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RNA secondary structures can carry out essential cellular functions alone or interact with one another to
form the hierarchical tertiary structures. Experimental structure identification approa ches can show the
in vitro structures of RNA molecules. However, they usually have limits in the resolution and are costly. In
silico structure prediction tools are thus primarily relied on for pre-experiment analysis. Various structure
prediction models have been developed over the decades. Since these tools are usually used before know-
ing the actual RNA structures, evaluating and ranking the pile of secondary structure predictions of a
given sequence is essential in computational analysis. In this research, we implemented a web service
called SSRTool (RNA Secondary Structure prediction Ranking Tool) to assist in the ranking and evaluation
of the generated predicted structures of a given sequence. Based on the computed species-specific inter-
pretability significance in four common RNA structure–function aspects, SSRTool provides three func-
tions along with visualization interfaces: (1) Rank user-generated predictions. (2) Provide an
automated streamline of structure prediction and ranking for a given sequence. (3) Infer the functional
aspects of a given structure. We demonstrated the applicability of SSRTool via real case studies and
reported the similar trends between computed species-specific rankings and the corresponding predic-
tion F1 values. The SSRTool web service is available online at https://cobisHSS0.im.nuk.edu.tw/SSRTool/,
http://cosbi3.ee.ncku.edu.tw/SSRTool/, or the redirecting site https://github.com/cobisLab/SSRTool/.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CCBY-NC-ND license (http://creativecom-
mons.org/licenses/by-nc-nd/4.0/).
1. Introduction

RNAs can participate in essential cellular processes such as gene
post-transcriptional regulation, translation initiation control, and
mediator structures in protein complexes [1–4]. Like the well-
understood protein structure hierarchy, RNAs can carry out their
functions through secondary or tertiary structures formed by
base-pair hydrogen bonds [5,6]. Understanding the particular
structural forms of different non-coding RNAs (ncRNAs) is key to
reconstructing the mechanisms of many vital cellular responses.
Since the secondary structures of many RNAs alone can be involved
in many biological processes and the 3D RNA structures can be
derived from the interaction of secondary structure sub-domains
[7], probing RNA secondary structures is the first step to unraveling
the functionalities of these molecules.
Experimental methods, including X-ray crystallography, nuclear
magnetic resonance (NMR) [8], cryoelectron microscopy [9], and
small-angle X-ray scattering [10], have been developed to identify
RNA molecular structures. However, there are limits in the resolu-
tion for these experiments, and these approaches are generally of
high cost. These limitations result in the requirement for computa-
tional tools to assist in structure identification and pre-screening.
For this reason, researchers have come up with various RNA sec-
ondary structure prediction tools over the past decades. These
tools can be roughly categorized into two genres. Tools in the first
category help predict the base pairings in RNA secondary struc-
tures by considering thermodynamic free energy minimization
[11]. These tools search for the lowest-energy folding of a given
RNA sequence. The second type of tools utilizes the multiple align-
ments of homologous sequences to reach a consensus structure of
this family of RNA sequences [12]. Recently, some of the developed
tools also incorporate chemical structure probing techniques, such
as dimethyl sulfate (DMS) or selective 2’-hydroxyl analyzed by pri-
mer extension (SHAPE) reagents, to refine the prediction accuracy
[13].
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Current prediction tools provide the lowest-energy or consen-
sus structure folding under their constructed thermodynamic
models. Nonetheless, RNAs are so flexible that a short sequence
with only adenines and uracils can lead to more than 10 million
distinct conformations for such a simple sequence [14]. Different
prediction tools adopt different assumptions in obtaining the
best-fit secondary structure for a given sequence. Because the
actual structure of a given RNA sequence is usually not determined
yet when applying these structure prediction tools, it remains
computationally challenging to rank different prediction results
and infer the most native-like structure of a sequence among var-
ious predictions. There is still no easy way to obtain useful rank-
ings for various predicted structures of a given sequence. Hence,
to facilitate the computational analysis of RNA structures, an
online software tool satisfying the following requirements is in
demand [15]: (1) A ranking criterion for users to select the most
prevalent functional structure from the predicted structure pools
before determining the actual RNA structure of a sequence; (2)
Alleviate the burden of using different tools and automate the sec-
ondary structure prediction collection for existing tools; (3) Imple-
ment an easy-to-use interface with visualization services for the
provided RNA structure predictions. We have previously proposed
a novel method that helps evaluate the functional interpretability
of a given structure prediction [16]. The proposed method can
compute the significance scores of an RNA secondary structure in
four structure–function aspects (cellular fitness, RNA–protein
interaction (RPI) complex, translational regulation, and post-
transcriptional regulation). And the designed algorithm has been
verified to help infer the best native-like secondary structure for
a given RNA sequence in yeast and humans. Based on this concept
of functional interpretability, we can further extend the method in
additional species and construct an automated pipeline to help
provide the rankings of diverse secondary structure predictions
for an RNA sequence.

