; ROS, reactive oxygen species; sHSP, small heat shock protein.
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folding and degradation. Indeed, most sHSPs have the ability
to prevent protein aggregation and to maintain their client in
a refoldable state hence preventing them to form deleterious
interactions (reviewed in Haslbeck et al., 2005; McHaourab et al.,
2009; Fu, 2014; Treweek et al., 2015). Additionally, some
sHSPs are involved in protein degradation via the proteasome
and autophagy (Goldbaum et al., 2009; Bissonnette et al., 2010;
Acunzo et al., 2012).

In Drosophila melanogaster there are 12 members of the sHSP
family that have different chaperone ability, distinctive intracel-
lular localization and cell- and stage-specific pattern of expres-
sion (Michaud et al., 2002; Vos, 2009; Morrow and Tanguay,
2015). Almost all of them are stress-inducible, but only
seven have been shown to be up-regulated during aging
(CG14207, l(2)efl, Hsp67Bc, Hsp22, Hsp23, Hsp26, and Hsp27;
King and Tower, 1999; Zou et al., 2000; Landis et al., 2004, 2012;
Wang et al., 2005; Girardot et al., 2006; Tanguay and Morrow,
2008; Yang and Tower, 2009). Among these sHSPs, the link
between Hsp22 and aging is particularly interesting due to
its peculiar mitochondrial matrix localization (Morrow et al.,
2000) and given the central role of mitochondria in the
aging process (Hill and Van Remmen, 2014; Ziegler et al., 2014).
Mitochondria are involved in different metabolic and signaling
pathways (ATP production, amino acid catabolism, fatty acid
β-oxidation, apoptosis among others) and are in constant com-
munication with the nucleus to adjust to metabolic demand
(Haynes et al., 2007; Haynes and Ron, 2010; Runkel et al., 2014).
While ROS produced by mitochondria have been at the
center of the free radical theory of aging (Harman, 1956),
recent reports are now showing that increased ROS produc-
tion is not always harmful and can even promote longevity
(Van Raamsdonk and Hekimi, 2009, 2012; Yee et al., 2014). In
recent years, multiple factors have been shown to contribute
to aging by favoring accumulation of dysfunctional mito-
chondria such as impairment of mitochondria-to-nucleus sig-
naling, changes in mitochondrial dynamics (fusion/fission)
and clonal amplification of mitochondrial DNA mutations
(Bereiter-Hahn, 2014; Hepple, 2014; Ziegler et al., 2014). A
failure to maintain mitochondrial homeostasis and integrity
is therefore associated with aging (Bratic and Larsson, 2013;
Bohovych et al., 2014) and accordingly, the maintenance of mito-
chondrial stress response has gained recognition as a poten-
tial pro-longevity mechanism (Hill and Van Remmen, 2014;
Scheibye-Knudsen et al., 2015).

Hsp22 is Preferentially Up-Regulated
During Aging

As a member of the sHSP family, Hsp22 is readily up-
regulated by a variety of different stresses (Colinet et al., 2010;
Hirano et al., 2012; Landis et al., 2012; Morrow and Tanguay,
2015) but its developmental expression pattern is tightly reg-
ulated. Indeed, during development its expression is restricted
to the metamorphosis of larvae to pupae (Michaud et al., 2002).
However, during adulthood Hsp22 is the most up-regulated
sHSP, the induction of its mRNA reaching up to 60% in

the head of 30 days-old flies comparatively to 6 days-old
flies (King and Tower, 1999; Yang and Tower, 2009; Landis et al.,
2012). Since hsp22 mRNA is post-transcriptionally regulated,
the protein was only detected starting at 40 days of age in
these flies (King and Tower, 1999), and the resulting increase was
of ≥150%.

