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Summary

Background—Mortality risk stratification based on dichotomising a physiological indicator with 

a cutoff point might not adequately capture increased mortality risk and might not account for 

non-linear associations. We aimed to characterise the linear and non-linear relationships of 27 

physiological indicators with all-cause mortality to evaluate whether the current clinical thresholds 

are suitable in distinguishing patients at high risk for mortality from those at low risk.

Methods—For this observational cohort study of the US non-institutionalised population, we 

used data from adults (≥18 years) included in the 1999–2014 National Health and Nutrition 

Examination Survey (NHANES) linked with National Death Index mortality data collected from 

Jan 1, 1999, up until Dec 31, 2015. We used Cox proportional hazards regression models adjusted 

for age, sex, and race or ethnicity to assess associations of physiological indicators with all-cause 

mortality. We assessed non-linear associations by discretising the physiological indicator into nine 

quantiles (termed novemtiles) and by using a weighted sum of cubic polynomials (spline). We 

used ten-fold cross validation to select the most appropriate model using the concordance index, 

Nagelkerke R2, and Akaike Information Criterion. We identified the level of each physiological 

indicator that led to a 10% increase in mortality risk to define our cutoffs used to compare with the 

current clinical thresholds.

Findings—We included 47 266 adults of 82 091 assessed for eligibility. 25 (93%) of 27 

indicators showed non-linear associations with substantial increases compared with linear models 

in mortality risk (1·5–2·5-times increase). Height and 60 s pulse were the only physiological 

indicators to show linear associations. For example, participants with an estimated glomerular 

filtration rate (GFR) of less than 65 mL/min per 1·73 m2 or between 90–116 mL/min per 1·73 

m2 are at moderate (hazard ratio 1–2) mortality risk. Those with a GFR greater than 117 mL/min 

per 1·73 m2 show substantial (hazard ratio ≥2) mortality risk. Both lower and higher values 

of cholesterol are associated with increased mortality risk. The current clinical thresholds do 

not align with our mortality-based cutoffs for fat deposition indices, 60 s pulse, triglycerides, 

cholesterol-related indicators, alkaline phosphatase, glycohaemoglobin, homoeostatic model 

assessment of insulin resistance, and GFR. For these indicators, the misalignment suggests the 

need to consider an additional bound when only one is provided.

Interpretation—Most clinical indicators were shown to have non-linear associations with all

cause mortality. Furthermore, considering these non-linear associations can help derive reliable 

cutoffs to complement risk stratification and help inform clinical care delivery. Given the poor 

alignment with our proposed cutoffs, the current clinical thresholds might not adequately capture 

mortality risk.
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Introduction

Identification of patients at high risk for poor health and determination of required 

health-care services (eg, additional diagnostic testing) often rely on the dichotomisation 

of physiological indicators.1 For example, glomerular filtration rate (GFR) of less than 90 

mL/min per 1·73 m2 is used to stage chronic kidney disease; however, this threshold is under 

fierce debate as it can vary depending on the investigated outcome (eg, all-cause mortality or 

cardiovascular disease).2 More importantly, the thresholds are sometimes chosen arbitrarily. 

Dichotomising a physiological indicator with a cutoff can be inadequate in discerning 

changes in mortality risk as it does not account for deviation from the cutoff.3 Thus, there 

is a need to evaluate whether the current clinical thresholds are appropriate in distinguishing 

patients at high mortality risk from those at low mortality risk.

Defining reliable risk thresholds requires understanding of whether associations between 

physiological indicators and mortality risk are linear or non-linear.4 The simplest approach 

is to model a physiological indicator as linear with respect to mortality. However, a linear 

approach is limited to only capturing risk that is either strictly increasing or decreasing and 

might not adequately represent the risk at extremes of the distribution, thus suggesting 

the need to consider non-linearity. Most association studies consider linearity or non

linearity separately without quantitatively assessing which of the models better describes 

the relationship between a given physiological indicator and all-cause mortality.5,6 A few 

studies have compared the prediction performance of various types of model such as linear, 

quadratic, cubic, and logarithmic but have not validated their findings, leading to model 

overfitting and lack of generalisation to other populations or cohorts.7 Model flexibility 

has also led to the so-called vibration of effects,8 whereby the direction of associations is 

a function of how variables are modelled, which is a threat to both generalisability and 

reproducibility. Improved risk surveillance and management requires the development of a 

statistical framework to compare models and accurately establish the shape of associations 

between physiological risk factors and mortality so as to define reliable risk cutoffs.