In this research, we implemented an online software tool called
SSRTool (RNA Secondary Structure prediction Ranking Tool) to help
rank a list of predicted structures of an RNA sequence based on
functional interpretability. In SSRTool, we extended our previous
structure functional interpretability calculation algorithm to sup-
port six different model organisms (Homo sapiens, Saccharomyces
cerevisiae, Mus musculus, Rattus norvegicus, Danio rerio, and Ara-
bidopsis thaliana). And we implemented a user-friendly online soft-
ware service for automated ranking generation of the predicted
structures of a given RNA sequence. Three major functions are pro-
vided in SSRTool: (1) Rank Predictions. SSRTool computes the rank-
ings for a given list of structure predictions of a sequence using the
functional interpretability significance of each structure. Further,
SSRTool aggregates the functionally interpretable structures as a
suggestion for the most prevalent secondary structure of this
sequence. (2) Automated structure prediction and ranking pipe-
line. SSRTool streamlines the structure prediction process of 19
publicly available tools to lessen the software learning burden on
users. Then the species-specific functional interpretability rankings
of these predictions are calculated to help identify the most native-
like structure. (3) Infer species-specific functional aspects for a
given structure. We demonstrated the biological applicability of
SSRTool by considering the predicted structures of the human
spliceosomemediator RNA sequence. Then we showed that despite
the sparsity of reference data in some species, SSRTool can still
identify the most native-like structures with at least top-five per-
formance compared with existing tools. Finally, we reported that
the calculated rankings based on interpretability could indicate
the similarities between structure predictions and their corre-
sponding prevalent structures. SSRTool is available online at
https://cobisHSS0.im.nuk.edu.tw/SSRTool/, http://cosbi3.ee.ncku.
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edu.tw/SSRTool/, or the redirecting site https://github.com/cobi
sLab/SSRTool/.
2. Construction and Contents

2.1. The overview of the SSRTool workflow

SSRTool is designed to provide confidence rankings of a list of
structure predictions based on functional interpretability. The
overall workflow of SSRTool is depicted in Fig. 1. There are three
ways for users to provide the inputs and use the SSRTool pipeline:
(a) A given list of structure predictions of an RNA sequence (Fig. 1-a).
Users can first run any structure prediction tools by themselves to
get the predicted structures of a sequence. Then SSRTool applies
the implemented prediction ranking algorithm to each predicted
structure in the given list (Fig. 1-I). In the algorithm, the designed
biological significance tests calculate the interpretability scores of
a predicted structure with the help of SSRTool-gathered species-
specific reference structure collections in four RNA structure–func-
tion aspects (cellular fitness, RPI complex formation, translational
regulation, and post-transcriptional regulation). Then, the func-
tionally interpretable predictions are extracted to generate the
meta-stable structure, or the most prevalent secondary structures
in the cellular contents, for the given structure prediction list based
on functional weighted aggregation (Fig. 1-II). (b) A given RNA
sequence (Fig. 1-b). SSRTool also implements an automated pipe-
line to obtain default structure predictions of 19 existing tools
and then perform the ranking algorithm on these auto-generated
structure prediction results. (c) A given RNA structure (Fig. 1-c).
Finally, SSRTool can also infer the functional aspects of a user-
given structure. The details of the implemented prediction ranking
algorithm are described in Section 2.2, and the gathered
knowledge-base datasets to support these functions are portrayed
in Section 2.3 and 2.4.

2.2. The implemented prediction ranking algorithm

We implemented our previously designed RNA secondary struc-
ture prediction ranking method [16] as the core algorithm in
SSRTool and extended it to support up to six organisms in this cur-
rent version. Furthermore, an easy-to-use interface was con-
structed to facilitate the structure prediction analysis. The
extended structure ranking algorithm can take one predicted
structure or a list of structure predictions to calculate its/their
functional significance scores. These structure predictions can be
generated by any prediction tools. The algorithm procedure is
roughly divided into two parts (Fig. 1-I and 1-II): (I) Find four
structural similar sets for each structure prediction from the corre-
sponding species-specific reference structure collections. And then
calculate the four functional interpretability scores for each struc-
ture prediction based on these four structural similar sets. (II)
Extract significant structure predictions and aggregate the func-
tional meta-stable secondary structure. The details of the algo-
rithm can be found in our previous work ([16]). A brief sketch of
each part is provided in the following subsections.

2.2.1. Part I: find the structural similar sets and calculate functional
interpretability scores

The first part of the prediction ranking algorithm computes the
functional interpretability scores for every given secondary struc-
ture. It is known that similar structures can carry out similar func-
tions [4]. Hence for each structure prediction, the algorithm first
finds its four structural similar sets from the species-specific refer-
ence structure collection using the ExpaRNA [17] distance. Notice



Fig. 1. The workflow of SSRTool. (a), (b), and (c) refer to the three different ways to provide inputs for the corresponding three webtool functions of SSRTool. (a)(b) Users can
either provide a list of predicted structures of an RNA sequence or a raw sequence (for prediction generation) into SSRTool. SSRTool first calculates the functional
interpretability significance score rankings for each given prediction. And then, those functionally interpretable predictions are extracted and aggregated to suggest the most
native-like candidate structure. (c) A specific structure of interest can also be input into SSRTool to identify the potential functional aspects of this structure.
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that ExpaRNA considers only the local plain structures in calculat-
ing the structure distances. For provided pseudoknotted predic-
tions, the pseudoknot pairings are ignored when calculating
functional significance for these pseudoknotted predictions. The
species-specific reference structure collections encompass experi-
mentally verified structures for RNA sequences found in individual
species. And there are four categories comprising the species-
specific reference collections: the structural fitness ncRNAs, the
structural ncRNAs with known RNA–protein interactions (RPIs),
the regulatory structures in 5’UTRs, and the regulatory substruc-
tures in 3’UTRs. We have gathered these reference structure collec-
tions in six species in SSRTool. And the preparation of them is
described in Section 2.3. The structural similar sets of a structure
in these four parts can be intermediates to help check if this given
structure prediction is prevalent in cellular fitness, RPI complex
formation [18], translational regulation [19], and post-
transcriptional regulation [20], respectively. Based on the struc-
tural similar sets, the functional interpretability scores of the given
predicted secondary structure are calculated.

