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Abstract

In dendritic cell (DC)-CD4+ T cell interaction, Notch signaling has been implicated in the CD4+ T cell activation, proliferation,
and subset differentiation. However, there has been a lot of debate on the exact role of Notch signaling. Here, we observed
that expression of Mind bomb-1 (Mib1), a critical regulator of Notch ligands for the activation of Notch signaling, increases
gradually as precursor cells differentiate into DCs in mice. To clarify the role of Mib1 in DC-CD4+ T cell interactions, we
generated Mib1-null bone marrow–derived DCs. These cells readily expressed Notch ligands but failed to initiate Notch
activation in the adjacent cells. Nevertheless, Mib1-null DCs were able to prime the activation and proliferation of CD4+ T
cells, suggesting that Notch activation in CD4+ T cells is not required for these processes. Intriguingly, stimulation of CD4+ T
cells with Mib1-null DCs resulted in dramatically diminished Th2 cell populations, while preserving Th1 cell populations,
both in vitro and in vivo. Our results demonstrate that Mib1 in DCs is critical for the activation of Notch signaling in CD4+ T
cells, and Notch signaling reinforces Th2 differentiation, but is not required for the activation or proliferation of the CD4+ T
cells.
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Introduction

Dendritic cells (DCs) play a pivotal role as APCs in CD4+ T cell

immune responses. Recently, Notch signaling has been implicated

in DC-CD4+ T cell interaction, leading to activation, proliferation,

and subset differentiation of CD4+ T cells. However, various

experimental approaches have yielded disparate results and a

conclusive consensus has not been reached yet [1,2,3]. Notch

signaling is a highly conserved intercellular signaling pathway that

regulates multiple cell-fate decisions. In mammals, Notch signaling

is mediated by interactions between the four Notch receptors

(Notch1-Notch4) and their ligands, Delta-like ligand-1 (Dll1), Dll3,

Dll4, Jagged-1 (Jag1), and Jag2. The ligation to Notch receptors

results in sequential proteolytic cleavages and release of the Notch

intracellular domain (NICD), which translocates into the nucleus

and functions as a transcriptional regulator for various target genes

such as Hes and Hey [3,4].

DCs and CD4+ T cells express Notch ligands, Dll1, Dll4, Jag1,

and Jag2, and Notch receptors, Notch1 and Notch2, respectively,

suggesting that Notch signaling is activated during DC-CD4+ T cell

interaction [5,6]. Several studies have reported that Notch signaling

augments CD4+ T cell activation and proliferation [5,7,8], while

other studies have suggested that Notch signaling negatively

regulates T cell activation [9,10]. There is more controversy on

the role of Notch signaling with regard to Th differentiation. Many

studies have reported that activation of Notch signaling promotes T-

bet-mediated Th1 differentiation [7,11,12]. However, several other

studies have suggested that Notch signaling is critical for Th2

differentiation but dispensable for Th1 differentiation [6,13,14].

Moreover, some studies have shown that Notch signaling cannot

initiate Th1 or Th2 differentiation [15,16]. These apparent

inconsistencies among the many studies could be due to the

nonphysiological practice of using chemicals and cytokines to

stimulate or inhibit TCR and Notch signaling pathways [1,2,3]. In

addition, the potential side effects of artificial APCs or of the direct

manipulation of CD4+ T cells have not been well addressed. Thus,

the exact role of Notch signaling in CD4+ T cells needs to be further

determined by a novel genetic approach that minimizes the possible

artifacts and side effects.

Recently, it was revealed that ligand internalization by

endocytosis in the signal-sending cells is absolutely required for

the initiation of Notch activation [17]. Four different E3 ubiquitin

ligases, Mind bomb-1 (Mib1), Mib2, Neuralized-1 (Neur1), and

Neur2 have been shown to regulate the endocytosis of Notch

ligands in mice [18,19,20,21,22]; however, only Mib1 has been

shown to play an obligatory role in the activation of Jag- as well as

Dll-mediated Notch activation in vivo [23]. Therefore, cell-type-

specific Mib1 conditional knockout mice have been known as

excellent models for elucidating the role of Notch signaling in

various contexts [24,25,26,27,28,29].

