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Health and disease markers correlate with
gut microbiome composition across thousands
of people
Ohad Manor 1,4✉, Chengzhen L. Dai2,4, Sergey A. Kornilov 2, Brett Smith2, Nathan D. Price 2,3,

Jennifer C. Lovejoy2, Sean M. Gibbons 2,3 & Andrew T. Magis2

Variation in the human gut microbiome can reflect host lifestyle and behaviors and influence

disease biomarker levels in the blood. Understanding the relationships between gut microbes

and host phenotypes are critical for understanding wellness and disease. Here, we examine

associations between the gut microbiota and ~150 host phenotypic features across ~3,400

individuals. We identify major axes of taxonomic variance in the gut and a putative diversity

maximum along the Firmicutes-to-Bacteroidetes axis. Our analyses reveal both known and

unknown associations between microbiome composition and host clinical markers and life-

style factors, including host-microbe associations that are composition-specific. These results

suggest potential opportunities for targeted interventions that alter the composition of the

microbiome to improve host health. By uncovering the interrelationships between host diet

and lifestyle factors, clinical blood markers, and the human gut microbiome at the population-

scale, our results serve as a roadmap for future studies on host-microbe interactions and

interventions.
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The human gut microbiome—the collection of microorgan-
isms residing in the gastrointestinal tract—is thought to play
a role in the etiology of various diseases, including inflam-

matory bowel disease1–3, type 2 diabetes4–6, hypertension7–9, and
colorectal cancer10–13. Individual clinical blood markers, such as
those for diabetes14 and cholesterol15, have been found to be
associated with abundances of certain gut bacteria. Lifestyle habits
can also impact the composition of the gut microbial community.
For example, diet can profoundly influence the composition of
the microbiome16–18. Similarly, physical activity has been shown
to drive shifts in the composition of the gut microbiome in ani-
mal models19,20, and there is preliminary evidence from small-
cohort studies that exercise impacts the microbiome in humans as
well21–25.

Despite the growth in microbiome research in recent years,
large-scale human studies that integrate gut microbiome profiles
with host clinical blood phenotypes, dietary, and lifestyle data,
and disease and medication usage remain scarce. These dense
phenotyping studies on large cohorts are crucial for validating
associations established in varying contexts, using sparser data
from smaller cohorts.

Here, we provide an in-depth analysis of the relationship
between the gut microbiome and host factors across ~3400
healthy US individuals in a large cross-sectional study. We
identify lifestyle and clinical factors, including diet, medication
use, and clinical blood markers, that are associated with the
composition of the gut microbiome, including diversity, indivi-
dual taxonomies, and inferred functional pathways. Stratifying
individuals by the major axes of variation in microbial compo-
sition, we identify lifestyle behaviors and host factors that are
associated with microbiome diversity only in certain underlying
microbiome contexts. Finally, we identify host-microbiome
associations that are robust and independent from the under-
lying species diversity of the microbial community.

Results
Characteristics of study participants. The data presented in this
study were collected at baseline from 3409 research-consenting
participants in a commercial Scientific Wellness program (Arivale
Inc., see Methods). Participants included 59% females, 84% self-
reported European-Americans, with an average age of 49 ± 12
years, and an average BMI of 27 ± 6 kg/m2 (Table 1). All parti-
cipants completed lifestyle, stress, digestion, and diet ques-
tionnaires, and for 90% (n= 3064) of participants, 65 clinical
laboratory tests were measured from blood (Supplementary
Data 1). Gut microbiome composition from a baseline stool
sample was determined by 16S amplicon sequencing for all par-
ticipants (see Methods).

Microbiome diversity is strongly associated with the
Bacteroidetes-to-Firmicutes axis. When examining the overall
composition of the gut microbiome in the study participants, the
relative abundance of Firmicutes ranged from ~6% to ~100%,
while the relative abundance of Bacteroidetes ranged from ~0% to
~90% (Fig. 1). We observed that Shannon diversity was strongly

negatively correlated with the relative abundance of Bacteroidetes
(r=−0.67, P < 10−15, Pearson’s correlation), however, this trend
was not linear and showed a positive correlation for the lowest
levels of Bacteroidetes. This nonlinear trend was also observed in
other measures of diversity such as Pielou’s evenness index,
species richness, and Faith’s phylogenetic index (See Supple-
mentary Fig. 1). Overall, Shannon diversity was maximized when
the relative abundances of Bacteroidetes and Firmicutes were
~15% and ~80%, respectively (Supplementary Fig. 2; see Meth-
ods). In addition, the phyla Proteobacteria, Fusobacteria, and
TM-7 were significantly negatively correlated with diversity (r=
−0.18, P < 10−15; r=−0.13, P < 10−13; r=−0.10, P < 10−8,
respectively), while the phyla Tenericutes, Euryarchaeota, Lenti-
sphaerae, and Cyanobacteria were significantly positively corre-
lated with diversity (r= 0.28, P < 10−15; r= 0.19, P < 10−15; r=
0.17, P < 10−15; r= 0.13, P < 10−13, respectively).