To calculate the interpretability scores in the four RNA func-
tional aspects (cellular fitness, RPI complex formation, transla-
tional regulation, and post-transcriptional regulation), we refer to
the following species-specific tests: the functional profiling coher-
ence test [21], the translation efficiency test [22], the protein-
complex prevalence test [23], and the gene ontology enrichment
2475
test [23]. We have prepared these tests in six species in SSRTool.
And the datasets that support these species-specific tests are
described in Section 2.4. The algorithm first considers the func-
tional profiling coherence of the extracted fitness ncRNA similar
set to estimate the cellular fitness significance of the given pre-
dicted structure. And to evaluate the functional significance for
the predicted structure to be involved in an RPI complex, we con-
sider if the protein set having interactions with the ncRNA struc-
tural similar set is prevalent in protein-complex or enriched in
gene ontology. For evaluating the translational regulation inter-
pretability, the translation efficiency of mRNAs for the 5’UTR struc-
tural similar set is estimated. Finally, to calculate the significance
of the predicted structure to participate in post-transcriptional reg-
ulation, the 3’UTR structural similar set is tested if the mRNAs with
these 3’UTRs are prevalent in protein interaction complex or
enriched in gene ontology. The significance results were repre-
sented in q-values, or the calibrated test p-values via the FDR (false
discovery rate) multiple hypotheses correction procedure. Details
of these tests can be found in [16].

2.2.2. Part II: extract significant predictions and aggregate the most
native-like candidate secondary structure

After calculating the four functional interpretability scores for
each structure prediction, the prediction ranking algorithm assigns
the best functional score (the lowest interpretability q-value of the
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four aspects) for each predicted structure. These assigned best
functional interpretability scores are then used as the confidence
rankings for the given list of predicted structures. Furthermore,
functionally interpretable secondary structures are extracted
against a user-defined significance threshold. Based on the ensem-
ble of functionally interpretable structures, the meta-stable struc-
ture is obtained based on weighted aggregation using the
significance scores (See [16] for the detailed formula). The meta-
stable structure is also suggested as the most native-like candidate
secondary structure for users.
2.3. Generation of the species-specific reference structure collections

In Part I of the implemented prediction ranking algorithm,
species-specific reference structure collections with known func-
tionality are needed. We BLASTed the BRAlibaseII RNA structure
benchmark dataset [24] with the following datasets to obtain the
4 parts of the species-specific reference structure collections in
SSRTool (E-value < 1e-6, percent-identity > 70%): (1) cellular
fitness-related ncRNAs. We downloaded 443 ncRNAs that have
undergone fitness functional profiling experiments from the work
of Parker et al. [25]. (2) ncRNAs with RPIs. The literature-curated
RPI data for Saccharomyces cerevisiae was gathered from the work
of Panni et al. [26]. And the literature-curated RPI data for Homo
sapiens, Mus musculus, and Rattus norvegicus were gathered from
the RNAInter v3.0 database [27]. In order to eliminate noises, we
enforced that the confidence of each RPI relation should be larger
than 0.7 to be used in SSRTool. Since there are only few ncRNAs
with RPI information in Arabidopsis thaliana and Danio rerio thus
far, the RPI complex significance estimation was unavailable and
thus omitted in these two species. The sequences of the ncRNAs
in different species were downloaded from the RefSeq database
[28]. (3) The 5’UTR and 3’UTR sequence datasets. We downloaded
the transcript datasets of Arabidopsis thaliana and Saccharomyces
cerevisiae from the TAIR database [29] and the SGD database
[30], respectively. And the transcript information of Homo sapiens,
Mus musculus, Rattus norvegicus, and Danio reriowere adopted from
the UCSC genome browser [31]. Finally, the following genome
assembly versions were used: Saccharomyces cerevisiae (S288C),
Homo sapiens (hg38), Mus musculus (mm39), Rattus norvegicus
(rn7), Arabidopsis thaliana (TAIR10), and Danio rerio (danRer11).
We have also considered the possible reference structure collec-
tions for Drosophila melanogaster and Caenorhabditis elegans. How-
ever, there are insufficient sequences with known structures that
can be matched in these two species. These two species were thus
not included in SSRTool. The numbers of reference sequences with
known structures collected and used for different species in
SSRTool are summarized in Table 1.
2.4. Datasets for computing the species-specific functional
interpretability significance

SSRTool utilizes the prediction ranking algorithm to consider
four functional aspects for every candidate structure: cellular fit-
Table 1
The summary of sequences with known structures for the species-specific reference
collections gathered in SSRTool.

