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Imbalance of the gut microbiota plays an important role in the pathogenesis of various diseases. Although many 
clinical studies have analyzed the gut microbiota, the definition of normal gut microbiota remains unclear. In this 
study, we aim to establish the average gut microbiota in the healthy Japanese population. Using 16S ribosomal 
RNA gene sequencing, we analyzed gut microbial data from fecal samples obtained from 6,101 healthy Japanese 
individuals. Based on their ages, the individuals were divided into three groups: young, middle-age, and old. 
Individuals were further categorized according to body mass index (BMI) into lean, normal, and obese groups. 
The α and β diversities in the old group were significantly higher than those in the young and middle-age groups. 
The Firmicutes/Bacteroidetes ratio of subjects in the obese category was significantly lower compared with those 
of subjects in the lean and normal categories in the young and middle-age groups. Genus Bacteroides was the 
dominant gut microbiota across all the BMI categories in all the age groups. Among the top ten genera, the 
abundances of Bacteroides, Bifidobacterium, Anaerostipes, Blautia, Dorea, Fusicatenibacter, Lachnoclostridium, 
and Parabacteroides were significantly lower in the old group than in the young and middle-age groups. The 
correlation network at the genus level revealed different microbe-microbe interactions associated with age and 
BMI. We determined the average Japanese gut microbiota, and this information could be used as a reference. 
The gut microbiota greatly differs based on the life stage and metabolic status of the host, and this gives rise to a 
variety of host–gut microbe interactions that can lead to an increased susceptibility to disease.
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INTRODUCTION

Several clinical studies have clearly demonstrated that the gut 
microbiota plays a pivotal role not only in maintaining human 
health but also in the development of many diseases, such as 
inflammatory bowel disease, liver cirrhosis, rheumatoid arthritis, 
type 2 diabetes, and cardiovascular disease [1–7]. As the gut 
microbiota has a causal relationship with disease progression, 
modulation of the gut microbiota is gaining attention as a novel 
therapeutic approach [8]. For instance, clinical intervention 
studies have reported the potential of modulating the gut 
microbiota using oral antibiotics [9, 10]. Furthermore, fecal 
microbiota transplantation is performed as a standard treatment 
procedure for Clostridioides difficile infection [11]. These 
reports shed light on the innovative strategies that are available 

for treating diseases via gut microbial modulation. Moreover, 
analysis of the gut microbiota based on 16S rRNA sequencing 
is becoming cheaper and easier; hence, the gut microbiota may 
serve as a novel diagnostic marker in the near future. To date, a 
large number of clinical studies have analyzed gut microbiota in 
various diseases and compared them to detect the characteristics 
associated with differential abundances between patients with and 
without disease. As the gut microbial profile depends on several 
factors, such as age, body weight, local food, and lifestyle [12], it 
is critical for clinicians and researchers to know the “average” gut 
microbiota of individuals so that they can compare gut microbiota 
between heathy and diseased subjects to detect differences and 
elucidate links between disease progression and specific gut 
microbiota. Furthermore, elucidation of outlier gut microbiota 
may lead to the identification of hidden factors, including specific 
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diseases. However, reports analyzing the gut microbiotas of 
healthy populations, especially the Japanese population, are 
limited, and the sample sizes have been too small [13–18].

In this study, we aimed to investigate the average gut flora 
in healthy Japanese individuals stratified by age and body 
mass index (BMI). We analyzed the Mykinso cohort data and 
determined the average gut microbiota to establish reference 
ranges. The Mykinso cohort is a part of the product services of 
Cykinso, Inc. (Tokyo, Japan) and is one of the largest cohorts 
in Japan used to study the life expectancy of healthy individuals 
using gut microbial data and related information [19]. Individuals 
interested to learn about their own gut microbiota can use the 
Mykinso commercial service (https://mykinso.com/). We believe 
that our results greatly contribute to the definition of normal gut 
microbiota, which will help in distinguishing the gut microbiota 
of diseased subjects from those of healthy individuals.