To identify correlation patterns between taxa and diversity that
go beyond the relative abundance of Bacteroidetes (and since
Bacteroidetes was the phylum most correlated with diversity), we
re-examined the correlations between taxa and diversity while
accounting for Bacteroidetes abundance. To this end, we defined
Bacteroidetes-adjusted diversity (BA-diversity) as the residuals
from a nonlinear regression of diversity on Bacteroidetes
abundance (see Methods). We found that the phylum Actino-
bacteria, which was slightly positively correlated with unadjusted
Shannon diversity (r= 0.04, P= 0.02), was the most negatively
correlated phylum with BA-diversity (r=−0.21, P < 10−15), and
its two genera Bifidobacterium and Eggerthella were among the
most negatively correlated genera with BA-diversity (r=−0.24,
P < 10−15; r=−0.20, P < 10−15, respectively). Notably, while
Bifidobacterium is considered a beneficial gut-dwelling bacterial
genus26, Eggerthella (and specifically, E. lenta) has been described
as an opportunistic pathogen27.

To examine the main drivers of taxonomic variance in the gut
microbiome of participants, we applied edgePCA28, a
microbiome-specific principal component analysis that accounts
for phylogeny (Fig. 2). The first taxonomy-based principal
component (PC1; explaining ~54% of variance) was found to
be strongly correlated with the abundances of the phyla
Firmicutes and Bacteroidetes (Fig. 2b), whereas the second
principal component (PC2; explaining ~17% of variance) was
found to be strongly correlated with the abundances of the
Bacteroidetes genera Prevotella and Bacteroides (Fig. 2c). We
however did not find distinct clusters as previously reported29,
but rather a continuum of compositions ranging from very low
levels of overall Bacteroidetes, to high levels of either Prevotella or
Bacteroides (Fig. 2a). As reported in previous studies18,29,
Prevotella- and Bacteroides-rich compositions were found to be
relatively non-overlapping.

Extending our analysis to the third and fourth principal
components (PC3-4; explaining ~5% and ~3% of variance,
respectively), we found that different clades from the order
Clostridiales (phylum Firmicutes) were strongly correlated with
these PCs (Supplementary Fig. 3). Specifically, the genus
Faecalibacterium (family Clostridiaceae) was negatively correlated
with PC3, while the families Lachnospiraceae and Ruminococca-
ceae were negatively and positively correlated with PC4,
respectively. These results indicate that among the continuum
of increased Firmicutes abundance, compositions tend to vary in
these three clades. Interestingly, the Actinobacteria genus
Bifidobacterium, known to be a beneficial commensal genus26,30,
was found to be positively correlated with PC3 (and therefore
negatively correlated with Faecalibacterium, another beneficial
microbial genus31,32).

We also compared these results with the results obtained by
applying nonmetric multidimensional scaling (NMDS) to either

Table 1 Summary of demographics in individuals.

Feature Overall

Number of individuals 3409
Sex (% female) 59%
Age 49 ± 12
Ethnicity (% white) 84%
BMI 27 ± 6
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weighted UniFrac or Bray-Curtis distances and found similar
results, although the principal components of edgePCA were
better correlated with these main taxonomic drivers than the
principal coordinates of Bray-Curtis or UniFrac-based NMDS,
highlighting the benefit of using a microbiome-specific ordination
technique (see Supplementary Figs. 4-5).

Multiple lifestyle and clinical factors are associated with gut
microbiome diversity. We next set out to identify, which host
factors are associated with the diversity of the gut microbiome.
Out of 148 lifestyle and clinical factors we examined, 75 were
significantly correlated with Shannon diversity (Fig. 3 and Sup-
plementary Data 2; FDR-adjusted P < 0.05, see Methods). The
identified 42 blood clinical markers included some markers pre-
viously reported to be associated with microbiome diversity such
as markers for diabetes (fasting insulin, P < 10−12), inflammation
(hs-CRP, P < 10−14), liver function (ALAT, P < 10−9), and cho-
lesterol (LDL, P < 10−16). In addition, omega-3 fatty acids and
other markers related to fish intake, such as DHA and mercury,
were found to be positively correlated with diversity (P < 10−13; P
< 10−14; P < 10−16; respectively). BMI, weight, and blood pressure
were significantly negatively correlated with diversity, while
height was found to be significantly positively correlated with
diversity.