Species ncRNA Structures
w/ Known RPIs

Structures
in 5’UTR

Structures
in 3’UTR

Homo sapiens 709 208 552
Saccharomyces cerevisiae 323 109 351

Mus musculus 128 55 191
Rattus norvegicus 6 20 388

Danio rerio – 54 134
Arabidopsis thaliana – 407 340
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ness, RPI complex formation, translational regulation, and post-
transcriptional regulation. The functional interpretability scores
for each structure prediction in these four aspects are estimated
using combinations of the following four biological significance
tests and datasets: (1) Fitness profiling coherence test: used to
evaluate the cellular fitness aspect of the candidate secondary
structure. In this test, the fitness profiling scores of a fitness ncRNA
similar set are compared to those of the fitness ncRNA reference
collection using the rank-sum test [22]. To perform the fitness
coherence test, we adopted the fitness functional profiling data
from the work of Parker et al. [25]. (2)/(3) Interaction complex
prevalence test and the gene ontology enrichment test: designed
to estimate the RPI complex formation and the post-
transcriptional regulation interpretability. Based on the Fisher
exact test [23], we test the interaction complex prevalence and
gene ontology enrichment of the proteins interacting with the
RPI ncRNA similar set for RPI complex interpretability. Similar,
these tests are performed on the genes transcribed to contain the
3’UTR structural similar set for post-transcriptional regulation
interpretability. For all species, the physical protein–protein inter-
action data were gathered from the BioGRID database [32]. And the
gene ontology annotation terms in different species were all down-
loaded from the Gene Ontology Consortium database [33]. (4)
Ribosome profiling coherence test: adopted to calculate the trans-
lational interpretability significance. In this test, the ribosome pro-
filing coherence of the 5’UTR structural similar set is compared
with that of the species-specific 5’UTR regulatory reference struc-
ture collection via the rank-sum test [22]. For Homo sapiens, we
obtained the preprocessed ribosome profiling datasets from the
HRPDViewer database [34]. And for Saccharomyces cerevisiae, 5 dif-
ferent ribo-seq datasets were downloaded and merged to be used
in the test: methionine-restricted cells [35], ribonuclease-treated
strains [36], rich/starvation conditions [37], cells in the elongation
phase [38], and localization identification environments [39]. For
Mus musculus, Rattus norvegicus, Danio rerio, and Arabidopsis thali-
ana, we downloaded the species-specific ribosome profiling data-
sets from the RPFdb database [40].
2.5. Implementation of SSRTool

The core prediction ranking algorithm of SSRTool is imple-
mented using the Python programming language (version
3.6.12). And the online web software is implemented using the
PHP Model-View-Controller (MVC) framework CodeIgniter (ver-
sion 2.1.3) as the back-end and the JavaScript framework JQuery
(version 3.31) as the front-end. The RNA secondary structure visu-
alization is presented using Forna [41].
3. Utility and Discussion

3.1. Web software interface

Since structure prediction for a given RNA sequence is usually
performed before its actual secondary structure is clear, it is vital
to evaluate the confidence of different predictions and infer the
most prevalent structure among them. We constructed SSRTool
to tackle this obstacle. The prediction ranking algorithm based on
functional interpretability was implemented with an easy-to-use
interface. Three functions were implemented in SSRTool to assist
the evaluation of different predictions: (1) Function 1: Rank Predic-
tions. In this function, users can provide a list of candidate struc-
ture predictions for a given RNA sequence, and SSRTool can help
evaluate the confidence rankings of these predictions based on
species-specific functional interpretability. (2) Function 2: Gener-
ate and Rank Predictions. Users can also provide only the RNA
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sequence of interest. In SSRTool, we implemented an automated
pipeline for carrying out the prediction process for a given
sequence to facilitate easy utilization of existing tools. The automa-
tion pipeline in SSRTool integrates 19 different tools and calculates
the species-specific functional ranking for each prediction. SSRTool
includes tools that are publicly available under the GNU General
Public License or are declared to be free for academic usage: RNA-
Fold [42], RNALfold [43], RNAprob [44], MaxExpect [45], RNAali-
fold [46], TurboFold [47], SPARSE [48], MXSCARNA [49],
aliFreeFold [50], LocARNA [51], comRNA [52], RME [53], Ipknot
[7], ProbKnot [54], ShapeKnots [55], pKISS [56], pknots [57], Fold
[58], and Multilign [59]. In SSRTool, the prediction tools were
applied to the given input sequence using default parameters sug-
gested by the authors. And for tools that require homologous
sequence information, the top five similar ones to the given
Table 2
The computation time estimation (for a 352-base-long sequence processed when the serv

SSRTool Functions Estimated Execution Time A

Function 1: Rank Predictions � 4.5 min (for 19 structures)
Function 2: Generate & Rank Predictions � 10 min (using 19 tools)

Function 3: Infer Interpretability � 1 min

Fig. 2. The interfaces of the three functions provided in SSRTool. (a) Function 1: Rank Pred
predictions from one sequence based on functional interpretability. (b) Function 2: Gene
SSRTool will execute the automated structure prediction pipeline of 19 tools. Then these
Interpretability. Users can input a secondary structure of interest, and SSRTool will com
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sequence provided by the Rfam rfam_scan.pl tool [60] are fed
into these homology-based tools. (3) Function 3: Infer Inter-
pretability. An extra function was implemented in SSRTool to help
users infer the functional aspects of an RNA structure of interest.
Users first input the RNA structure and then select the targeted
species. SSRTool will compute the species-specific functional sig-
nificance of the structure in four functional aspects. For each of
these three SSRTool webtool functions, the estimated execution
time (for a 352-base-long sequence processed when the server is
not heavily loaded) and fundamental limitations in the maximum
allowed sequence number and sequence/structure length are sum-
marized in Table 2. The allowed maximum sequence length for
each function of SSRTool is 2000 bases. However, in Function 2
(Generate and Rank Predictions) of SSRTool, the Multilign/Ipknot
prediction tools by design can only accept sequences with lengths
er is not heavily loaded) and limitations of the functions in SSRTool.

llowed Sequence Number Allowed Maximum Sequence/Structure Length

P1 predicted structures < 2000
1 sequence < 2000
1 structure < 2000

ictions. Users can use this function to rank the significance of the provided structure
rate and Rank Predictions. Users can also provide the RNA sequence of interest, and
predictions will be ranked based on functional interpretability. (c) Function 3: Infer
pute the functional significance of the structure in four functional aspects.
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less than 600/1500 bases. Since some of the tools can only accept
canonical nucleotides, we restrict the input sequence to contain
only canonical nucleotides (AUGC) for consistency in SSRTool.