To address these limitations, we aimed to characterise the relationships between 27 

physiological indicators and all-cause mortality in a sample of adults in the USA to compare 

the current clinical thresholds with the risk cutoffs identified in our study. We focused on 

all-cause mortality as it is the ultimate health outcome and it was an outcome used to 

derive the current clinical thresholds for some physiological indicators such as body-mass 

index (BMI)9 and GFR.10 For each physiological indicator, we compared the prediction 

performance of linear models with different non-linear models by applying a data-driven 

approach, assessed the robustness of the models by observing changes in prediction 

performance when extreme measurements are excluded, described the associations between 

each physiological indicator and mortality as characterised by the most appropriate model, 

and evaluated the extent to which current clinical thresholds correspond to the levels leading 

to an increase in mortality risk over baseline mortality risk. We hypothesised that several 

physiological indicators will have non-linear associations with mortality, which will help 

elucidate mismatches between current clinical thresholds and the cutoffs derived from 

mortality risk in our study.
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Methods

Study design and participants

The National Health and Nutrition Examination Survey (NHANES)11 is a cross-sectional 

study done by the US Centers for Disease Control and Prevention to characterise the health 

of a non-institutionalised, civilian US population. For this analysis, we used the continuous 

1999–2014 NHANES data and started with a sample of 82 091 participants. We also used 

data linked with the National Death Index to obtain mortality information (eg, mortality 

status at follow-up and duration of follow-up) collected from Jan 1, 1999, up until Dec 31, 

2015.12 We excluded participants younger than 18 years as their mortality status was not 

available for public release (n=34 737). We also excluded participants who were deemed 

ineligible for mortality linkage if they had insufficient identifying data (n=75) and those who 

were not followed up (n=13) as their time of follow-up was recorded as 0, resulting in a 

sample of 47 266 participants. Exclusion criteria are described further in the appendix (p 

30).

The National Center for Health Statistics research ethics review board provided ethical 

approval of the study. All participants provided written informed consent.

Procedures

We identified 60 biomarkers and measures that characterise physiological function. In 

NHANES, not all physiological indicators are measured in all study participants. As such, 

many participants with mortality data do not have measurements for some physiological 

indicators. Thus, we excluded physiological indicators that have low overlap with mortality 

data by excluding those with measurements in fewer than six NHANES cycles (n=10) 

and with a sample size of less than 10 000 participants (n=21). As we focused on 

continuous variables for studying linear and non-linear associations, we also excluded 

physiological indicators that are categorical (n=2). The final dataset for analysis consisted 

of 27 physiological indicators. Laboratory methods used to measure the physiological 

indicators are provided on the NHANES Laboratory Data website. A comparison of the 

observed characteristics between participants with complete and incomplete data is shown in 

the appendix (pp 3–8).

To characterise how the current clinical thresholds align with the cutoffs of increased 

mortality risk, we compiled a database of thresholds for 23 (85%) of 27 physiological 

indicators from information provided in US clinical and medical news, medical associations, 

and health institute webpages (appendix pp 9–17). Thresholds were not available for height, 

subscapular skinfold, triceps skinfold, and weight. As the same indicator might have several 

thresholds, the range was only used for those indicators with several thresholds. We used 

sex-specific thresholds when available.