To clarify the role of Notch signaling in CD4+ T cell immune

responses, we generated mice in which Mib1 was conditionally

inactivated under the control of the interferon-inducible promoter

Mx1 (Mx1-Cre;Mib1f/f) [30]. The Mib1-null DCs derived from the

bone marrow (BM) of the Mx1-Cre;Mib1f/f mice failed to activate

Notch signaling in Notch1-expressing C2C12 cells and in naı̈ve
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CD4+ T cells. Nevertheless, the CD4+ T cells stimulated by Mib1-

null DCs possessed comparable levels of the activation markers

CD25, CD44, and CD69 and normal proliferation kinetics.

Moreover, Th1 differentiation, which yields IFN-c remained

intact in the CD4+ T cells stimulated by Mib1-null DCs; this

showed that Notch signaling in the context of DC-CD4+ T cell

interaction is not required for these processes. In contrast, Th2

differentiation, which yields IL-4, was impaired dramatically both

in vitro and in vivo. These data clearly indicate that Mib1-initiated

Notch activation has a specific role in the promotion of Th2

differentiation.

Materials and Methods

Ethics Statement
All animal experiments were done with the approval of the

ethical committees at the Seoul National University.

Mice
The Mib1f/f mice were generated previously [23]. Mx1-Cre

transgenic mice, OT-II TCR transgenic mice, and CD45.1

congenic mice were purchased from The Jackson Laboratory.

For all experiments, we bred Mx1-Cre;Mib1f/f mice with Mib1f/f

mice and examined the pups. To remove the floxed allele, 8-week-

old Mx1-Cre;Mib1f/f and Mib1f/f mice received 4 i.p. injections of

300 mg of polyinosinic-polycytidylic acid (pIpC, Amersham

Biosciences) at 2-day intervals. All the mouse lines were bred

onto a C57BL/6 background (backcrossed more than 10

generations) and were maintained under specific pathogen-free

conditions at the Seoul National University Animal Facility.

Preparation of BM-derived DCs
BM cells were obtained from the tibias and femurs of mice 1

month after the last pIpC injection and 7.56105 cells were plated

in non-culture treated 6-well plates in 2 ml of RPMI and 10%

heat-inactivated FBS in the presence of 20 ng/ml of recombinant

GM-CSF (Peprotech). On day 4, an equal amount of media

containing rGM-CSF was added. On days 7 and 9, half of the

media was replaced with fresh media. BM-derived DCs were

harvested on day 9 and yielded 90,95% CD11c+ cells. For DC

stimulation, 1 mg/ml of LPS (Sigma-Aldrich) was added and

incubated for 24 h.

Preparation of naive CD4+ T cells
Lymph-node cells were collected from 8-week-old OT-II or

SMARTA mice and incubated with biotin-conjugated Abs, anti-

B220, CD8, CD11b, CD11c, CD19, CD25, CD69, Dx5, Gr-1,

and Ter119 (all Abs were purchased from Biolegend). Untouched

naive CD4+ T cells were negatively isolated by using streptavidin-

coated magnetic beads (Invitrogen) or cell sorting with FACS Aria

II (BD), which yielded greater than 95% purity.

Isolation of DC precursors in BM and flow cytometry
BM precursors of classical spleen DC were isolated by FACS

Aria II (BD), as reported previously [31]. Briefly, whole BM cells

from 8-week-old C57BL/6 mice were stained with anti-CX3CR1-

FITC, CD115-PE, CD135-APC, cKit-APC/Cy7, and Lin (CD3,

CD19, NK1.1, Ter119, B220, CD11c, CD11b, and Gr1)-biotin

Abs for MP (Lin2, Flt3+,cKithiCX3CR12), MDP (Lin2, Flt3+,

cKit+, CX3CR1+), and CDP (Lin2, Flt3+, cKitlo, CD115+,

CX3CR1+) or anti-SIRPa-FITC, I-Ab-PE, CD135-APC,

CD11c-APC/Cy7, and Lin2 (CD3, CD19, NK1.1, Ter119, and

B220)-biotin Abs for pre-cDC (Lin22, CD11c+, I-Ab2, Flt3+,

SIRPalo). Streptavidin-PerCP was used as a secondary reagent.