MATERIALS AND METHODS

Study population
The study initially included 10,063 individuals registered in the 

Mykinso cohort from January 2017 to April 2020. Among them, 
140 individuals were excluded due to their ages being less than 
20, 2,928 individuals were excluded due to the presence of certain 
diseases as defined by a questionnaire, and two individuals were 
excluded due to their refusal to participate. Ultimately, 6,101 
individuals were included in the study (Fig. 1). All participants 
provided written informed consent for enrollment, and the study 
was conducted according to the principles of the Declaration of 
Helsinki. The study was approved by the Cykinso Research Ethics 
Committee (No. LD-001-04 and LD-002-03) and registered with 
the UMIN Clinical Trials Registry (no. UMIN000028887 and 
UMIN000028888).

Age and BMI stratification
The subjects were divided according to their ages into 

young adults (20≤ age <40 years), middle-aged adults (40≤ age 
<65 years), or old adults (65 years ≤age). We further categorized 

the subjects according to the World Health Organization (WHO) 
BMI classification [20] as lean (BMI <18.5), normal (18.5≤ BMI 
<25), or obese (25≤ BMI).

Fecal sampling, DNA extraction, sequencing, and analyzing 
sequencing data

The detailed methods were described in elsewhere [19]. 
Briefly, we collected fecal samples using brush-type collection 
kits containing guanidine thiocyanate solution (TechnoSuruga 
Laboratory, Shizuoka, Japan), transported them at ambient 
temperature, and stored them at 4°C. DNA was extracted from 
the fecal samples using a DNeasy PowerSoil Kit (Qiagen, 
Hilden, Germany) according to the manufacturer’s protocol. The 
amplicons of the V1V2 region were prepared using a forward 
primer (16S_27Fmod: TCG GCA GCG TCA GAT GTG TAT 
AAG AGA CAG AGR GTT TGA TYM TGG CTC AG) and 
reverse primer (16S_338R: GTC TCG TGG GCT CGG AGA 
TGT GTA TAA GAG ACA GTG CTG CCT CCC GTA GGA 
GT) along with KAPA HiFi HotStart ReadyMix (Roche, Basel, 
Switzerland). Sequencing libraries were prepared according to the 
16S library preparation protocol provided by Illumina (Illumina, 
San Diego, CA, USA). Dual index adapters for sequencing on the 
Illumina MiSeq platform were attached using a Nextera XT Index 
kit (Illumina, San Diego, CA, USA). Each sequencing library was 
diluted to 5 ng/μL. We mixed equal volumes of the libraries to 
obtain a final concentration of 4 nM. The DNA concentrations 
of the mixed libraries were measured by quantitative real-time 
polymerase chain reaction (qPCR) using KAPA SYBR FAST 
qPCR Master Mix (Roche, Basel, Switzerland), primer 1 (AAT 
GAT ACG GCG ACC ACC), and primer 2 (CAA GCA GAA 
GAC GGC ATA CGA). These libraries were sequenced in a 250-
bp paired-end run using MiSeq Reagent Kit v2 (500 cycles).