In the input page of SSRTool, users need to specify different
input data and parameters (Fig. 2). In Function 1 (Rank Predictions)
of SSRTool (Fig. 2-a), users need to upload a .zip file of predicted
structures in the .ct format or a list of predicted structures in the
dot-bracket format. In Function 2 (Generate and Rank Predictions)
of SSRTool (Fig. 2-b), users can either type in the RNA sequence of
interest or upload the sequence in the .fasta format. Then the
prediction tools intended to be included in the automated predic-
tion process should be chosen. And a user-interested structure (ei-
ther in the .ct format or in the dot-bracket format) is required in
Function 3 (Infer Interpretability) of SSRTool (Fig. 2-c). Notice that
the species under consideration and the threshold of functional
significance should be selected in all three functions. Since the
Fig. 3. The result page of prediction rankings and the suggested most native-like candid
The suggested most native-like secondary structure aggregated from the functionally
structures. (d) The structure listed in the result page can all be downloaded in .fasta for
prediction.
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web service may take a while to generate the rankings and the
functional significance results, which depends on the server work-
load and the input sequence length, SSRTool allows users to leave
an email for further notification when the job is finished. After
completing the job, users will be directed to the detailed result
page, which contains the rankings and functional significance
scores of each predicted secondary structure (See Fig. 3 and the
”A walk-through example” section). All the predicted structures
can be visualized and downloaded in SSRTool.

3.2. A walk-through example

We provide a walk-through example of the human U11 snRNA
(small nuclear RNA) to demonstrate the results generated by
SSRTool (See Fig. 3). We utilize Function 2 (Generate and Rank Pre-
dictions) and input the RNA sequence of the U11 snRNA to SSRTool.
ate structure by SSRTool. (a) The user-specified input and algorithm parameters. (b)
interpretable predictions. (c) The individual significance rankings of the predicted
mat or visualized by Forna. (e) The visualization of the selected secondary structure
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In this example, all 19 prediction tools are included in the predic-
tion process, and the significance threshold is set to be 0.05. As
shown in the result page, the user-specified input sequence and
the chosen parameters are first listed as a reminder for the user
(Fig. 3-a). Then the meta-stable secondary structure aggregated
from functionally interpretable structure predictions is given as
the suggested most native-like candidate secondary structure.
And the functional interpretability significance scores in four
aspects are tabulated for this meta-stable secondary structure
(Fig. 3-b). Finally, the detailed significance rankings for the pre-
dicted structures of the given RNA sequence are provided in a tab-
ular form (Fig. 3-c). Users can visualize or download all structure
predictions by clicking the links under the ”Structure” column
(Fig. 3-d and 3-e). By examining the result page of SSRTool, users
can get an idea of the most native-like structure prediction and
the possible functional aspects of the given RNA. And users can also
investigate the confidence ranking of each predicted structure.
Similar result pages are provided in Function 1 (Rank Predictions)
and Function 3 (Infer Interpretability) of SSRTool.

3.3. Case study

SSRTool is designed to help rank the prediction results and sug-
gest the most native-like candidate secondary structure of a given
RNA sequence. We first demonstrate the biological applicability of
SSRTool using the human U11 snRNA sequence that participates in
the spliceosome. We input the U11 sequence into SSRTool Function
2 (Generate and Rank Predictions) to automatically perform the
prediction process using the 19 integrated tools and then rank
Fig. 4. The confidence ranking results of the HIV-1 RRE sequence. (a) The input paramet
for the meta-stable structure. (b) The visualization of the aggregated meta-stable struct
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these predictions based on functional significance. The results
reveal that the most native-like candidate structure is enriched
in RPI complex formation (interpretability q-value = 1.443e-26*)
and post-transcriptional regulation (interpretability q-value
= 2.110e-03*, see Fig. 3-b). The experimental secondary structure
of U11 has now been verified to contain a 5’-ended stem-loop as
the splice site and four other stem-loops [61]. By comparing the
most native-like candidate secondary structure suggested by
SSRTool (See Fig. 3-e) with the experimentally verified structure,
F1 = 0.988 is achieved. The high F1 value indicates the applicability
of SSRTool in ranking predictions based on functional significance.
And in previous experiments, the functional roles of U11 within
the spliceosome RPI complex have also been confirmed to target
mRNA introns by the 5’-ended stem-loop for subsequent splicing
[62], matching the identified significant RNA–protein interaction
and post-transcriptional regulation aspects of U11. These calcu-
lated functional significance results in SSRTool are consistent with
the experimental findings. Therefore, SSRTool can suggest the most
native-like structure and the functionally significant aspects of an
RNA sequence for users.

We provide a biochemically probed RNA secondary structure as
another example for utilizing SSRTool. The human immunodefi-
ciency virus (HIV) Rev protein responsive element (RRE) is the
essential molecule in HIV gene regulation. And the dominant con-
formation structure of HIV-1 RRE was probed by the SHAPE chem-
ical reagents in previous works [63]. We input the HIV-1 RRE
sequence into SSRTool Function 2 (Generate and Rank Predictions)
to perform the automatic structure prediction and ranking using
the human reference species. The results are summarized in
ers, the aggregated meta-stable structure, and the computed functional significance
ure.