Rabbit polyclonal Abs raised against CX3CR1 (Abcam) were

conjugated to FITC by using the EasyLink FITC conjugation Kit

(Abcam). All other Abs were obtained from Biolegend, except for

the PE-conjugated anti-Jag1 Ab (Lifespan biosciences).

In vitro experiments
The LPS-stimulated DCs derived from Mib1f/f and Mx1-

Cre;Mib1f/f mice were pretreated with 10 mg/ml of OVA323–339 or

GP61–80 peptides for 6 h. Naı̈ve CD4+ T cells (16106) were

cultured with peptide-pretreated DCs (16105). After 5 days of

incubation, cells were re-stimulated with 50 ng/ml of PMA

(Sigma-Aldrich) and 0.5 mM ionomycin (Sigma-Aldrich) for 6 h

in the presence of 2 mM monensin (Sigma-Aldrich). Cells were

washed, fixed in 2% paraformaldehyde, and permeabilized in

0.5% saponin (Sigma-Aldrich). A neutralizing anti-IFN-c Ab

(XMG1.2, BD Pharmingen) was treated (10 mg/ml) for an

experiment. For ELISA assays, viable T cells were harvested

and equal numbers of cells per group were re-stimulated with

1 mg/ml plate-bound anti-CD3. The supernatants were removed

after 48 h, and cytokine concentrations were determined by

ELISA (OptEIA, BD). 5, 6-carboxyfluorescein diacetate succini-

midyl ester (CFSE) labeling was performed as described previously

[5]. For RT-PCR analyses, RNA was extracted from the

negatively purified CD4+ T cells by using the RNeasy Micro kit

(QIAGEN), according to the manufacturer’s instructions. The

isolated RNA was converted into cDNA by using Promega’s RT

system (Promega) with oligo-dT priming. The cDNAs from

specific mRNA transcripts were quantified using quantitative

real-time RT-PCR (Applied Biosystems) and SYBR Green

technology (SYBR Premix Ex Taq, Takara). b-Actin was used

as an internal control. The primer information will be provided on

request. Protein extraction and western blot analyses were

performed as described previously [18]. For the CBF-luciferase

(luc) assay, the 86 WT or MT CBF-luc vectors were transfected

into C2C12-Notch1 cells with pRL-TK vector using Lipofecta-

mine (Invitrogen) as previously reported [26]. Luc activities were

measured with a Dual Luciferase kit (Promega).

Adoptive transfer experiment
16106 OT-II naive CD4+ T cells were intravenously transferred

into CD45.1 recipient mice. After 24 h, the mice were

intraperitoneally injected with 56105 peptide-preloaded DCs

from Mib1f/f or Mx1-Cre;Mib1f/f mice. Seven days after the

injection, splenocytes were harvested, resuspended at 16107/ml,

and restimulated for 6 h with 10 mg/ml OVA323–339 in the

presence of 50 U/ml human rIL-2 (Biolegend). Th cell popula-

tions in the OT-II CD4+ T cells (CD45.2+) and cytokine

concentrations in the media were determined by flow cytometry

and ELISA, respectively.

Statistical analysis
All values are given as mean 6 SD. Statistical comparisons were

made by 2-tailed unpaired Student t test. A P value of less than

0.05 was considered statistically significant.