For measured lifestyle factors, we found strong evidence for
associations between physical activity and microbiome diversity,

with both the frequency (i.e., number of days per week) and
duration of physical activity positively correlated with micro-
biome diversity. Eating more servings of fruits, vegetables, and
cruciferous vegetables was also positively correlated with
diversity, while increased consumption of sugary drinks was
negatively correlated with diversity. Lastly, indicators of poor
bowel health, such as the weekly frequency of diarrhea, nausea,
and acid reflux, were negatively associated with microbiome
diversity (see Supplementary Data 2 for a full list of association
results).

Recent animal studies and small-scale case-control human
studies have indicated a relationship between exercise and the gut
microbiome composition19,20,22,25,33, but the robustness of this
association at population-level remains uncertain. Here we
identify associations between microbiome diversity and both
moderate physical activity (MPA; times per week) and vigorous
physical activity (VPA; times per week) that are highly significant
(Fig. 3; P < 10−15 and P < 10−15, for MPA and VPA, respectively).
Since many host factors are co-correlated, we sought to under-
stand whether the relationship with physical activity is indepen-
dent of other healthy lifestyle habits. We thus adjusted for related
dietary factors, such as weekly intake of fruits, vegetables, whole
grains, and sugary drinks, and found that the association
remained significant (P < 10−5 and P < 10−15, for MPA and
VPA, respectively). When BMI was included as an additional
covariate, the correlation for vigorous physical activity remained
significant (P= 0.08 and P= 0.04, for MPA and VPA,
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Fig. 1 Overall composition of the gut microbiome in participants. Shown are the Shannon diversity index (a) and phyla relative abundances (b) across all
participants’ samples. Each sample is represented by one stacked bar in the bottom panel (b) colored by phyla, and a corresponding point in the upper
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respectively). Our results thus reveal a robust relationship at
population-level between physical activity and microbiome
diversity that is independent of major dietary factors and BMI.

Associations between host factors and microbiome diversity
within different compositional clusters. To understand whether
the associations between microbiome diversity and host factors
differ in the context of different microbiome compositional states,
we defined four clusters on the continuum of Firmicutes-to-
Bacteroidetes and Bacteroides-to-Prevotella axes: a reference cluster
with an average Firmicutes relative abundance level, a Firmicutes-
rich cluster, a Bacteroides-rich cluster, and a Prevotella-rich cluster
(see Methods and Supplementary Fig. 6). Compared to the asso-
ciations found within the average Firmicutes cluster (as the
reference group), we identified 0, 14, and 14 unique associations
within the Firmicutes-rich, Bacteroides-rich, and Prevotella-rich
clusters, respectively (p < 0.05 after FDR correction, Supplementary
Data 3). For example, we found that the association between
insulin levels and microbiome diversity was significantly more
pronounced in the Bacteroides-rich cluster than the reference
cluster (p < 10−6) and that the number of vegetables consumed
per day was significantly more positively associated with micro-
biome diversity for the Prevotella-rich cluster than other micro-
biome composition clusters (p < 10−4, Fig. 4).

Host factors aggregate into health- and disease-related groups
by their pattern of association with the microbiome. We next
explored the relationship between host factors and individual

genera and inferred functional pathways. After FDR correction,
we identified >1500 significant associations across 142 host fac-
tors, 102 bacterial genera, and 274 bacterial metabolic pathways
(see Methods). We found that host factors aggregate into two
large groups by their patterns of microbiome associations (Fig. 5,
see full list of associations in Supplementary Data 4). The first is a
health-related group, where higher values of the host factors or
increased cadence of lifestyle behaviors are generally associated
with better overall health, including clinical lab measurements
(e.g., vitamin D, HDL, LDL particle size, omega−3 index, and
adiponectin); dietary factors (e.g., consumption of fruits and
vegetables); activity factors (e.g., physical activity); and digestion
factors (e.g., bowel movement ease). The second is a disease-
related group, in which higher values of the host factors or
increased cadence of lifestyle behaviors are generally associated
with worse overall health, including BMI; diabetes markers (e.g.,
HOMA− IR, Insulin, glucose, HbA1c); cardiovascular risk fac-
tors (e.g., LDL cholesterol, triglycerides, and blood pressure);
inflammation risk markers (e.g., CRP−HS, IL− 6); and poor
digestion symptoms (e.g., diarrhea, acid reflux). Each group was
highly associated with a different set of genera. The factors in the
health-related group were positively correlated and significantly
explained the abundance of the genera Coprococcus, Lachnospira,
Faecalibacterium, and unclassified genera from the families/
orders Ruminococcaceae, Ml615j− 28, Clostridiales, and Rf39.
Some of these genera were previously reported to be health-
promoting; for example, Lachnospira and Faecalibacterium are
known producers of the anti-inflammatory short-chain fatty acid
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butyrate. The factors in the disease-related group significantly
explained (and were positively correlated with) the abundance of
the genera Bacteroides, Ruminococcus, Sutterella, Bilophila,
Acidaminococcus, and Megasphaera.