Interestingly, fly strains genetically selected for their increased
longevity display increased hsp22 mRNA at the beginning of
adulthood comparatively to short-lived strains (Kurapati et al.,
2000; Zhao et al., 2005b). These flies were also more resis-
tant to heat-shock and were shown to have a quicker heat-
shock response than short-lived flies (Zhao et al., 2005b) sug-
gesting a beneficial role of Hsp22 during aging (Kurapati et al.,
2000; Zhao et al., 2005b). This was further confirmed by over-
expression and down-regulation studies (see Hsp22 Over-
Expression Increases Longevity and Resistance to Stress and
Absence of Hsp22 Expression Decreases Lifespan and Resistance
to Stress, Morrow et al., 2004a,b). This positive correlation
between the hsp22 mRNA level and lifespan likely indicates a
more effective stress response and is consistent with a report
showing a positive correlation between the level of induction
of a shsp reporter in response to stress and the remaining lifes-
pan in Caenorhabditis elegans (Rea et al., 2005; Yang and Tower,
2009).

Hsp22 Expression Partially Predicts the
Remaining Lifespan of Flies
Due to its stress-inducibility (Colinet et al., 2010; Hirano et al.,
2012; Landis et al., 2012; Morrow and Tanguay, 2015) and to
the fact that the onset of Hsp22 protein induction is near the
beginning of the period of rapid death in the fly population
(King and Tower, 1999), the ability of Hsp22 to be an aging
biomarker was investigated using transgenic flies expressing the
green fluorescent protein (GFP) driven by an hsp22 promoter
(hsp22-GFP; Yang and Tower, 2009). It was shown that in a
given strain, flies that were robustly expressing the hsp22-GFP
transgene at younger adult age than their counterpart tended
to die sooner. In this case, the abnormal level of hsp22-GFP
transgene expression would be indicative of the high level of
stress experienced by a given individual and would represent
that particular individual’s susceptibility to stress and failing
homeostasis and as such could serve as a stress biomarker
announcing imminent mortality (Yang and Tower, 2009). While
this may seem contradictory to other studies on the beneficial
effects of Hsp22 on longevity (Kurapati et al., 2000;Morrow et al.,
2004b; Zhao et al., 2005b), it may only represent the impor-
tance to express Hsp22 early in development to observe its effect
on lifespan. Unfortunately no data on mRNA/protein level of
hsp22 are available for the long-lived strains harboring increased
levels of hsp22 mRNA early in development (see Hsp22 is
Preferentially Up-Regulated During Aging, Kurapati et al., 2000;
Zhao et al., 2005b). However, studies using over-expression of
Hsp22 have clearly shown that it must be expressed before
4 days of age to confer an increased longevity (Bhole et al., 2004;
Morrow et al., 2004b). Moreover, the sensitivity of GFP detec-
tion technique may not favor the detection of weak/transient
hsp22-GFP expression and therefore emphasis on more robust

Frontiers in Genetics | www.frontiersin.org 2 March 2015 | Volume 6 | Article 103

http://www.frontiersin.org/Genetics/
http://www.frontiersin.org/
http://www.frontiersin.org/Genetics/archive


Morrow and Tanguay Drosophila Hsp22 and aging

expression. In the same way, Hsp22 protein expression driven
in adult motorneurons was not observable by western blots
of whole fly homogenate but was still able to mediate lifes-
pan increase (Morrow et al., 2004b). Together these data sug-
gest that the cell-types in which Hsp22 is expressed and the
timing of its expression are important factors in its benefi-
cial effect on aging and that robust expression of Hsp22 at the
whole organism level may reflects intensive stress and failing
homeostasis.