Results

Expression of ligands and E3 ligases in DCs for Notch
signaling

First, we examined the expression of Notch ligands and their

regulators, E3 ubiquitin ligases in BM-derived DCs. As reported

previously [6], Jag1 and Jag2, but not Dll1 and Dll4, were

substantially expressed (Fig. 1A). Among the four E3 ligases, Mib1

was dominantly expressed, whereas Mib2, Neur1, and Neur2 were

Mib1 in DCs Regulates Notch-Mediated Th2
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detected at lower levels (Fig. 1B). Next, we investigated whether

the expression of these E3 ligases are further induced by TLR

stimulation. Although the transcripts and surface expression of

Jag1, Dll1, and Dll4 increased in response to LPS treatment in

accordance with a previous report [6], the expression profiles of

Mib1, Mib2, Neur1, and Neur2 were not influenced significantly

(Fig. 1C and D), which suggests that the expressions of the Notch

ligands and E3 ligases are regulated by distinct mechanisms.

Since among the E3 ligases, Mib1 is dominantly and

constitutively expressed in BM-derived DCs, we investigated

whether its expression is increased during BM-cell culture

containing rGM-CSF. Interestingly, the Mib1 expression was

increased dramatically according to the duration of culture (Fig. 1E

and F), suggesting that Mib1 expression increases as the precursor

cells differentiate into DCs. Consistent with mRNA transcripts,

Mib1 protein expression was not induced any further in response

to LPS (Fig. 1E). To confirm Mib1 expression during DC

differentiation in vivo, we isolated DC precursors at various

developmental stages from mice. In the mouse BM, myeloid

progenitors (MPs) first differentiate into macrophage and DC

precursors (MDPs), then into common DC precursors (CDPs), and

finally into committed precursors of classical spleen DC (pre-

cDCs) [31]. Interestingly, throughout this progression, the relative

Mib1 transcript levels increased progressively (Fig. 1G). Taken

together, these results show that Mib1 expression in DCs increases

with progress in the development, suggesting a potential role of

Mib1 in peripheral DCs.

Mib1-null DCs show normal development and Notch
ligands expression

To investigate the role of Mib1 in DC-mediated immune

responses, we inactivated Mib1 in hematopoietic systems,

Figure 1. Expression of ligands and E3 ligases for Notch signaling in DCs. A and B, Semi-quantitative RT-PCR analyses of Notch ligands (A)
and E3 ubiquitin ligases (B) in BM-derived DCs prior to LPS stimulation. Serial 2-fold dilutions of PCR products were electrophoresed in agarose gel C,
Quantitative real-time RT-PCR analysis of ligands and E3 ligases in DCs before (None) and after 24 h of LPS stimulation (Sti). The results are
representative of more than five independent experiments. D, Flow cytometry analysis for Notch ligands in DCs. IgG, Armenian hamster IgG isotype
control; None, DCs before LPS stimulation; Sti, DCs after LPS stimulation. Results are representative of three independent experiments. E, Western blot
analysis of Mib1 in BM culture with rGM-CSF on days 5, 7, and 9, and 24 h after LPS treatment on day9 (Sti). F, Quantitative real-time RT-PCR analysis
of Mib1 in BM culture with rGM-CSF on days 5, 7, and 9. G, Quantitative real-time RT-PCR analysis of Mib1 in the BM precursors of classical spleen DC.
MP, myeloid progenitor; MDP, macrophage and DC precursor; CDP, common DC precursor; pre-cDC, committed precursors of classical spleen DC.
Results are representative of three independent experiments. Data represent mean 6 SD; *, P,0.05.
doi:10.1371/journal.pone.0036359.g001
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including hematopoietic stem cells, by crossing Mib1-floxed mice

(Mib1f/f) with Mx1-Cre transgenic mice; this enabled the expression

of Cre recombinase in response to pIpC [23,25,30]. The mRNA

and protein expression of Mib1 disappeared in the BM-derived

DCs that originated from Mx1-Cre;Mib1f/f mice (Fig. 2A and B).

Although several studies have implicated Notch signaling at

various stages of DC generation and maturation [3,32], Mib1-null

DCs were derived from BM hematopoietic precursors easily and

displayed comparable levels of the maturation markers CD40,

CD80, CD86, and MHC-II, both before and after LPS

stimulation (Fig. 2C). This results show that Mib1 is dispensable

for DC development in a cell-autonomous manner.