To understand whether the associations with individual taxa
represent independent associations or reflect a more global
compositional shift in the microbiome, we repeated the analysis
described above but this time also adjusting for Shannon diversity
in our models. We found that Ruminococcaceae and Clostridiales
were both strongly associated with the majority of factors in the
health- and disease-related groups prior to adjusting for diversity,
but when adjusting for diversity, all Ruminococcaceae associations
became non-significant, while almost all Clostridiales associations

remained significant (Fig. 5 and Supplementary Fig. 7). In
addition, the genera Bacteroides and Sutterella showed a similar
pattern of significant associations with host and lifestyle factors,
but when we adjusted for Shannon diversity, most Bacteroides
associations became non-significant, while Sutterella associations
remained significant (Fig. 5 and Supplementary Fig. 7). These
results suggest that for Ruminococcaceae and Bacteroides,
associations with host factors might result indirectly from the
correlations between these genera and diversity, while Clostri-
diales and Sutterella show the same patterns of associations for
individuals with similar Shannon diversity values.

We also tested whether there are factor-taxon associations that
were different across the four Firmicutes-Bacteroides-Prevotella
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composition clusters, repeating the analysis above with the
addition of an interaction term between the host factor and
microbiome cluster. We found 163 cluster-specific associations
(Supplementary Data 5) between host factors and taxa. In the
Prevotella-rich cluster, we found, for example, that the abundance
of an unclassified genus from the family Erysipelotrichaceae was
significantly correlated with self-reported bloating and nausea.
However, no associations with bloating and nausea were observed
for the other microbiome clusters. In addition, we found that the
abundance of the genus Akkermansia and an unclassified genus
from the family Christensenellaceae were negatively correlated
(p < 0.05 FDR) with consumption of cookies and pastries in the
Bacteroides-rich cluster compared to other clusters (non-sig-
nificant for other clusters, see Supplementary Data 5 for full list).

When examining the results from the analysis of inferred
functional pathways (Methods), we found that the host factors
similarly aggregated into a health-related group and a disease-
related group based on their association with microbiome
pathways (Fig. 6, full list of associations in Supplementary
Data 6). The health-related group included host factors and
behaviors generally associated with good overall health, such as
more physical activity, healthier dietary choices, and better
clinical blood chemistries, while factors in the disease-related
group were generally associated with poorer overall health, such
as increased levels of BMI, digestive symptoms, and risk markers
related to diabetes, cardiovascular disease, and inflammation.
Notably, most glycan and carbohydrate metabolism pathways
were positively associated with the disease-related group. In
addition, primary and secondary bile acid metabolic pathways,
and vitamin or vitamin-like metabolic pathways were positively
associated with the disease-related group. In contrast, xenobiotics
metabolism pathways were positively associated with the health-
related group. Finally, we adjusted our models to identify
associations that are independent of microbiome diversity. We
found that certain microbial pathways, such as lipopolysaccharide
biosynthesis, were not associated with the disease-related group
once diversity was accounted for, while other pathways, such as
primary and secondary bile acid metabolism, were still associated
with the disease-related group even after adjusting for diversity,
indicating a robust association between these microbial pathways
and host factors and behaviors.

Medications impact the abundance of genera and functional
pathways in the gut microbiome. Recent studies have revealed
the impact of medications on the gut microbiome27,34. We built
on these analyses by accounting for co-occurrence between
medications and their associated disease by adjusting our models
for the respective clinical measurement that serves as biomarkers
of disease (Methods). We compared the relative abundance of
genera and functions in medication-users vs. non-users and
identified 70 significant associations between medication usage
and the relative abundance of genera (Supplementary Data 7).
The genus Klebsiella (an opportunistic pathogen from the family
Enterobacteriaceae) was found to be significantly more abundant
in individuals taking blood-sugar medications (fold-change > 6,
p value < 10−4), consistent with a recent study of the impact of
metformin (a common blood-sugar medication) on the micro-
biome35. On the other hand, the genus Faecalibacterium was
significantly lower in individuals taking blood-sugar medications
(FDR-corrected P < 10−6). In addition, members of Enter-
obacteriaceae and Burkholderiales were increased in abundance
in individuals using cholesterol-lowering drugs, consistent with a
recent study that included an analysis of the impact of statins on
the microbiome36.