Statistical analysis

To produce estimates that are representative of the non-institutionalised, civilian US 

population, we accounted for NHANES sampling designs by applying the survey weights to 

our statistical models.13
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We used Cox proportional-hazards regression models to characterise the associations 

between all-cause mortality and each physiological indicator. For each physiological 

indicator, we assessed linear associations with all-cause mortality and tested two non-linear 

associations by discretising (ie, converting continuous data into discrete groupings) each 

indicator into nine quantiles (novemtiles) and by using a weighted sum of cubic polynomials 

(spline), with the spline model considered the more flexible, non-linear model.14 The 

reference group for the novemtile model is the novemtile with the minimum mean hazard 

ratio. We adjusted for linear age (continuous), sex (categorical), and race or ethnicity 

(categorical). We adjusted for linear age as it showed better prediction performances than 

non-linear age (appendix p 31). We additionally assessed whether the associations between 

mortality and the physiological indicators remained robust after adjusting for smoking 

status, socioeconomic status, and multimorbidity. Smoking status was assessed with serum 

cotinine levels. Socioeconomic status was defined by using the poverty income ratio as a 

categorical variable with five categories: [0,1], (1,2], (2,3], (3,4], and (4,5]. The reference 

group is poverty income ratio of one or less (ie, below the poverty line). Multimorbidity 

was defined using ten major medical conditions: diabetes, asthma, arthritis, congestive 

heart failure, myocardial infarction, stroke, cancer, any liver condition, emphysema, and 

chronic bronchitis. We used multimorbidity as a categorical variable with the reference 

group defined as study participants reporting none of these conditions. We applied a 

data-driven approach by performing ten-fold cross-validation to compare the predictive 

capability of the linear versus non-linear models. We selected the model that best described 

the association between mortality and each physiological indicator by using the Akaike 

Information Criterion, concordance index, and Nagelkerke R2. We provide our justification 

for using these measures of goodness of fit in appendix p 18. We defined CIs around each 

measure by bootstrapping for 1000 replicates. To account for multiple comparisons across 

the models,15 we used a false detection rate method of 5% on the p values of the regression 

coefficients pertaining to the physiological indicators (appendix pp 19–29).

To assess the influence of extreme measurements on the prediction performance, we did 

sensitivity analyses on the distributions of each physiological indicator. We applied a series 

of Cox proportional hazard models on subsamples of participants in the first to 99th, fifth to 

95th, and tenth to 90th percentiles of each indicator.

We used the spline model to identify values of the physiological indicator that showed an 

increased mortality risk of 10% from the baseline risk to compare with the current clinical 

thresholds. Baseline mortality risk was defined as a hazard ratio of 1·0. We applied the same 

procedure for each sex.

We did all analyses using R, version 3.6.0. Our analytical code is publicly available online.

Role of the funding source

The funders of the study had no role in study design, data collection, data analysis, data 

interpretation, or writing of the manuscript.
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Results

We included 47 266 adults of 82 091 assessed for eligibility, with a mean age of 47·4 (SD 

19·7) years, of which 24 486 (51·8%) were women (table 1). Table 2 shows population 

characteristics for each physiological indicator, and the distributions of each indicator are 

shown in the appendix (p 32).

Figure 1 shows the concordance index and Nagelkerke R2 across all the models and 

physiological indicators for two populations: one including all participants and the other 

including those participants who have measurements within the first and 99th percentiles. 

The Akaike Information Criterion and concordance index for these populations are shown 

in the appendix (pp 33–34). The concordance index ranged from 0·8 to 0·9, which is 

fairly high compared with the minimum concordance index at 0·5. The Nagelkerke R2 

ranged from 0·00 to 0·15, which is low compared with the maximum R2 at 1·00. Across 

the fit measures, the non-linear models showed better prediction performances than the 

linear models. The prediction performance of the novemtile models was consistently 

high across all physiological indicators regardless of whether extreme measurements were 

excluded and was also stable as reflected by the narrower CIs compared with other models. 

By contrast, linear models showed low R2s for inflammatory (C-reactive protein [CRP], 

alkaline phosphatase, white blood cell counts), metabolic (homoeostatic model assessment 

of insulin resistance [HOMA-IR]), and nephrological (blood urea nitrogen, creatinine) 

biomarkers when all participants were included. The spline model R2s were also low for 

alkaline phosphatase and cardiovascular biomarkers involving LDL cholesterol. For alkaline 

phosphatase, ratio of total to HDL cholesterol, LDL cholesterol, and ratio of LDL to 

HDL cholesterol, exclusion of measurements outside the first and 99th percentiles resulted 

in improved prediction performance, particularly for the linear and spline models. The 

overfitting is due to the linear and spline models attempting to fit to the outliers. Appendix 

p 35 shows the correlations between decreased sample size and improved prediction 

performance. The sample sizes ranged from 14 127 to 44 288 with indicators of the 

cardiovascular and metabolic system having the smallest sample size, whereas indicators 

of body composition had the largest sample size.