Next, we examined the expression of Notch ligands in Mib1-

null DCs. The transcript levels for Notch ligands in Mib1-null DCs

were comparable to those in control (Mib1f/f) DCs (Fig. 2D).

However, Mib1-null DCs showed accumulation of surface Jag1

and Jag2 proteins (Fig. 2E); this finding is consistent with those of

previous studies, which reported that impaired endocytosis of

Notch ligands resulted in the accumulation of Notch ligands on the

cell surface [25,33,34]. These data showed that Mx1-Cre;Mib1f/f

DCs, in which Mib1 is completely deleted, exhibited intact DC

phenotypes including Notch ligands expression.

Mib1-null DCs cannot trigger Notch signaling in adjacent
cells

To determine whether Mib1-null DCs were capable of

triggering the activation of Notch signaling in the adjacent cells,

we transfected Notch1-expressing C2C12 cells with WT and MT

CBF-luc constructs [26] and co-cultured the transfected cells with

control and Mib1-null DCs. Notably, Mib1-null DCs failed to

induce CBF-luc activity (Fig. 3A). Next, we co-cultured purified

OT-II naive CD4+ T cells with OVA323–339 peptide-loaded

control and Mib1-null DCs. As a result, we observed strikingly

increased NICD in the CD4+ T cells cultured with control DCs,

Figure 2. Generation of Mib1-null DCs. A and B, Quantitative real-time RT-PCR (A) and western blot (B) analyses of Mib1 in DCs from Mib1f/f or
Mx1-Cre;Mib1f/f mice. C, Flow cytometry analysis for DC marker, CD11c, costimulatory molecules, CD40, CD80 (B7.1), and CD86 (B7.2), and MHC II (I-Ab)
in Mib1f/f or Mx1-Cre;Mib1f/f DCs before (None, gray-filled histogram) or after LPS stimulation (Sti, black line). Numbers on flow cytometry
plots represent the mean percentage of cells 6 SD. D, Quantitative real-time RT-PCR analysis of Notch ligands in LPS-stimulated DCs from Mib1f/f and
Mx1-Cre;Mib1f/f mice. Results are representative of three independent experiments. E, Flow cytometry analysis for Jag1 and Jag2 in Mib1f/f or
Mx1-Cre;Mib1f/f DCs. Numbers indicate the relative median fluorescence intensities of IgG isotype control (IgG, gray-filled histogram), DCs before LPS
stimulation (None, dotted line), and DCs after LPS stimulation (Sti, black line), respectively, in each plots. Data represent mean 6 SD.
doi:10.1371/journal.pone.0036359.g002
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but not in the CD4+ T cells cultured with Mib1-null DCs (Fig. 3B).

Moreover, the expressions of Notch target genes, Hes1 and Hes5,

in CD4+ T cells were not markedly induced by Mib1-null DCs

(Fig. 3C). Collectively, ablation of Mib1 in DCs led to incapability

of Notch signaling activation, in spite of normal or even elevated

levels of Notch ligands.

Mib1-null DCs readily induce the activation and
proliferation of CD4+ T cells

To examine whether Mib1 ablation in DCs influence CD4+ T

cell activation and proliferation, we further analyzed OT-II CD4+

T cells cultured with control or Mib1-null DCs. Intriguingly,

however, Mib1-null DCs readily induced upregulation of T-cell

activation markers CD25, CD44, and CD69, similar to the control

DCs (Fig. 4 A and B). Moreover, the proliferation kinetics of CD4+

T cells cultured with the control or Mib1-null DCs were also

comparable, as shown by CFSE dilution (Fig. 4 B). This suggested

that CD4+ T cells can be readily activated and proliferate in the

absence of Notch activation via interaction with DCs.