When examining the functional composition of the micro-
biome, we identified 109 and 271 significant associations between
medication usage and the predicted abundance of pathways and
modules, respectively (Supplementary Data 8–9). Examples of
functional shifts that were seen for medication users (adjusted for
the respective levels of relevant blood markers) included the
enrichment of the metabolic pathway for fructose and mannose
metabolism for users of blood-sugar lowering medications,
recently shown to be enriched in type 2 diabetes patients using
the medication metformin34.

Discussion
Host lifestyle and diet can greatly impact the gut microbiome,
which in turn can influence host metabolism and wellbeing. Our
study of the human gut microbiome across ~3400 individuals
with extensive phenotyping of ~150 host factors enabled us to
identify host-microbiome associations relevant to health and
disease. We also reveal how certain host phenotypic associations
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are unique to specific microbial community contexts, suggesting
that microbiome heterogeneity may play a role in personalized
phenotypic responses to dietary and lifestyle interventions.
Overall, our integrated approach provided insights into the
complex relationships between the gut microbiome and host
phenotypic features, which have implications for future clinical
and interventional studies.

Gut microbiome alpha-diversity has been linked to human
health, with lower levels of diversity associated with several acute

and chronic diseases37. Understanding the underlying taxonomic
drivers of microbiome diversity may provide valuable insights
into the interaction between our commensal microbiota and our
health. Previous analyses of gut community composition and
alpha-diversity have primarily used linear approaches or binary
comparisons between low and high diversity clusters38 and have
generally indicated a negative association between the Bacter-
oidetes phylum and diversity. However, gut microbiome com-
parisons between rural African individuals and urban Europeans
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found higher diversity and corresponding enrichment of Bacter-
oidetes in rural Africans39,40. Our finding of a strong, nonlinear
association between Bacteroidetes and microbiome diversity
suggests that the relationship between these two features is non-
monotonic. Thus, a single measure, such as the Firmicutes-to-
Bacteroidetes ratio41, may not comprehensively account for the
relationship between composition, diversity, and overall health42.
Controlling for the abundance of prevalent taxa can reveal some
of the subtler associations between microbiome composition and
alpha-diversity. The negative association between Eggerthella, a
putative opportunistic pathogen27, and Bacteroidetes-adjusted
diversity highlights how adjusting for dominant taxa can reveal
important underlying associations43,44 and suggests that devia-
tions from the expected diversity given the underlying composi-
tion might serve as an additional biomarker of gut health.

Consistent with prior work, we found that the major axes of
gut microbiome variation were the Firmicutes-to-Bacteroidetes
axis and the nonoverlapping distributions of the genera Bacter-
oides and Prevotella18,29. In addition, we found that two puta-
tively beneficial genera, Bifidobacterium and Faecalibacterium,
were negatively correlated with one another. Previous studies

have shown that both of these genera can respond to similar diets
(e.g., high fiber) or prebiotics45. The inverse relationship suggests
that when one of these genera is dominant, the other genus may
be out-competed, potentially due to metabolic niche overlap.
Similarly, the two Firmicutes families Lachnospiraceae and
Ruminococcaceae are anti-correlated and drive the variation in
principal component space. Both families are considered bene-
ficial fiber degraders and butyrate producers46. These observa-
tions emphasize that there might not exist a single “healthy”
microbiome state, but instead, a spectrum or multiple states
marked by different sets of beneficial bacteria.

Identifying associations between host lifestyle factors, host
health, and the gut microbiome can enable the design of inter-
ventions and clinical trials38,47,48. Previous studies of these
associations, however, have largely focused on overall micro-
biome variability38,49. Our analysis of compositional clusters and
cluster-specific associations reveal how the enrichment of certain
taxonomies can affect the host-microbiome relationship. These
cluster-specific associations have implications for targeted dietary
intervention and microbiome modification. For example, fre-
quency of vegetable consumption was positively correlated with
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Fig. 6 Significant associations between microbial pathways and multiple factors. Shown is a heatmap of the microbial pathways (x-axis) that were found
to be significantly associated with different factors (y-axis) using generalized linear models adjusted for confounding factors (see Methods). Only
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alpha-diversity, but only in the Prevotella-rich cluster, suggesting
that individuals in that cluster may respond better to plant-rich
diets. Similarly, the negative correlation between Christense-
nellaceae and consumption of cookies and pastries in the Bac-
teroides-rich cluster suggest that individuals in that cluster may
benefit more from decreasing consumptions of baked goods,
particularly since Christensenellaceae has been associated with
leanness and was shown to be enriched after diet-induced weight
loss50–54. As clinical trials begin to incorporate microbiome
sequencing55,56, our results highlight the potential of using the
microbiome to guide personalized dietary interventions and the
value of examining the microbiome composition of participants
undergoing dietary modifications to better understand responses
to an intervention.