Bioinformatics analysis
The data processing and assignment based on the QIIME2 

pipeline (version 2020.8) [21] were performed using the 
following steps: (1) joining paired end reads, filtering, and 
denoising with DADA2 and (2) assigning taxonomic information 
to each amplicon sequence variant (ASV) using a naive Bayes 
classifier in the QIIME2 classifier. The classifier was trained with 
a robust taxonomy simplifier for SILVA (arts-SILVA), which 
was originally developed from the 16S rRNA taxonomy dataset 
based on SILVA 138 [22]. arts-SILVA was developed for the 
purpose of making Mykinso testing reports easier to understand 
for those who are not familiar with complex rules of taxonomic 
nomenclature. arts-SILVA simplifies resulting taxonomic 
assignments by removing some study-related labels, curating 
obvious mis-entries, and generalizing uncommon names in the 
SILVA database. To obtain arts-SILVA, the V1V2 regions of 
reference sequences of SILVA were extracted and then clustered 
according to the original manuscript for QIIME2 preparation of 
SILVA. Next, some unnecessary/seemingly miss-labeled entries 
were cleaned up (i.e., removed labels with little information 
such as “D_6__unclutured bacteria” and corrected duplicate 
entries such as “D_0__Bacteria;D_1__Bacteria Firmicutes” to 
“D_0__Bacteria;D_1__Firmicutes”). Then, useless taxa such 
as “D_6__human metagenome” were removed by manual 
inspection. After that, a consensus taxonomy was assigned to 
each cluster for which 100% of the assigned taxa were in 100% 
agreement, and finally, the label “Ambiguous taxa” was removed.

Fig. 1. Study population.
BMI: body mass index.
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Statistics
R and RStudio (versions 3.5.1 and 1.1.456, respectively) 

were used for all data manipulation, analyses, and graphs. The R 
packages qiime2R and microbiome R were used for all analyses. 
The R packages tidyMicro (version 1.48) and ggplot2 were used 
for visualization.

Mykinso Research Cohort characteristics were summarized 
as frequencies (%) for categorical variables and means (standard 
deviations) or medians (interquartile range, IRQ) for continuous 
variables. Differences in these characteristics were assessed 
using Fisher’s exact test for categorical variables and t-tests for 
continuous variables.

Relative abundance (RA) was calculated as the number of 
sequenced reads for each taxon in a sample and was standardized 
by the total number of sequences generated for each sample. 
Only taxa that were present in at least 50% of the cohort and 
had an RA of at least 0.1% in at least one sample were included 
in the analyses. Sequence counts for taxa that did not meet these 
requirements were aggregated into an “Other” category. These 
filtering requirements were applied at the phylum, family, and 
genus levels. Sequence counts that could not be classified at 
the taxonomic level of interest were left as unclassified counts 
of the lowest level possible. The α diversity at 10,000 reads per 
sample was evaluated at the ASV level using the Shannon index, 
and significant differences were evaluated using ANOVA. The 
β diversity was used to evaluate differences in the community 
composition between samples using the Bray-Curtis distance 
method. Group differences in Bray-Curtis distances within 
each group were assessed using ANOVA. Differences in 
Bray-Curtis distances between groups were assessed using 
a non-parametric permutation-based multivariate analysis of 
variation (PERMANOVA) test using the vegan package with 
999 permutations. We tested for significant impacts from the 
co-occurrences between age group and BMI class for this 
distance measure by including interaction terms between the two 
phenotypes in each model.

Differences in the RAs of phylum-, family-, and genus-level 
taxa were evaluated using generalized linear models (GLMs) 
assuming a negative binomial distribution and log link function; 
the total number of sequences was used as an offset. Benjamini 
and Hochberg’s false discovery rate (FDR) correction was then 
applied to adjust for multiple comparisons within each taxon level, 
with significance defined as FDR p-value ≤0.05. For each taxon, 
a GLM model was first fit, including an interaction term between 
BMI class and age group. If the interaction term was significant 
(FDR p<0.05), it was determined that the effect of BMI class on 
the taxa was modified by age, and results were reported for these 
models. If the interaction term was not significant, the interaction 
term was removed from the model, and the independent effect 
of BMI class, after adjusting for age, was modeled and reported. 
Stacked bar charts were constructed using estimated taxa RAs 
obtained from the GLMs to visually display the estimated 
microbiota compositions by phenotypic group. The top 10 most 
abundant taxa were plotted, while the remaining estimated taxa 
counts were aggregated into an “Other” category for readability.

Correlation network analysis was performed using SparCC 
[23] to calculate pairwise correlations between taxonomic 
features. In the resulting correlation network, nodes represent 
taxonomic features, and edges represent correlations greater 
than the correlation threshold (i.e., 0.3) between pairs of taxa; 

blue and red colors indicate positive and negative correlations, 
respectively. Chord diagrams were displayed using the R circle 
package [24].