Mib1-null DCs impair in vitro Th2 differentiation
To investigate whether Mib1-null DCs are able to induce Th1/

2 differentiation, we performed intracellular cytokine staining for

IFN-c and IL-4 in OT-II CD4+ T cells cultured with DCs. As a

result, the percentage of IFN-c-expressing cells was comparable

between the control and Mib1-null DCs; however, the percentage

of IL-4-expressing cells was markedly decreased in Mib1-null DCs

(Fig. 5A and B). The CD4+ T cells stimulated by Mib1-null DCs

also exhibited decreased IL-4 production when subjected to

Figure 3. Mib1-null DCs fail to activate Notch signaling. A, LPS-
stimulated Mib1f/f or Mx1-Cre;Mib1f/f DCs were cultured with Notch1-
expressing C2C12 cells transfected with WT or MT CBF luciferase
constructs, and 24 h after the coculture, luciferase activity was
measured. Results are representative of two independent experiments.
B, Western blot analysis of Notch1 ICD (NICD) in negatively purified OT-
II CD4+ T cells before (None) and 6 h after coculture with peptide-
pretreated Mib1f/f or Mx1-Cre;Mib1f/f DCs. C, Quantitative real-time RT-
PCR analysis of Notch target genes, Hes1 and Hes5, in CD4+ T cells
before (None) and after coculture with Mib1f/f or Mx1-Cre;Mib1f/f DCs.
Results are representative of three independent experiments. Data
represent mean 6 SD; *, P,0.05; **, P,0.001.
doi:10.1371/journal.pone.0036359.g003

Figure 4. Preserved activation and proliferation of Notch-inactivated CD4+ T cells. A, Flow cytometry analysis for T cell activation markers,
CD44 and CD69, in purified CD4+ T cells before (None) or 24 h after coculture with Mib1f/f or Mx1-Cre;Mib1f/f DCs. B, CFSE-labeled naive OT-II CD4+ T
cells were cultured without (None) or with peptide-pretreated Mib1f/f or Mx1-Cre;Mib1f/f DCs, and the activated cells collected on days 1, 2, and 3,
respectively, were stained for CD25 and CD4 and analyzed by flow cytometry. The numbers indicate the percentage of cells within the gates. A
representative of three independent experiments is shown.
doi:10.1371/journal.pone.0036359.g004
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ELISA analysis (Fig. 5C). In addition, expressions of Gata-3, a

central factor for the differentiation of Th2 cells, and various Th2

cytokines such as IL-4, IL-6, IL-10, and IL-13 were notably

reduced in the CD4+ T cells cultured with Mib1-null DCs

(Fig. 5D). In contrast, expressions of T-bet, a master regulator of

Th1 differentiation, and Th1 cytokines including IFN-c and TNF-

a were comparable between the CD4+ T cells stimulated by the

control and Mib1-null DCs (Fig. 5D).

Next, we asked whether the suppression of Th2 differentiation

by Mib1 ablation in DCs is due to an enhanced expression of IFN-

c [35,36]. We treated neutralizing anti-IFN-c Abs during the

CD4+ T cells and DCs coculture, but the neutralization of IFN-c
could not rescued the impaired Th2 differentiation in CD4+ T

cells stimulated by Mib1-null DCs (Fig. 6A), ruling out the

possibility of the secondary effect of Notch signaling for the

regulation of Th2 differentiation. To examine the role of Mib1 in

Th differentiation further, we used another TCR-transgenic

mouse model, SMARTA, which expresses a specific TCR for

the lymphocytic choriomeningitis virus epitope GP61–80 [37]. As

shown in Fig. 6B, the frequency of IL-4-expressing cells was lower

in CD4+ T cells stimulated with Mib1-null DCs than in the control

CD4+ T cells, implying that defective Th2 differentiation is not

limited to certain TCR transgenic mice. LPS-stimulated DCs have

been known to promote both Th1 and Th2 responses by

expressing Dll and Jag, respectively [6,38]. Unexpectedly,

however, no defects in Th1 differentiation were observed,

suggesting that Th1 differentiation does not require DC-mediated

Notch activation. Overall, we showed that Mib1 deletion in DCs

impaired Th2 differentiation by inactivating Notch signaling in

CD4+ T cells.