In recent years, many studies have indicated that specific fea-
tures in the gut microbiome are associated with different health
markers, reporting on many pairwise correlations between specific
genera in the gut microbiome and different lifestyle or dietary
factors38,49. However, whether an emergent picture of overall
health and wellbeing can be seen in the overall gut microbiome
composition, not just with individual taxa, is still an open ques-
tion. In this study, we not only identified >1500 significant asso-
ciation between host factors and microbiome genera and pathways
but also demonstrated that these host factors were grouped
according to their overall pattern of association across all micro-
bial genera. In particular, host factors aggregated into “health-
related” and “disease-related” groups. In fact, many host factors
that were not directly correlated across individuals, e.g., HDL
cholesterol and the frequency of walking or biking (p value=
0.82; Spearman's correlation), still grouped together in the health-
related group when we considered their pattern of microbial
associations. Similarly, glycohemoglobin A1c (HbA1c) and fre-
quency of diarrhea—both indicators of poorer health—were not
directly correlated across individuals in the population (P value=
0.74, Spearman's correlation) but grouped with factors in the
disease-related group based on their microbiome associations.
Thus, although certain individual health factors, lifestyle, or
dietary choices may not clearly correlate with each other across a
population, the underlying co-occurring changes in the gut
microbiome associated with these factors do reveal their rela-
tionship with health and wellbeing. Further studies of the med-
iating57 or moderating58,59 role of the microbiome in health is
therefore needed.

Due to the interrelated nature of many dietary, lifestyle, and
clinical factors, independently robust host-microbiome associa-
tions have been difficult to uncover. Our large sample size cou-
pled with our extensive phenotyping, however, enabled us to
disentangle confounding factors (e.g., BMI, diet) and identify
robust associations. We were able to identify a significant inde-
pendent association between microbiome alpha-diversity and
vigorous physical activity, by adjusting for age, sex, BMI, diet,
race, and season. The genus Veillonella was also positively asso-
ciated with vigorous physical activity after adjusting for these
covariates (P < 10−4), consistent with a recent small study of elite
marathon runners that found Veillonella to be enriched in the
guts of athletes60. Thus, our results provide evidence that
increased vigorous physical activity is independently linked to
consistent shifts in the structure and composition of the gut
microbiome.

While our extensive phenotyping of host factors and our large
sample size enables us to have the statistical power to identify
many host-microbiome associations, we note that these associa-
tions do not imply causality. Understanding directional and
causal relationships will require randomized control studies
and interventions, which can control for both known and
potential hidden confounders. Similarly, while we adjust for many

co-varying factors, we note that statistical adjustment cannot fully
account for all confounders, as there are many factors that remain
unmeasured. For example, certain health-related activities are
manifestations of lifestyle factors but the effect of lifestyle may be
cumulative across a variety of activities, not all of which will be
measured in a given cohort. In the case of medications and dis-
ease, while we account for age, sex, race, season, and levels of
related disease biomarkers when examining the associations
between medication use and individual genera, these adjustments
may not fully disentangle the impact of medications on the
microbiome from that of the associated disease condition. Further
experimental studies using in vitro or in vivo models are needed
to better understand the direct impact of specific medications on
gut microbes independent of disease state. Regardless of these
important caveats, it is clear that the microbiome is intimately
connected to a wide range of host phenotypes and the ability to
engineer our commensal microbiota will likely be an important
component of precision medicine in the 21st century.

Methods
IRB approval for the study. Procedures for the current study were run under the
Western Institutional Review Board at Arivale Inc. (Seattle, WA) and at the
Institute for Systems Biology (IRB Study Number 1178906 and 20170658,
respectively).

Data used in the study. All de-identified data are from consenting individuals in a
commercially-available, non-medical lifestyle intervention program (Arivale Inc.,
Seattle, WA). Only data from individuals who provided explicit informed consent
and authorization for their anonymized data for research use are included in this
study. Data were collected starting in July 2015. The Arivale program involved
health coaching on exercise, nutrition, stress management, and other wellness
goals. Only baseline data prior to intervention from a total of 3409 individuals who
reported not taking antibiotics 3 months prior to sampling were included in the
current study. This research project was performed independent of Arivale’s
commercial operations and was done entirely using only de-identified data.