A comparison of the prediction performance of models when including all participants 

with the prediction performance from sensitivity analyses restricting the distribution of the 

physiological indicators to the fifth to 95th and the tenth to 90th percentiles is shown in 

the appendix (pp 36–38). Appendix p 39 shows the statistical significance of all models 

with respect to the prediction performances. Although prediction performance and statistical 

significance improved when the distribution was restricted to the first and 99th percentiles, 

further exclusion did not lead to further improvement for the linear or spline models. By 

contrast, the novemtiles models showed consistent prediction performance and significance 

regardless of the restrictions. This result implies that studying non-linearity with quantile

based models will result in stable predictions, as outliers do not heavily influence these 

models when there are enough participants in each quantile. In our case, we ensured that 

there were at least 1100 participants in each novemtile.
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Figure 2 shows the hazard ratios for mortality risk across the distribution of BMI, 

systolic blood pressure, ratio of total to HDL cholesterol, CRP, HOMA-IR, and GFR for 

the different models. We selected these examples to highlight expected and unexpected 

findings, challenges in model interpretation, and relevance of the clinical thresholds. To aid 

visualisation, we showed the associations when measurements outside the first and 99th 

percentiles were excluded. Appendix p 40 shows the associations for these physiological 

indicators in the entire population, and appendix pp 41–45 shows the relative mortality risk 

for the remaining physiological indicators. As the prediction performance and mortality 

risks for height and 60 s pulse were similar across the models, these two measures were 

linearly associated with mortality. By contrast, the other 25 (93%) of 27 indicators showed 

non-linear associations. The sex-specific associations are shown in the appendix (pp 46–51). 

These figures, along with those comparing the associations with and without covariate 

adjustment are available online on our interactive application with an option to log-scale the 

axis of the physiological indicator.

For BMI, while the non-linear models showed a parabolic association with mortality in 

figure 2A, the linear model suggested that mortality risk is the same across the entire 

distribution. The BMI measurements, showing a 10% increase from minimum mortality risk, 

are shifted higher compared with the current clinical thresholds. After further adjusting for 

socioeconomic status, multimorbidity, and smoking, findings for the non-linear associations 

were fairly robust, although there was some attenuation in mortality risk for participants 

who were obese (36·1–49·9 kg/m2). However, the linear models were not robust, as shown 

by the transition from null associations to negative associations for BMI and mortality 

risk (appendix p 52). Similar findings were observed for the other physiological indicators. 

Figures comparing the associations with and without confounders are available online on 

our interactive application. Low BMI (17·7–23·9 kg/m2) and high BMI (31·7–49·9 kg/m2) 

were more strongly associated with all-cause mortality in men than in women (appendix 

p 47). For mean systolic blood pressure, the linear model identified increased risk with 

elevated blood pressure (figure 2B). However, the non-linear models suggest a parabolic 

association between mortality and systolic blood pressure. In figure 2C, the non-linear 

models suggest that lower and higher ratios of total to HDL cholesterol are associated 

with higher mortality risk than mid-range values. By contrast, the linear model shows a 

positive association between the ratios and mortality. Increased mortality risk aligns with 

the current clinical threshold for the ratio of total to HDL cholesterol for men but is 

higher than the threshold for women (appendix p 46). In figure 2D, discretisation of CRP 

concentrations into novemtiles shows that a sigmoidal function better characterises this 

association compared with the linear model. Mortality risk becomes apparent for CRP at 

the current clinical threshold of 0·1 mg/dL. In figure 2E, all models agree that elevated 

HOMA-IR is associated with increased mortality risk but disagree with the mortality risks at 

lower HOMA-IR, with the spline suggesting increased risk, novemtiles suggesting no effect, 

and linear models suggesting lower risk. In figure 2F, for GFR, the linear model suggests 

that participants with values less than the clinical threshold of 90 mL/min per 1·73 m2 are 

at higher risk of mortality.16 However, the non-linear models suggest that participants with 

a GFR of less than 65 mL/min per 1·73 m2 or between 90–116 mL/min per 1·73 m2 are 
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at moderate risk. Risk becomes substantial for participants with a GFR greater than 117 

mL/min per 1·73 m2.