RESULTS

Study population
A total of 6,101 healthy, disease-free Japanese subjects were 

enrolled in the study. After excluding subjects without BMI 
data, 5,996 subjects were included in the analysis and divided 
into three groups according to their ages: young 2,437 (40.6%), 
middle age 3,181 (53.1%), and old 378 (6.3%; Fig. 1). Baseline 
characteristics, including age, sex, BMI, alcohol consumption, 
and smoking status, are shown in Table 1. The percentage of 
females did not differ significantly among the three groups. The 
mean BMI was significantly different among the groups (young 
21.5 ± 3.1, middle age 22.2 ± 3.2, old 21.9 ± 2.9; p<0.001). 
Alcohol consumption and smoking differed significantly among 
the groups (Table 1).

We further divided the subjects in each age group according to 
their BMIs. The percentage of females was significantly higher in 
the lean subgroup than those in the normal and obese subgroups 
in all age groups (Table 2). Age differed significantly in the young 
group, but not in the middle-age or old group. The mean BMIs of 
the lean and obese subjects were 17.52 ± 0.77 kg/m2 and 27.9 ± 
2.8 kg/m2 in the young group, 17.5 ± 0.9 kg/m2 and 27.7 ± 2.7 kg/
m2 in the middle-age group, and 17.0 kg/m2 ± 1.3 and 27.1 ± 
2.4 kg/m2 in the old group, respectively. In the young and middle-
age groups, alcohol consumption and smoking were significantly 
different among the three BMI subgroups. In contrast, in the old 
group, no such significant differences were observed.

Gut microbiota diversity
The α diversity, as assessed by Shannon-Wiener index, was 

significantly increased in the old group relative to the young 
and middle-age groups (young 6.21 ± 0.59 vs. middle age 6.27 
± 0.60 vs. old 6.41 ± 0.59; p<0.001; Fig. 2A). The α diversity 
in the middle-age group was significantly increased compared 
with the young group (p<0.001; Fig. 2A). In the BMI subcluster 
analysis, significantly increased α diversity was observed in 
the subjects categorized as normal relative to those categorized 
as obese in the young (normal 6.23 ± 0.58, obese 6.09 ± 0.63; 
p<0.01) and middle-age groups (normal 6.29 ± 0.60, obese 6.14 
± 0.61; p<0.001; Fig. 2B). In the old age group, the α diversity 
in the normal category was significantly higher compared with 
that in the lean category (lean 6.20 ± 0.62 vs. normal 6.33 ± 
0.59); p<0.05); however, no significant difference was observed 
between the lean and obese categories or between the normal and 
obese categories (Fig. 2B).

The β diversity was estimated using the Bray-Curtis distances, 
and that in the old group was significantly higher than that in 
the middle-age and young groups (young 0.31, range 0.26–0.39, 
middle age 0.33, 0.28–0.41, old 0.35, 0.29–0.42; p<0.001; 
Fig. 2C). In the young and middle-age groups, the β diversity 
in the obese individuals was significantly higher than that in the 
normal or lean individuals (Fig. 2D).

Gut microbiota at the phylum level
The RAs of the top five phyla detected in the gut microbiota of 

the three groups are shown in Fig. 2E and Supplementary Table 1. 
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The abundance of Bacteroidetes was significantly different among 
the groups and decreased according to age (young 39.23%, 
range 34.67–43.61%, middle age 38.81%, 34.46–43.21%, old 
37.78%, 32.75–42.94%; p=0.003). The abundance of Firmicutes 
was also significantly different among the groups and increased 
according to age (young 48.63%, range 43.41–53.75%, middle 
age 49.28%, 44.04–54.42%, old 51.66%, 46.02–56.51%; 
p<0.001), thus leading to an increased Firmicutes/Bacteroidetes 
ratio in the old group (Supplementary Table 1). The abundances 

of Actinobacteria, Fusobacteria, and Proteobacteria were also 
significantly different among the groups (Supplementary Table 1).