Mib1 in DCs is critical for Th2 induction in vivo
Finally, we used an adoptive transfer strategy to perform an in

vivo experiment by transferring naı̈ve OT-II CD4+ T cells and the

control or Mib1-null DCs into CD45.1 congenic mice. Once

again, the specific defect in Th2 differentiation in Mib1-null DCs

was identified, while simultaneously preserving the Th1 responses,

by using intracellular cytokine staining (Fig. 6C and D) and ELISA

analyses (Fig. 6E) to measure IFN-c and IL-4 expressions. In

conclusion, the Mib1 expressed in DCs is a critical regulator of

Notch activation during peripheral immune responses. The

complete inactivation of Notch signaling in DC-CD4+ T cell

interactions leads to dramatically impaired Th2 differentiation

both in vitro and in vivo. However, there was no evidence of a direct

association between Notch signaling and CD4+ T cell activation,

proliferation, and Th1 differentiation.

Discussion

Regulation of CD4+ T cell-mediated immune responses is

crucial for protection against different types of pathogenic

microorganisms as well as peripheral immune tolerance. Espe-

cially, a delicate balance of diverse Th subsets, Th1, Th2, Th17,

and induced regulatory T cells, enables an effective elimination of

dangerous microbes [39]. Although Notch signaling has been

known as one of the mechanisms to regulate Th responses, the

ambiguous role of Notch signaling has hampered any further

clinical application. Previous studies have investigated the role of

Notch signaling by using various experimental approaches,

including overexpression of Notch ligands or NICD, ectopic

manipulation of cytokines, pharmacological inhibition of Notch

signaling by nonselective c-secretase inhibitors, and treatment with

agonistic or antagonistic antibodies [5,7,8,9,10,11,12]. Although

these approaches are convenient and provide many important

cues to reveal the role of Notch signaling, they could result in non-

physiological levels of signaling and unknown side effects that need

to be evaluated using genetic approaches.

The Mib1-null DCs used in this study served as a novel and

reliable genetic model to modulate Notch signaling in CD4+ T

cells for several reasons. First, Mib1 is dominantly expressed in

DCs and known to play an obligatory role in regulating all Notch

ligands in mice [23]. Indeed, Mib1-null DCs could not activate

Notch signaling in adjacent cells, including CD4+ T cells, in spite

of the Notch ligands expressions. Thus, the manipulation of Mib1

in DCs efficiently and effectively blocks Notch activation in CD4+

T cells. Second, using intact naive CD4+ T cells in both control

and experimental groups, we could exclude the side effects caused

Figure 5. Absence of Mib1 in DCs specifically impairs Th2
differentiation. A, Purified naive OT-II CD4+ T cells were cultured with
peptide pretreated Mib1f/f or Mx1-Cre;Mib1f/f DCs. After 5 days, viable
cells were re-stimulated with PMA and ionomycin for 6 h, and the
intracellular levels of IFN-c and IL-4 were analyzed by flow cytometry.
The numbers indicate the percentage of cells within the gates. A
representative of three independent experiments is shown. B, The
average percentage of activated CD4+ T cells producing IFN-c and IL-4
(as in [A]) from three independent experiments. C, Viable activated CD4+

T cells were harvested, and an equal number of cells in each group were
re-stimulated with 1 mg/ml plate-bound anti-CD3. The supernatants
were removed after 48 h, and cytokine concentrations were determined
by ELISA. D, Quantitative real-time RT-PCR analysis of T-bet, Gata-3, Th1
related cytokines (IFN-c and TNF-a), and Th2 related cytokines (IL-4, IL-6,
IL-10, and IL-13) in purified CD4+ T cells unstimulated (None) or
stimulated by Mib1f/f or Mx1-Cre;Mib1f/f DCs. Data represent mean 6 SD;
*, P,0.05.
doi:10.1371/journal.pone.0036359.g005
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by direct manipulation of CD4+ T cells and assure their potential

capacity of activation and subset differentiation. Finally yet

importantly, our approach is relevant to the physiological

conditions for CD4+ T cell immune responses because the

Mib1-null DCs can act as functional APCs, although they could

not activate Notch signaling in the adjacent cells.