Table 3 shows a comparison of the current clinical thresholds for the physiological indicators 

with measurements indicative of a 10% increase from the minimum mortality risk to 

help identify discrepancies between the current clinical thresholds and those derived from 

mortality risk. The difference between the clinical thresholds and those derived from 

mortality risk is minimal for CRP, creatinine, the upper bound of glycohaemoglobin, and 

blood urea nitrogen, suggesting that the physiological state is equivalent to the risk for 

mortality. By contrast, such differences are substantial for BMI, waist circumference, 60 

s pulse, triglycerides, cholesterol-related indicators, alkaline phosphatase, HOMA-IR, and 

GFR.

Discussion

We present a data-driven approach to identify the models that most appropriately describe 

the association between physiological indicators and all-cause mortality in a sample 

representative of the US population. We analytically tested the prediction capability and 

robustness of linear and non-linear models while penalising models that are more prone to 

overfitting. Prediction performance can be similar across the linear and non-linear models 

(eg, for BMI), which creates challenges in selecting the most appropriate model. Thus, we 

developed a visualisation tool to compare the shape of the associations across the different 

models to help select which model is most informative for characterising physiological risk 

of death. Lastly, we determined whether established clinical thresholds used for medical 

decision-making align with values identified at which mortality risk increases over baseline 

mortality risk. Our findings showed that associations of most physiological indicators 

with mortality were non-linear and that the novemtile models showed the most consistent 

prediction performance regardless of the exclusion of outliers.

Obesity in the USA is a major health problem as 71% of Americans are considered 

overweight or obese;17 at the same time, the prevalence of underweight is also high 

(10–15% of Americans).18 Participants with a lower BMI have an increased mortality 

risk than those with a higher BMI,19 which could be attributed to efficacy of public 

health interventions or improvements in health care for obesity-related conditions.20 In 

addition, the associations with mortality were shown in our study to have shifted, with 

the minimum risk found within 24–30 kg/m2 instead of at 24 kg/m2, which is consistent 

with other studies.21 This shift further emphasised how our proposed thresholds, defined as 

measurements showing a 10% increase from minimum mortality risk, are shifted upward 

from the current clinical thresholds. This shift might be due to secular changes in the 

population such as variations in dietary habits, food availability, and national prosperity.9 

The thresholds calibrated to all-cause mortality in 1995 are still being used,9 even though 

mounting evidence indicates that the associations between BMI and mortality have changed 

since then.21 In addition, the associations of all-cause mortality with lower and higher BMI 

were weaker in women than in men, which might suggest residual confounding due to sex 

differences or the survival advantage of adipose distribution in women.22 These findings 
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prompt the need for future research to assess the influence of caloric intake and adipose 

tissue mass on mortality risk.

Our results support low GFR (hypofiltration)23 and surprisingly elevated GFR 

(hyperfiltration)24 as potentially reflecting renal injury. As the curation criteria of the 

Chronic Kidney Disease Prognosis Consortium restricted the distribution of GFR to a 

maximum of 120 mL/min per 1·73 m2, hyperfiltration was not associated with all-cause 

mortality, but hypofiltration showed a significant and substantial increase in mortality risk.2 

Thus, a lower but not upper bound was established for the threshold for GFR.2 As the 

maximum GFR was 151·5 mL/min per 1·73 m2 for NHANES participants within the first 

and 99th percentiles, we found that mortality risk for participants with hyperfiltration is 

twice as high as those with hypofiltration in the novemtiles model. Mortality risk for 

participants with hyperfiltration was just as high when we included all participants with 