Table 3
The structure prediction performance comparison in Mus musculus. The values are
represented in the form of average � relative standard error.

Prediction Tool F1 Precision Recall

SSRTool aggregation 0.650 � 2.4% 0.650 � 2.5% 0.672 � 2.5%
RNAfold 0.605 � 2.6% 0.572 � 2.6% 0.656 � 2.5%
HotKnots 0.605 � 2.7% 0.575 � 2.8% 0.654 � 2.7%

IterativeHFold 0.602 � 2.7% 0.573 � 2.8% 0.651 � 2.8%
MaxExpect 0.597 � 2.6% 0.570 � 2.6% 0.645 � 2.6%
RNAalifold 0.586 � 2.6% 0.548 � 2.6% 0.651 � 2.6%
ProbKnot 0.585 � 2.5% 0.549 � 2.5% 0.646 � 2.6%

SHAPEKnots 0.576 � 2.6% 0.545 � 2.6% 0.627 � 2.6%
alifreefold 0.573 � 2.5% 0.537 � 2.6% 0.634 � 2.6%
RME_DMS 0.560 � 2.8% 0.533 � 2.8% 0.607 � 2.9%
TurboFold 0.559 � 2.7% 0.535 � 2.8% 0.607 � 2.8%
Multilign 0.559 � 2.8% 0.529 � 2.8% 0.610 � 2.9%
RME_PARS 0.557 � 2.8% 0.539 � 2.9% 0.595 � 2.9%
locaRNA 0.548 � 2.8% 0.511 � 2.8% 0.612 � 2.9%
pKISS 0.544 � 2.7% 0.533 � 2.8% 0.574 � 2.7%
SPARSE 0.542 � 2.8% 0.505 � 2.8% 0.604 � 3.0%
Ipknot 0.517 � 2.4% 0.569 � 2.6% 0.489 � 2.4%
RNAspa 0.501 � 3.1% 0.476 � 3.1% 0.543 � 3.3%
RNALfold 0.418 � 2.9% 0.479 � 3.2% 0.402 � 3.1%
RNAprob 0.388 � 2.3% 0.364 � 2.3% 0.432 � 2.6%

Fold 0.388 � 2.3% 0.364 � 2.3% 0.432 � 2.6%
MXSCARNA 0.341 � 2.4% 0.355 � 2.5% 0.337 � 2.5%

pknots 0.296 � 2.2% 0.277 � 2.1% 0.330 � 2.5%

Table 4
The structure prediction performance comparison in Danio rerio. The values are
represented in the form of average � relative standard error.

Prediction Tool F1 Precision Recall

SHAPEKnots 0.712 � 2.5% 0.695 � 2.4% 0.733 � 2.6%
SSRTool aggregation 0.706 � 2.3% 0.715 � 2.3% 0.708 � 2.4%

RNAfold 0.705 � 2.4% 0.697 � 2.4% 0.717 � 2.4%
MaxExpect 0.698 � 2.4% 0.694 � 2.4% 0.708 � 2.5%
RME_DMS 0.694 � 2.4% 0.683 � 2.4% 0.708 � 2.5%
RME_PARS 0.693 � 2.4% 0.693 � 2.4% 0.700 � 2.5%
ProbKnot 0.692 � 2.4% 0.676 � 2.4% 0.717 � 2.5%
RNALfold 0.671 � 2.8% 0.666 � 2.8% 0.679 � 2.9%
Ipknot 0.655 � 1.6% 0.702 � 1.7% 0.625 � 1.6%

HotKnots 0.639 � 2.4% 0.630 � 2.3% 0.651 � 2.4%
IterativeHFold 0.639 � 2.4% 0.630 � 2.3% 0.651 � 2.4%

pKISS 0.625 � 2.8% 0.627 � 2.8% 0.627 � 2.9%
SPARSE 0.608 � 3.2% 0.594 � 3.1% 0.627 � 3.3%
RNAprob 0.606 � 2.3% 0.595 � 2.3% 0.618 � 2.4%

Fold 0.606 � 2.3% 0.595 � 2.3% 0.618 � 2.4%
locaRNA 0.601 � 3.2% 0.587 � 3.1% 0.620 � 3.3%

RNAalifold 0.570 � 3.0% 0.565 � 2.9% 0.579 � 3.0%
alifreefold 0.563 � 3.0% 0.567 � 3.0% 0.566 � 3.0%
TurboFold 0.563 � 3.0% 0.572 � 3.1% 0.559 � 3.0%
Multilign 0.552 � 2.9% 0.553 � 2.9% 0.555 � 2.9%
pknots 0.472 � 2.1% 0.482 � 2.3% 0.472 � 2.1%

MXSCARNA 0.252 � 2.5% 0.279 � 2.6% 0.236 � 2.5%
RNAspa 0.239 � 3.1% 0.228 � 2.9% 0.252 � 3.2%
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Fig. 4. The results show that the aggregated meta-stable structure
prediction bears five stem-loops and obtains an F1 value of 0.994
to the more functionally active five stem-loop structure identified
by SHAPE experiments [63]. This meta-stable structure also
demonstrates functional significance in RNA–protein interaction
interpretability (q = 6.261e-04*) and post-transcriptional regula-
tion interpretability (q = 2.666e-03*). Researchers have now veri-
fied that the HIV-1 RRE can bind the Rev protein to control HIV
RNA post-transcriptional trafficking [64,63], showing consistency
with the SSRTool-calculated significant functional aspects. This
extra example further validates the biological applicability of
SSRTool.