In the BMI subgroup analysis shown in Fig. 2F and 
Supplementary Table 2, the abundance of Bacteroidetes in the 
middle-age group was significantly different (lean 38.76%, range 
34.12–42.39%, normal 38.70%, 34.29–43.13%, obese 39.43%, 
35.52–43.81%; p<0.003). The abundances of Firmicutes in 
the young and middle age groups were significantly different, 
but no significant difference was observed in the old group 

Table 1. Patient characteristics

20≤Age<40 40≤Age<65 65≤Age
p value

(N=2,437) (N=3,181) (N=378)
Age (years) 31.3 (5.5) 49.0 (6.5) 72.6 (6.8) <0.001
Sex (female), n (%) 1,531 (62.8%) 2,008 (63.1%) 222 (58.7%) 0.2
Body Mass Index (kg/m2) 21.5 (3.1) 22.2 (3.2) 21.9 (2.9) <0.001
Alcohol, n (%)

Never 1,422 (58.3%) 1,615 (50.8%) 219 (57.9%) <0.001
Current 929 (38.1%) 1,424 (44.8%) 128 (33.9%)
Past 82 (3.4%) 138 (4.3%) 28 (7.4%)
Unknown 4 (0.2%) 4 (0.1%) 3 (0.8%)

Smoking, n (%)
Never 1,902 (78.0%) 2,029 (63.8%) 242 (64.0%) <0.001
Current 201 (8.3%) 288 (9.1%) 21 (5.6%)
Past 330 (13.5%) 857 (26.9%) 108 (28.6%)
Unknown 4 (0.2%) 7 (0.2%) 7 (1.8%)

( )=standard deviation: S.D.

Table 2. Patient characteristics in each age category

20≤Age<40

p value

40≤Age<65

p value

65≤Age

p value
(N=2,437) (N=3,181) (N=378)

Lean Normal Obese Lean Normal Obese Lean Normal Obese
N=315 N=1,860 N=262 N=292 N=2,401 N=488 N=38 N=297 N=43

Age (years) 30.8 (5.5) 31.3 (5.5) 32.0 (5.1) 0.047 49 (6) 49 (7) 49 (6) >0.9 75.1 (9.7) 72.5 (6.4) 71.3 (6.1) 0.073
Sex (female), 
n (%)

249 
(79.0%)

1,175 
(63.2%)

107 
(40.8%)

<0.001 253 
(86.6%)

1,534 
(63.9%)

221 
(45.3%)

<0.001 30 
(78.9%)

172 
(57.9%)

20 
(46.5%)

0.01

Body Mass 
Index (kg/m2)

17.5 (0.8) 21.3 (1.7) 27.9 (2.8) <0.001 17.5 (0.9) 21.6 (1.8) 27.7 (2.7) <0.001 17.0 (1.3) 21.8 (1.7) 27.1 (2.4) <0.001

Shannon-index 6.18 
(0.60)

6.23 
(0.58)

6.09 
(0.63)

0.005 6.30 
(0.61)

6.29 
(0.60)

6.14 
(0.61)

<0.001 6.20 
(0.62)

6.44 
(0.57)

6.33 
(0.59)

0.082

Alcohol, n (%)
Never 215 

(68.2%)
1,077 
(57.9%)

130 
(49.6%)

<0.001 173 
(59.2%)

1,201 
(50.0%)

241 
(49.4%)

0.026 27 
(71.1%)

164 
(55.2%)

28 
(65.1%)

0.3

Current 88 
(27.9%)

723 
(38.9%)

118 
(45.0%)

104 
(35.6%)

1,097 
(45.7%)

223 
(45.7%)

9  
(23.7%)

108 
(36.4%)

11 
(25.6%)