In this study, we clearly showed that Mib1 deficiency in DCs

strengthen the Th2-regulating role rather than Th1 for Notch

signaling. In addition, there was no evidence of a regulatory role

for Notch signaling in CD4+ T cell activation and proliferation,

which is consistent with other studies using independent genetic

approaches, such as RBP-Jk KO [6], Notch1 and Notch2 double

KO [40], and transgenic overexpression of dominant negative

MAML [14]. In a previous study, different Notch ligands, Dll and

Jag on APCs induced Th1 and Th2, respectively, in vitro [6].

However, there is no evidence for ligand type-dependent

regulation of Th differentiation in our approaches, because neither

Jag nor Dll triggered Notch activation in the absence of Mib1.

The modulation of genes related to Notch signaling in APCs,

the signal-sending cells, has not been understood well relative to

that in effector T cells, the signal-receiving cells. We identified that

Mib1 is dominantly expressed in DCs among four Notch-

regulating E3 ligases, and Notch signaling is completely inactivat-

ed solely by Mib1 ablation. Unlike the Notch ligands, interestingly,

Mib1 was highly expressed in DCs prior to antigen stimulation,

enabling DCs to be in ‘ready to go’ state to activate Notch

signaling. However, the molecular mechanism that regulates Mib1

expression during DC development as well as ligands expression

after LPS stimulation has not yet been revealed.

Although recent studies have implicated Notch signaling in the

differentiation and function of other Th subsets, such as Th17 [41]

and induced regulatory T cells [42,43], these roles of Notch

signaling have not been evaluated clearly by using genetic

methods. Further studies are required to reveal the role of Notch

signaling in different types of peripheral immune responses other

than Th1/Th2 differentiation. Here again we expect that our

approach can be applicable to those expanded issues, and even

more reliable than others because we can assure the potential

capacity of Th subset differentiation. Furthermore, our results

suggest that Mib1 is a latent therapeutic target for the regulation of

Notch activation in disorders caused by a predominance of Th2

cell-cytokines, such as allergies, asthma, atopic dermatitis, systemic

lupus erythematosus, and chronic graft-versus-host disease.
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Figure 6. Mib1 in DCs is critical for Th2 induction. A, Neutralizing anti-IFN-c Abs (10 mg/ml) were treated to CD4+ T cells during the coculture
with peptide pretreated Mib1f/f or Mx1-Cre;Mib1f/f DCs. Intracellular cytokine expression was measured by flow cytometry, as shown in Figure 5A. The
numbers indicate the mean 6 SD cell percentages from two independent experiments. B, Purified naı̈ve SMARTA CD4+ T cells were stimulated with
peptide-pretreated Mib1f/f or Mx1-Cre;Mib1f/f DCs. Intracellular cytokine expression was measured by flow cytometry, as shown in Figure 5A. The
numbers indicate the mean 6 SD cell percentages from two independent experiments. C, Purified naive OT-II CD4+ T cells were transferred
intravenously into CD45.1 recipient mice. Peptide-pretreated Mib1f/f or Mx1-Cre;Mib1f/f DCs were intraperitoneally injected on the subsequent day.
Seven days later, splenocytes were re-stimulated for 6 h with OVA323–339 peptides and human rIL-2, and intracellular IFN-c and IL-4 were analyzed
from CD45.2+ CD4+ cells by flow cytometry. The numbers indicate the percentage of cells within the gates. A representative of three independent
experiments is shown. D, The average percentage of activated IFN-c and IL-4-producing CD45.2+ CD4+ T cells (as shown in [C]) from three
independent experiments. E, IFN-c and IL-4 productions were detected by ELISA 72 h after re-stimulation. *, P,0.05.
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