3.4. Comparison of SSRTool-aggregated results with other prediction
tools in different species

SSRTool provides an automated pipeline for ranking and
extracting functionally interpretable structures of a given RNA
sequence in six different model organisms. It also aggregates the
meta-stable secondary structure based on the calculated functional
significance of the predictions. It is of interest if the aggregated
meta-stable structures help suggest the most native-like candidate
secondary structures. We thus compared the SSRTool-aggregated
secondary structures with the results of 22 existing RNA secondary
structure prediction tools: RNAFold [42], RNALfold [43], RNAprob
[44], MaxExpect [45], RNAalifold [46], TurboFold [47], SPARSE
[48], MXSCARNA [49], aliFreeFold [50], LocARNA [51], RME (both
with the PARS and DMSmodels) [53], RNAspa [65], Ipknot [7], Hot-
Knots [66], IterativeHFold [67], ProbKnot [54], ShapeKnots [55],
pKISS [56], pknots [57], Fold [58], and Multilign [59]. Our previous
study has demonstrated that the prediction ranking algorithm can
provide meta-stable secondary structures for given RNA sequences
with high matches to verified structures in humans and yeast [16].
SSRTtool implements and extends the prediction ranking algo-
rithm to support four additional model organisms (Mus musculus,
Rattus norvegicus, Danio rerio, and Arabidopsis thaliana). We com-
pared the meta-stable secondary structures aggregated by SSRTool
with the 22 existing RNA structure prediction tools in these four
additional model organisms. The accuracy of a predicted structure
can be evaluated using the F1 metric [68]:

Recall ¼ TP
TP þ FN

;

Precision ¼ TP
TP þ FP

;

F1 ¼ 2 � Precision � Recall
Precisionþ Recall

;

where TP counts the matching pairings between the predicted
structure and the actual structure, FP sums up the wrongly paired
base pairs in the predicted structure, and FN represents the number
of missing true pairings in the predicted structure. A high F1 value
of a structure prediction result indicates that this prediction resem-
bles the actual structure.

To gather the ground-truth structure test set for Mus musculus,
Rattus norvegicus, Danio rerio, and Arabidopsis thaliana, we down-
loaded the RNAStralign structure benchmark dataset [12] and
BLASTed these benchmarks to species-specific known RNAs anno-
tated by RefSeq [28] to obtain the species-related structures (E-
value < 1e-6, percent-identity > 70%). We randomly picked 114,
119, 107, and 138 RNA sequences with verified known structures
in Mus musculus, Danio rerio, Arabidopsis thaliana, and Rattus
norvegicus, respectively, as the test sets. The comparison results
for different species are summarized in Table 3, Table 4, Table 5,
and Table 6. Similar to the results in humans and yeast, the aggre-
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gation results from SSRTool outperform most of the existing tools
in the test sets. Although there are fewer available known struc-
tures in the reference collections of Danio rerio, Arabidopsis thali-
ana, and Rattus norvegicus to precisely estimate the functional
interpretability, considering the functional interpretability of
structure predictions still helps users identify the most native-
like candidate secondary structures (performance in at least top
5). On the contrary, no one existing tool is guaranteed to provide
the top five best structure predictions than others among
sequences from different species. These comparison results con-
clude that based on functional interpretability aggregation,
SSRTool can help better suggest the native-like candidate struc-
tures than existing tools.



Fig. 5. The functional significance threshold comparison in identifying the native-
like secondary structures using SSRTool.

Table 6
The structure prediction performance comparison in Rattus norvegicus. The values are
represented in the form of average � relative standard error.

Prediction Tool F1 Precision Recall

HotKnots 0.626 � 3.1% 0.621 � 3.2% 0.638 � 2.9%
IterativeHFold 0.626 � 3.1% 0.621 � 3.2% 0.638 � 2.9%
RNAalifold 0.595 � 2.2% 0.577 � 2.3% 0.627 � 2.0%
alifreefold 0.585 � 2.2% 0.568 � 2.4% 0.614 � 2.0%

SSRTool aggregation 0.566 � 2.7% 0.602 � 2.9% 0.548 � 2.6%
locaRNA 0.559 � 2.5% 0.540 � 2.6% 0.590 � 2.4%
SPARSE 0.558 � 2.5% 0.539 � 2.6% 0.587 � 2.4%

TurboFold 0.537 � 2.7% 0.532 � 2.8% 0.553 � 2.5%
Multilign 0.510 � 2.8% 0.504 � 2.9% 0.524 � 2.7%
RNAspa 0.489 � 2.9% 0.475 � 3.0% 0.512 � 2.9%

MaxExpect 0.472 � 2.8% 0.468 � 2.8% 0.486 � 2.7%
ProbKnot 0.466 � 2.7% 0.456 � 2.8% 0.488 � 2.7%
RNAfold 0.442 � 2.9% 0.427 � 2.9% 0.469 � 2.9%
pKISS 0.442 � 2.6% 0.449 � 2.7% 0.444 � 2.6%

SHAPEKnots 0.427 � 3.1% 0.413 � 3.1% 0.452 � 3.1%
RME_PARS 0.426 � 3.0% 0.429 � 3.1% 0.430 � 2.9%
RME_DMS 0.423 � 2.9% 0.418 � 3.0% 0.436 � 2.9%
Ipknot 0.386 � 1.9% 0.449 � 2.2% 0.351 � 1.7%

RNAprob 0.252 � 1.7% 0.247 � 1.7% 0.264 � 1.8%
Fold 0.252 � 1.7% 0.247 � 1.7% 0.264 � 1.8%

MXSCARNA 0.248 � 1.9% 0.272 � 2.1% 0.234 � 1.8%
pknots 0.200 � 1.4% 0.190 � 1.3% 0.222 � 1.6%

RNALfold 0.191 � 2.2% 0.273 � 3.2% 0.149 � 1.6%

Table 5
The structure prediction performance comparison in Arabidopsis thaliana. The values
are represented in the form of average � relative standard error.