Past 12 (3.8%) 56 (3.0%) 14 (5.4%) 14  
(4.8%)

101 
(4.2%)

23  
(4.7%)

2 (5.3%) 22 (7.4%) 4 (9.3%)

Unknown 0 (0.0%) 4 (0.2%) 0 (0.0%) 1 (0.3%) 2 (0.1%) 1 (0.2%) 0 (0.0%) 3 (1.0%) 0 (0.0%)

Smoking, n (%)
Never 255 

(81.0%)
1,477 
(79.4%)

170 
(64.9%)

<0.001 225 
(77.1%)

1,536 
(64.0%)

268 
(54.9%)

<0.001 29 
(76.3%)

190 
(64.0%)

23 
(53.5%)

0.1

Current 25  
(7.9%)

136 
(7.3%)

40 
(15.3%)

15  
(5.1%)

201 
(8.4%)

72 
(14.8%)

2 (5.3%) 15 (5.1%) 4 (9.3%)

Past 35 
(11.1%)

243 
(13.1%)

52 
(19.8%)

52 
(17.8%)

658 
(27.4%)

147 
(30.1%)

5  
(13.1%)

88 
(29.6%)

15 
(34.9%)

Unknown 0 (0.0%) 4 (0.2) 0 (0.0%) 0 (0.0%) 6 (0.2%) 1 (0.2%) 2 (5.3%) 4 (1.3%) 1 (2.3%)

( )=standard deviation: S.D.
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(Supplementary Table 2). The Firmicutes/Bacteroidetes ratio was 
significantly lower in the obese group than in the lean and normal 
groups (lean 1.26, range 1.03–1.52, normal 1.24, 1.02–1.50, 
obese 1.20, 0.93–1.47; p=0.029). This trend was also observed 
in the middle-age group (lean 1.26, 1.07–1.58, normal 1.27, 
1.04–1.56, obese 1.21, 1.01–1.49; p=0.003).

Gut microbiota at the genus level
The RAs of the top 10 genera detected in the gut microbiota 

of the three groups are shown in Fig. 3A and Supplementary 
Table 3. The abundance of Bacteroides in the young group was 
significantly higher than those in the middle-age and old groups 
(young 29.13%, range 21.16–34.84%, middle age 27.51%, 
18.39–33.42%, old 25.30%, 15.55–32.56%; p<0.001). The 
abundance of Bifidobacterium in the young group was also 
significantly higher than those in the middle age and old (young 
3.72, range 1.26–6.87, middle age 3.27, 1.02–6.78, old 1.97, 
0.60–4.28; p<0.001). Other genera such as Anaerostipes, Blautia, 
Dorea, Fusicatenibacter, Lachnoclostridium, Faecalibacterium, 
and Parabacteroides showed significant differences among the 
three groups (Supplementary Table 3). The results of principal 

coordinate analysis at the genus level showed that the three 
groups did not differ drastically in the abundance of major gut 
bacteria and were consistent with higher β diversity in the old 
group (Fig. 3B).

In the BMI subgroup analysis, the abundance of Bacteroides 
did not differ among the three BMI groups in any age group 
(Fig. 3C). The abundance of Bifidobacterium in obese subjects 
was significantly lower in the middle-age group than in the lean 
or normal group (lean 3.56, 1.17–7.10, normal 3.39, 1.06–6.8, 
obese 2.79, 0.76–6.37; p=0.027; Fig. 3C). The results of principal 
coordinate analysis identified and described gut microbiota 
profiles at the genus level in three BMI categories in each age 
group (Fig. 3D).