Hsp22 Expression is Modulated by
Factors Influencing Longevity

In the course of understanding the aging process, different pro-
teins, and pathways have been shown to influence lifespan.
Interestingly, in some cases the modulation of Hsp22 expression
was also reported.

dFoxo as a Regulator of Hsp22 Expression
The up-regulation of Jun-N-terminal Kinase pathway and
the down-regulation of the insulin/IGF pathway converge
to the transcription factor Foxo to increase lifespan and
stress tolerance (Tatar et al., 2001; Wang et al., 2003, 2005;
Accili and Arden, 2004; Giannakou and Partridge, 2007). In D.
melanogaster, dFoxo has been shown to regulate the expres-
sion of Hsp22 together with Hsp23, CG14207, l(2)efl, Hsp70,
Hsp40, Hsp90, and Hop (Wang et al., 2005; Harvey et al.,
2008; Hull-Thompson et al., 2009; Demontis and Perrimon,
2010). Hsp22, Hsp23, and l(2)efl increase longevity upon
over-expression and it was therefore proposed that they are,
at least in part, involved in the lifespan extension medi-
ated by dFoxo (Morrow et al., 2004b; Wang et al., 2005;
Tanguay and Morrow, 2008). Accordingly, it was shown that
dFoxo null flies have a reduced lifespan as well as a reduced
age-induced expression of l(2)efl (Shen and Tower, 2010) and
Hsp22 (Morrow and Tanguay, 2015).

Hsp22 Expression is Coordinated with the
Life Promoting Protein dDnmt2
In flies, dDnmt2 is the only DNAmethyl transferase known up to
now. Contradictory with its name dDnmt2 has a relatively poor
DNA methyl transferase activity, but it has, however, a rather
robust tRNA methyl transferase activity (Schaefer and Lyko,
2010; Schaefer et al., 2010). One of the functions of dDnmt2 is
to protect stress-induced cleavage of tRNA in stress granules
(Schaefer et al., 2010) and it would also be a life determina-
tion gene since it increases lifespan and resistance to oxida-
tive stress upon over-expression and decreases Drosophila lifes-
pan when down-regulated (Lin et al., 2005; Schaefer et al., 2010).
Interestingly, only Hsp22, Hsp23, and Hsp26 (and no other
life promoting genes such as Inr, chico, metuselah, and SOD)
were shown to be expressed similarly to dDnmt2 (i.e., up-
regulated when dDnmt2 is over-expressed or down-regulated
when dDnmt2 expression is decreased) suggesting that the lifes-
pan determination of dDnmt2 is interconnected with sHSP
expression (Lin et al., 2005).

Hsp22 Expression is Influenced by Histone
Methylation and Acetylation
Histone post-translational modifications are known to control
gene transcription. Among the enzymes regulating modifica-
tions of histones, the histone demethylase KDM4A has been
suggested to regulate longevity gene expression. Indeed, the
depletion of KDM4A has been shown to induce cellular senes-
cence in normal fibroblasts (Mallette and Richard, 2012) and to
decrease lifespan in flies (Lorbeck et al., 2010). Interestingly, the
most down-regulated gene in short-lived KDM4A flies was hsp22
(Lorbeck et al., 2010). A link between Hsp22 expression and
histone acetylation has also been observed in flies. Indeed, inhibi-
tion of histone deacetylase by trichostatin and sodium butyrate
was shown to increase lifespan and promote hsp22 and hsp70
expression (Zhao et al., 2005b). In this case, the binding of hyper-
acetylated histone H3 at both promoters was shown to increase
accessibility of HSEs to the heat shock factor (Zhao et al., 2005a).

Hsp22 has a Protective Role During
Lifespan

The beneficial role of Hsp22 during aging was shown by over-
expression and down-regulation studies in flies and was also
demonstrated in human cells.

Hsp22 Over-Expression Increases Longevity
and Resistance to Stress
Using the Gal4-UAS system, it was shown that over-expression of
Hsp22 either ubiquitously with the actin driver or in motorneu-
rons with the D42 driver increases resistance to heat and
oxidative stresses and longevity by up to 30% (Morrow et al.,
2004b). Moreover, flies over-expressing the sHSP maintained
their locomotor activity for a longer time suggesting that Hsp22
over-expression increases the health-span (Morrow et al., 2004b).
While the beneficial effect of Hsp22 over-expression on lifespan is
clear in this system, the timing of its expression is very important.
Indeed, over-expressing the sHSP at the beginning of adulthood
instead of the beginning of embryogenesis did not result in any
increase of longevity (Bhole et al., 2004).