Clinical laboratory tests. Participants’ clinical blood laboratory tests were col-
lected at LabCorp (North Carolina, USA) or Quest Diagnostics (Secaucus, NJ)
facilities in the near vicinity of participants’ geographic locations. Participants were
directed to avoid alcohol, vigorous exercise, aspartame, and monosodium gluta-
mate for a 24 h period prior to the blood draw, and to begin fasting 12 h in
advance. Weight, height, waist circumference, and blood pressure measurements
were collected at the time of each blood draw. Clinical blood laboratory tests
involved a lipid panel and complete blood cell counts, as well as markers of dia-
betes, inflammation, liver function, kidney function, and nutrition (Supplementary
Data 1).

Gut microbiome sequencing. Fresh stool specimens were taken at participants’
homes using a sterile spoon or swab and were immediately preserved using che-
mical DNA stabilizers (OMNIgene Gut) to maintain DNA integrity. Previous
analyses have demonstrated the ability for these stabilizers to preserve samples
sufficiently at varying temperature conditions over multiple weeks with results
comparable with immediate freezing61–63. Microbial DNA was then isolated from
250 μL of homogenized stool, using an automated protocol and MoBio’s Power-
Mag® Soil DNA isolation kit (+ClearMag®) microbiome DNA isolation kit on the
KingFisherTM Flex instrument. This extraction protocol involved a bead beating
step for mechanical lysis using glass beads and plate shaker for recovery of more
DNA from a more diverse microbial community, as previously recommended64.
Concentrations of extracted DNA from each sample were determined by Qubit,
and an estimate of sample purity was determined via spectrophotometry by
measuring the A260/A280 absorbance ratio. Gut microbiome sequencing data in
the form of FASTQ files were obtained based on either 250 bp paired-end MiSeq
profiling of the 16S V4 region (Second Genome) or 300 bp paired-end MiSeq
profiling of the 16S V3+V4 regions (DNA Genotek).

16S rRNA data analysis. Operational Taxonomic Units (OTUs) read counts were
calculated using the QIIME pipeline65 (version 1.9.1; default parameters) with
closed-reference OTU picking against the Greengenes database66 (version 13_08).
To account for differences in sequencing depth in diversity analyses, we rarified
each sample to 50,000 reads, removing samples that had <50,000 reads from fur-
ther analysis. Rarefaction curves showed a tendency toward saturation, revealing
sufficient sequencing depth. To examine the functional capacity of participants’ gut
microbiome, we applied the PICRUSt67 pipeline to predict the KEGG68 orthology
(KO) profile for each sample from the relative abundances of OTUs (see Methods).
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We next applied MUSiCC69 to these KO profiles to convert the relative abundances
to the average copy numbers and aggregated the resulting MUSiCC-normalized
KO profiles to pathways and modules based on the KEGG annotations.

Validated assessments and self-reported data. Baseline assessment data were
collected using a web-based interface and timed to coincide with blood draws.
Validated assessments include: Dietary Targets Monitor, Oxford Happiness
Questionnaire (OHQ), International Personality Item Pool-50 (IPIP-50), and
Perceived Stress Scale (PSS-4)70–73. We also developed a set of in-house ques-
tionnaires that were also administered to the participants to collect health history
and lifestyle data: personal and family health history, lifestyle (e.g., sleep habits,
physical activity frequency, smoking and alcohol use), and digestive health (e.g.,
frequency of bowel movements, diarrhea, laxatives). We performed formal psy-
chometric analysis of assessment data focusing on the measures of reliability
(defined here as internal consistency or general factor saturation) and factorial
structures of OHQ, IPIP-50, PSS-4, as well as custom 4-question sleep quality and
30-question digestive health questionnaires. Analyses revealed reliable estimates
consistent with those reported for the validated assessments previously: Cronbach’s
alpha was estimated at 0.80 for PSS-4, 0.92 for OHQ, ranged from 0.80 to 0.89 for
the five IPIP-50 subscales. We established closed correspondence between the
proposed and observed factorial structure (using exploratory and confirmatory
factor analysis, CFA): a five-factorial structure for IPIP-50 and 1-factorial struc-
tures for OHQ and PSS-4. For the custom assessments, a one-factor structure was
established for sleep quality and digestive health measures, and these also displayed
high levels of internal consistency (0.86 and 0.70, respectively).