Correlation of microbes
Microbiota-microbiota correlation at the genus level in the 

three BMI categories in each age group was analyzed to assess the 
stability of the gut microbiota (Fig. 4). We observed gut microbial 
interactions in the case of both the same phylum and different 
phyla, and many lines were seen in Firmicutes, which was the 
most dominant phylum. Interestingly, the correlation was unique 

Fig. 2. Gut microbiota diversity at the phylum level.
A. Shannon-Wiener index in the indicated groups. B. Shannon-Wiener index in the indicated groups. C. Bray-Curtis distances in the indicated groups. 
D. Bray-Curtis distances in the indicated groups. E. Distribution of gut microbiota at the phylum level in the indicated groups. F. Distribution of gut 
microbiota at the phylum level in the indicated groups. *p<0.05. ***p<0.001. L: lean; N: normal; O: obese.
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to each age and BMI group. In the young and middle-age groups, 
we observed relatively many lines in lean subjects compared 
with normal and obese subjects, which may have reflected lower 
β diversity in the lean group. In the old age group, many lines 
were observed, especially in lean and obese subjects, indicating 
an imbalanced or unstable microbiota configuration in that age 
group.

DISCUSSION

Growing evidence suggests that the gut microbiota plays a key 
role in the development of many diseases. However, the normal 
gut microbiota in the Japanese population has yet to be defined. 
The goal of using the Mykinso cohort data was to develop a 
clinical screening method that enables the accurate and rapid 
detection of a large number of microorganisms in stool samples. 
It was also to develop quantitative techniques that can be used 
to improve the current understanding of the relationship between 
lifestyle and bacterial flora, as well as to develop a novel method 
of providing lifestyle advice based on gut health. Our first report 
of average Japanese gut microbiota, which used 2,675 samples 
from the Mykinso cohort data, included only individuals with 

ages from 20 to 60 [19]. Taking into consideration the long 
average life expectancy of the Japanese, gut microbial data of 
subjects over 60 years of age are essential. In this study, we 
identified the average gut microbiota in each age group using 
the largest set of Japanese gut microbial date (5,996 samples). 
We further classified subjects into three BMI subgroups to 
investigate the impact of BMI on gut microbiota. The main 
findings of the present study are as follows: (1) Both α and β 
diversity increased with age. (2) The Firmicutes/Bacteroidetes 
ratio was lower in obese subjects compared with lean and normal 
subjects in the young and middle-age groups. (3) Although the 
average gut microbiota was different at the genus level among 
subjects categorized in each age and BMI group, the genus 
Bacteroides was the most dominant bacterium in all groups. (4) 
A variety of gut microbiome networks were observed in the age 
and BMI groups. This indicates that the gut microbiota changes 
over time based on life stage and metabolic status; thus, matching 
ages and BMIs would be a good strategy when comparing gut 
microbiota in clinical settings. Furthermore, considering the host-
gut microbe interactions, our results may help to understand how 
gut microbiota shape the aging and metabolic health of the host.

To date, several studies have aimed to elucidate gut microbiota 

Fig. 3. Gut microbiota at the genus level.
A. Distribution of gut microbiota at the genus level in the indicated groups. B. Principal coordinate analysis at the genus level was performed to compare 
the distribution of the gut microbiota. C. Distribution of gut microbiota at the genus level in the indicated groups. D. Principal coordinate analysis at the 
genus level in the indicated groups. L: lean; N: normal; O: obese. 
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in the healthy Japanese population and provided intriguing 
evidence regarding the average gut microbiota [14, 15, 17, 18], 
although the numbers of subjects were relatively small compared 
with our study (367 [14], 516 [15], 277 [17] and 1,946 [18]). 
When comparing our results with those of previous studies, we 
found both consistency and inconsistency in our findings. For 
instance, we reported increased Firmicutes abundance in old age 
(Fig. 2E). This is similar to previous reports indicating that the 
abundance of Firmicutes continued to increase sequentially with 
age over a span of 20 years [14, 17]. In addition, the Firmicutes/
Bacteroidetes ratio, which has been reported to increase in obese 
subjects compared with lean subjects [25–27], did not increase 
in obese subjects in our study (Fig. 2F and Supplementary Table 
2). Takagi et al. reported no correlation between the Firmicutes/
Bacteroidetes ratio and BMI in the Japanese population [17], 
thus confirming that the Firmicutes/Bacteroidetes ratio did not 
increase in Japanese obese subjects. On the contrary, although 
Oki et al. reported that the abundances of Christensenellaceae, 
Mogibacteriaceae, and Rikenellaceae were higher in lean 
subjects (BMI <25) than in obese subjects (BMI > 30) [15], 
we did not observe this phenomenon. This may be due to the 
classification of the subjects; we divided our subjects into three 
groups (BMI <18.5, 18.5 ≤BMI ≤25, and BMI >25). Considering 