Absence of Hsp22 Expression Decreases
Lifespan and Resistance to Stress
The three HSEs of the hsp22 promoter are required for
the age-induced expression of Hsp22 (King and Tower, 1999).
Accordingly, flies that carry a p-element insertion in the hsp22
promoter (in between the HSEs) lack the sHSP expression during
aging and consequently have a decreased longevity and resistance
to stress (Morrow et al., 2004a).

Hsp22 Increases Population Doubling in
Human Fibroblasts
Ten sHSPs are found in humans and up to now none has
been found to reside constitutively inside the mitochondria.
Interestingly, over-expression of D. melanogaster Hsp22 in pri-
mary human fibroblasts extended their lifespan from 58 pop-
ulation doublings to 84 population doublings and this was

Frontiers in Genetics | www.frontiersin.org 3 March 2015 | Volume 6 | Article 103

http://www.frontiersin.org/Genetics/
http://www.frontiersin.org/
http://www.frontiersin.org/Genetics/archive


Morrow and Tanguay Drosophila Hsp22 and aging

accompanied by a lower level of the senescence associated β-
galactosidase marker (Wadhwa et al., 2010). While it is clear that
Hsp22 was functionally active in human cells, its expression was
also shown to increase malignant properties of human cancer cell
lines (Wadhwa et al., 2010). In mammals, sHSPs are up-regulated
in many different cancer cell types and are often linked to
bad prognoses (Boncoraglio et al., 2012; Kampinga and Garrido,
2012). The exact mechanisms by which Hsp22 operate in human
cells has not been investigated deeply. However, p53 was shown
to co-immunoprecipitate with Hsp22 and accordingly, p53
was found in the mitochondria of Hsp22 over-expressing cells
(Wadhwa et al., 2010).

Hsp22 Over-Expression Triggers
Changes in Gene Transcription

Consistent with the extent of Hsp22 beneficial effect at the organ-
ismal level, Hsp22 over-expression was shown to alter gene tran-
scription. Indeed, transcripts from protein involved in multiple
functions were shown to be expressed differently in Hsp22 over-
expressing flies, notably genes of the ETC, and genes involved in
protein translation (Kim et al., 2010). The mechanism by which
a mitochondrial sHSP can alter gene transcription is not clear,
but is likely to result from an indirect effect and therefore prob-
ably involves other proteins and/or messengers. Mitochondria
are in constant communication with the nucleus to adjust gene
expression as a response to altered metabolic demand and stress
(Haynes et al., 2007; Haynes and Ron, 2010; Runkel et al., 2014).
Therefore, rather then initiating a signaling cascade between
mitochondria and nucleus, over-expression of Hsp22 may simply
modify the mitochondrial status by insuring proteostasis hence
influencing mitochondrial function and integrity.

Hsp22 Involvement in the Mitochondrial
Unfolding Protein Response
Due to its drastic up-regulation upon mitochondrial protein
synthesis disruption and following different types of stress, Hsp22
has been proposed to be involved in the mtUPR together with
Hsp60 and mitochondrial Hsp70 (Fernandez-Ayala et al., 2010;
Tower, 2014; Tower et al., 2014; Morrow and Tanguay, 2015).

The mtUPR is a stress response induced by protein misfolding
in the mitochondria that involves mitochondria-to-nucleus sig-
naling (Haynes and Ron, 2010). In Drosophila Hsp22 has been
proposed to work in an amplification loop of mtUPR since it
can influence its own level of expression (Shen and Tower, 2013;
Tower et al., 2014). Interestingly, the link between mtUPR and
longevity is similar to the one between Hsp22 and longevity
since both have to be induced before adulthood to have a posi-
tive effect (Bhole et al., 2004; Morrow et al., 2004b; Durieux et al.,
2011; Houtkooper et al., 2013).Moreover, both of them have been
associated with health-span in Drosophila (Morrow et al., 2004b;
Hill and Van Remmen, 2014).