Statistical analysis. Statistical analysis was performed using R version 3.5.1. All
correlations reported in the paper are based on Spearman’s rank correlation
coefficient unless noted otherwise. We adjusted for age, sex, race of the individual,
the season in which the microbiome sample was taken, and the microbiome
sequencing vendor prior to analyses. Multiple hypothesis correction for p values
was performed using the Benjamini–Hochberg method of False Discovery Rate
(FDR) control74.

Alpha diversity. We calculated various measures of alpha diversity using methods
implemented in the QIIME pipeline. The alpha diversity measures calculated using
rarefied reads includes Shannon’s diversity, Faith’s Phylogenetic Diversity index,
number of OTUs observed, and Pielou’s evenness index.

Analysis of Bacteroidetes-adjusted diversity. To examine which taxa are
associated with Shannon diversity when the abundance of Bacteroidetes is
accounted for, Pearson correlations were computed between residuals of a cubic
polynomial regression of Shannon diversity on relative abundance of Bacteroidetes.
The residuals from the regression model are referred to as Bacteroidetes-adjusted
diversity.

Analysis of cluster-specific associations. To examine interactions between
overall microbiome composition and associations of microbial diversity or taxa
abundance with host factors, each sample was defined as one of four possible
taxonomic clusters. Samples with over 85% relative abundance of firmicutes were
defined as the high-Firmicutes cluster (HF, 91 samples). Samples with Firmicutes
relative abundance between 60–85% were defined as the Firmicutes cluster (F,
2095 samples). Samples with <60% Firmicutes where Bacteroides relative abun-
dance was higher than twice the Prevotella abundance were defined as the Bac-
teroides cluster (B, 941 samples), and samples with <60% Firmicutes where
Bacteroides relative abundance was lower than twice the Prevotella abundance were
defined as the Prevotella cluster (P, 282 samples).

Taxonomy-based ordination of microbiome profiles. Different dimension-
reduction and ordination techniques were applied to the taxonomic profiles
obtained from the samples. These included the principal component analysis
technique edgePCA28, and principal coordinate analysis using weighted UniFrac
distance75 and genus-level Bray-Curtis distance. Since edge PCA does not require
rarefied reads, we used the non-rarefied table.

Analysis of associations with Shannon diversity. For each analyte (e.g., lifestyle,
diet, clinical test), associations were tested by fitting linear regression models of
Shannon diversity on each analyte, adjusting for age, sex, race of the individual, the
season in which the microbiome sample was taken, and the microbiome sequen-
cing vendor. The FDR of the resulting tests were controlled for at level α= 0.05
(see Statistical Methods, above).

Analysis of associations with microbiome genera or pathways. For each ana-
lyte (e.g., lifestyle, diet, clinical test), associations were tested by fitting generalized
linear models of the microbiome feature on each analyte, adjusting for age, sex,
race, the season in which the microbiome sample was taken, and the microbiome
sequencing vendor. The model distribution depended on the type of microbiome

feature: for microbial genera, a logistic regression model was assumed for genera
present in <75% of samples, otherwise a Poisson regression model was assumed; a
linear regression model was assumed for microbial pathway analysis. The FDR of
the resulting tests were controlled for at level α= 0.05 (see Statistical Methods,
above).

Analysis of the impact of medication usage on the microbiome. Each of the
participants self-reported whether they are currently using one of three medication
categories: cholesterol-lowering medications (e.g., statins), anti-hypertensive
medications (e.g., valsartan), and blood-sugar regulating medications (e.g., met-
formin). In order to test for associations between microbial features (genera or
pathways) and medication use, a Poisson regression model of genera abundance or
linear regression model of pathway abundance, was fit on an indicator of medi-
cation use, adjusting for the age, sex, and race of the individual, the samples’
season, the microbiome sequencing vendor, and biomarkers relevant to the med-
ication. Specifically, for cholesterol-lowering medications the models were further
adjusted for the levels of LDL cholesterol; for anti-hypertensive medications the
models were further adjusted for systolic and diastolic blood pressures measures;
and for blood-sugar regulating medications the models were further adjusted for
fasting glucose and insulin levels. The FDR of the resulting tests were controlled for
at level α= 0.05 (see Statistical Methods, above).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The Institute for Systems Biology manages data requests for non-profit research purposes
and will grant access to qualified researchers. Data requests should be sent to: A.M.
(andrew.magis@isbscience.org). Raw microbiome data has been previously made
available under SRA accession SRP148278 [https://www.ncbi.nlm.nih.gov/sra/?
term=SRP148278]. OTU picking used the Greengenes database (version 13_08, https://
greengenes.secondgenome.com/). KEGG database was downloaded on 7/3/2017 (https://
www.kegg.jp/kegg/download/).
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