that overweight/obesity falls within BMI ≥25, according to WHO 
criteria for Asians [20], our BMI categorization was reasonable, 
and our results would be useful in clinical practice. With regards 
to gender, we did not investigate the impact of gender on gut 
microbiota, as a previous report showed that gender was not 
strongly correlated with the general composition of the gut 
microbiota in the Japanese population [15].

Interestingly, different microbe-microbe interactions were 
detected according to age and BMI. We believe this would have 
crucially important meaning from the perspective of future 
therapeutic modulation of gut microbiota. Specifically, prebiotics, 
probiotics, or fecal transplantation therapy may make vast 
alterations in subjects having many microbe-microbe interactions 
because each microbiota influences the composition of other 
microbes. Although our results show that many interactions exist 
in old age, suggesting fewer “core” gut microbiota, this may be 
due to the small number of subjects in the old age group. Further 
research is needed to confirm these results.

In clinical settings, our study results may help to detect 
“outlier” gut microbiota in the Japanese population and elucidate 
the previously unknown link between gut microbiota and 
metabolic health. Further, we could apply the data to future 
therapeutic strategies and health advice from the perspective of 

Fig. 4. Gut microbial network correlation at the genus level.
Microbe-microbe interactions were analyzed at the genus level. The blue and red lines indicate positive and negative correlations, respectively. Gut 
microbiota were placed according to their phylum-level classifications. A. Data of subjects in the young group. B. Data of subjects in the middle-age 
group. C. Data of subjects in the old group.
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health and nutrition science. In the future, it may be necessary 
to elucidate gut microbial functional differences and the clinical 
validity of these reference values by comparing them with those 
of a clinical disease cohort to promote a better understanding of 
the association between gut microbiota and diseases.

The present study has several limitations that should be 
considered when interpreting the results. First, we analyzed the 
gut microbiota from only the Mykinso cohort data and did not 
include randomly selected healthy Japanese subjects. This may 
have caused a selection bias because the study population may 
not have been a true representation of the Japanese population 
in terms of food habits, residential area, and lifestyle. Second, 
although the total number of study participants was the highest 
reported to date, the number of participants aged ≥65 years was 
rather small compared with the other age groups. As the Mykinso 
cohort is a growing cohort, we could collect and analyze more 
gut microbiota in participants aged ≥65 years in the future. 
Third, we identified the healthy population only by using a 
simple questionnaire. Therefore, there was a possibility that 
hidden diseases existed in the study participants. Furthermore, 
the healthy population might have taken medications that affect 
gut microbiota. Fourth, we collected feces in tubes containing 
guanidine thiocyanate solution, which could have an impact on 
gut microbiota [28, 29]. Fifth, since the average gut microbiota 
do not necessarily reflect healthy gut microbiota, we did not refer 
to our analyzed gut microbiota as “healthy” or “normal” gut 
microbiota. Finally, a network analysis to depict the landscape of 
the Japanese gut microbiota or multivariable analysis to evaluate 
the importance of each variable with respect to the gut microbiota 
was not performed.

In conclusion, we described the composition of the average 
gut microbiota in three age groups and BMI groups of the healthy 
Japanese population. Our study aimed to understand the average 
gut microbiota in the Japanese population, and it may promote a 
better understanding of the gut microbiota of diseased individuals 
and how gut microbiota shape the aging and metabolic health of 
the host.
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