Hsp22 Expression Reduces
Mitochondrial Metabolism

Using a reporter construct consisting in the promoter of hsp22
fused to GFP, a cell lineage-specific induction of Hsp22 was
reported in oenocytes (liver-like cells) during aging (Tower et al.,
2014). Interestingly, two genes were found to increase the pref-
erential expression of the hsp22-GFP reporter construct during
aging, namely MnSOD and Hsp22 itself (Tower et al., 2014). This
link betweenMnSOD and Hsp22 expression was also observed in
another study aimed at identifying the changes in gene expression
in long-lived flies over-expressing MnSOD (Curtis et al., 2007).
Oenocytes that express hsp22-GFP reporter were shown to accu-
mulate less age pigment and to have lower levels of oxidative
stress suggesting that Hsp22 could prevent age-induced dam-
ages by reducing mitochondrial metabolism (Tower et al., 2014).
Interestingly, the reduction of the mitochondrial metabolism
by Hsp22 is also supported by preliminary data from our lab
that show the down-regulation of multiple isoforms of pro-
teins from the ETC and Krebs cycle among others upon Hsp22
over-expression (Morrow et al., submitted).

Concluding Remarks

The suggested effects of Hsp22 on mitochondria are summarized
in Figure 1. As mentioned above, Hsp22 over-expression has

FIGURE 1 | Beneficial effects of Hsp22 on mitochondria. See text for explanation.
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been shown to increase resistance to stress and health-
span (Morrow et al., 2004a,b). This can be achieved directly
by preventing the accumulation of protein damages in
mitochondria through its chaperone activity (Morrow et al.,
2006) and/or indirectly by amplifying mtUPR signaling and
subsequent expression of other chaperones and proteases
(Haynes and Ron, 2010; Shen and Tower, 2013; Tower et al.,
2014). The fact that a reduced mitochondrial metabolism
has been associated with Hsp22 expression suggests that
this sHSP may also influence mitochondria-to-nucleus sig-
naling through a decreased ROS production (Tower, 2014;
Tower et al., 2014).

Drosophila melanogaster Hsp22 is one of the few sHSPs
found inside mitochondria independently of the cellular envi-
ronment together with plants mitochondrial sHSPs (Waters,
2013) and C. elegans Hsp17 (Ezemaduka et al., 2014). The
situation in mammals is different as all sHSPs are mainly
located in the cytoplasm and shuttles to the different organelles
(Nakagawa et al., 2001; van den IJssel et al., 2003; Bryantsev et al.,
2007; den Engelsman et al., 2013; Marunouchi et al., 2013). This
is notably the case for HSPB1, HSPB2, HSPB5, and HSPB8
that have been shown to shuttle to mitochondria in condi-
tions of oxidative stress (Nakagawa et al., 2001; Jin et al., 2008;
Marunouchi et al., 2013). As a general molecular chaperone,

Hsp22 may have multiple clients inside the mitochondria and
this may account for all the differences observed in flies over-
expressing it as well as explain its functionality in ortholo-
gous system. Additionally to its role in mitochondrial pro-
teostasis and mtUPR, Hsp22 could help maintain mitochondrial
inner membrane integrity in a way similar to what has been
observed for the mitochondrial sHSP of C. elegans. Indeed,
when over-expressed in bacteria, ceHsp17 was shown to main-
tain cell envelope integrity at lethal temperatures by associating
with bacterial inner membrane (Ezemaduka et al., 2014). Other
sHSPs such asMycobacterium tuberculosisHsp16.3, Synechocystis
Hsp17, and mammalian HSPB5 have been found to be asso-
ciated with membranes and confer protection (Horvath et al.,
1998; Cobb and Petrash, 2000; Torok et al., 2001; Zhang et al.,
2005). While we have gained some important clues on the effect
of Hsp22 on mitochondrial function, there is still a lot to do
to understand exactly how this bona fide chaperone influences
longevity and resistance to stress.
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