Prediction Tool F1 Precision Recall

RNAalifold 0.656 � 1.7% 0.638 � 1.8% 0.682 � 1.7%
alifreefold 0.644 � 1.8% 0.629 � 1.8% 0.665 � 1.8%
TurboFold 0.638 � 1.9% 0.623 � 2.0% 0.659 � 1.9%

SSRTool aggregation 0.605 � 2.2% 0.608 � 2.3% 0.611 � 2.3%
SPARSE 0.579 � 2.1% 0.558 � 2.1% 0.605 � 2.2%
Multilign 0.575 � 2.2% 0.560 � 2.2% 0.598 � 2.2%
locaRNA 0.567 � 2.2% 0.546 � 2.2% 0.593 � 2.2%

SHAPEKnots 0.541 � 2.1% 0.522 � 2.1% 0.567 � 2.1%
RNAfold 0.532 � 2.1% 0.514 � 2.1% 0.555 � 2.2%

MaxExpect 0.530 � 2.0% 0.519 � 2.0% 0.546 � 2.0%
ProbKnot 0.512 � 2.1% 0.496 � 2.0% 0.534 � 2.1%
HotKnots 0.504 � 2.5% 0.492 � 2.5% 0.522 � 2.6%

IterativeHFold 0.501 � 2.6% 0.489 � 2.5% 0.519 � 2.6%
pKISS 0.490 � 2.3% 0.487 � 2.3% 0.498 � 2.3%

RME_PARS 0.469 � 2.4% 0.465 � 2.4% 0.478 � 2.5%
RME_DMS 0.461 � 2.5% 0.450 � 2.4% 0.477 � 2.6%
Ipknot 0.457 � 1.8% 0.498 � 1.9% 0.430 � 1.8%
RNAspa 0.414 � 3.0% 0.396 � 2.9% 0.437 � 3.2%
pknots 0.366 � 1.8% 0.351 � 1.7% 0.386 � 1.9%

MXSCARNA 0.295 � 1.8% 0.321 � 1.8% 0.278 � 1.8%
RNAprob 0.275 � 1.7% 0.267 � 1.6% 0.288 � 1.8%

Fold 0.275 � 1.7% 0.267 � 1.6% 0.288 � 1.8%
RNALfold 0.256 � 2.3% 0.340 � 3.0% 0.212 � 2.0%
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3.5. Functional significance thresholds help identify native-like
predictions

In calculating the functional interpretability of the given struc-
tures, users can adjust the significance threshold in the imple-
mented prediction ranking algorithm to control the confidence
level. We next provide a thorough analysis of the impact of the
choice of the significance thresholds. In this analysis, we first col-
lected all structure predictions and their corresponding species-
specific functional interpretability significance values from the test
sets in Homo sapiens, Saccharomyces cerevisiae,Mus musculus, Danio
rerio, Arabidopsis thaliana, and Rattus norvegicus. Then we com-
pared the average F1 values of the predicted structures having
interpretability q-values lower than the specified threshold with
those having q-values higher than the specified threshold. We
adopted the thresholds of 0.05, 0.01, 0.005, and 0.001 to estimate
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the threshold effect. As shown in Fig. 5, under all chosen threshold
values, the average F1 values of predictions having interpretability
q-values lower than the selected threshold are always statistically
larger than the average F1 values of those predictions having inter-
pretability q-values larger than the selected threshold (one-tailed
t-test p-value < 0.0001). And from the analysis, the discrimination
using functional interpretability scores performs best when
threshold = 0.05. The threshold of 0.05 is thus suggested for users.
In conclusion, the functional interpretability significance can help
relate the similarities between structure predictions of an RNA
sequence and its actual structure.

4. Conclusions

RNA structure prediction evaluation is currently an urgent task
in functional biology. An online software tool called SSRTool was
implemented in this research to help provide prediction rankings
based on the concept of functional interpretability. In SSRTool,
users can compute the four functional significance scores (cellular
fitness, RPI complex formation, translational regulation, and post-
transcriptional regulation) in six different species (Homo sapiens,
Saccharomyces cerevisiae, Mus musculus, Rattus norvegicus, Danio
rerio, and Arabidopsis thaliana) as confidence rankings for the given
RNA structures or the automatic generated structure predictions of
an RNA sequence. And a user-friendly interface for using SSRTool
was also constructed for convenient usage and visualization. We
reported that the prediction interpretability rankings calculated
by SSRTool could indirectly indicate the similarities between the
predicted structures and the native prevalent structures. We
believe that this online software tool can enhance the computa-
tional analysis of RNA secondary structures and broaden the
understanding of RNA function-structure relations.

Web Service Availability

The online web software SSRTool is freely available online at
available online at https://cobisHSS0.im.nuk.edu.tw/SSRTool/,
http://cosbi3.ee.ncku.edu.tw/SSRTool/, or the redirecting site
https://github.com/cobisLab/SSRTool/.
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