GFR estimates and the maximum GFR was 207·6 mL/min per 1·73 m2. These results and 

findings from existing literature indicate associations between hyperfiltration and mortality 

risk, diabetes risk, and early kidney disease.16,25,26 A plausible explanation for these 

associations might be related to how elevated GFR can overwhelm and subsequently damage 

the capacity of the renal tubules to reabsorb fluids and minerals from the urine.27 Damaged 

or destroyed tubules can lead to a common type of kidney injury known as acute tubular 

necrosis, which has been implicated in kidney failure.28 Such damage is highly associated 

with mortality.29 In addition, these results are especially pertinent to Native Americans 

and non-Hispanic Black Americans,30,31 who have higher mean GFR levels. Overall, these 

findings emphasise the need for future investigations to study the associations of GFR with 

other health endpoints to verify the relevance of lower and upper thresholds.

We found non-linear associations for cholesterol-related biomarkers. The non-linear models 

supported the growing literature on the associations between higher HDL concentrations 

and increased mortality risk.32 The current notion of LDL being the unhealthy cholesterol 

implies that higher LDL concentrations are associated with increased risk.33 However, 

our non-linear results show a stronger association between mortality and lower LDL 

concentrations compared with higher concentrations.34 It is unclear if these associations are 

due to pre-existing disease leading to low cholesterol concentrations,35 adverse side-effects 

from lipid-lowering medications,36 or low LDL concentrations being a causal factor of 

mortality.37 There is a need to study the role of low cholesterol levels on mortality beyond 

cardiovascular disease to help establish the need for lower and upper thresholds.

Several mortality risk scores that dichotomised physiological indicators use a cutoff, 

such as a clinical threshold or a percentile.38 For physiological indicators that have 

parabolic associations with mortality, using only one cutoff to dichotomise the indicator 

will result in mischaracterising mortality risk, often in the opposite direction away from 

increased mortality risk. Mortality risk, at times, increases substantially when biomarker 

concentrations deviate from the cutoff point but is not accounted for in these risk scores. 

Therefore, our findings prompt the need for future studies to investigate whether accounting 

for the non-linear associations helps to discern risk for death.
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We observed that for some indicators, the current clinical thresholds and our thresholds 

derived from mortality risk differ substantially. For example, our proposed thresholds for 

BMI and relative fat mass index are shifted upward from the current clinical thresholds. 

Such results suggest that understanding why physiological risks of mortality are changing 

over time is a prerequisite for determining how to recalibrate the thresholds to improve risk 

stratification. In addition, differences between our proposed versus current thresholds show 

the need to consider an additional bound when only one bound is clinically recommended. 

This requirement is especially important for waist circumference, 60 s pulse, triglycerides, 

cholesterol related indicators, alkaline phosphatase, glycohaemoglobin, HOMA-IR, and 

GFR. Additionally, differences between our proposed versus current thresholds show 

disagreement on defining the range of minimal risk. For example, estimated GFR between 

60–90 mL/min per 1·73 m2 is clinically defined as indicating mild decline in kidney 

function,39 but our results show that this range is associated with minimal risk. However, 

replication of our findings with respect to mortality requires follow-up in other databases to 

establish the utility of an additional bound or to reconsider the bounds used for minimal risk. 

Furthermore, future studies could investigate the associations of the physiological indicators 

with other clinical outcomes (eg, disease), which are more clearly linked to clinical care, to 

help elucidate mismatches between the current clinical thresholds and those derived from 

disease risk.

Characterising the shape of the associations between physiological indicators and risk for 

death is essential to prevent false negative findings when using the wrong model (eg, a 

linear one). Modelling the shape of the association with quantiles and splines enables us 

to observe trends in mortality risk across the distribution of a physiological indicator. As 

the spline model enabled us to observe a smooth dose-response curve, it was particularly 

useful for defining cutoffs based on mortality risk to compare with the clinical thresholds. 

Although the linear model was limited in characterising the nonmonotonic associations, 

it served as a comparison for the non-linear models, revealing that height and 60 s pulse 

have linear associations with mortality. A systematic approach to characterising the shape 

of the associations is integral to identifying patients at high risk for mortality so as to 

inform clinical care delivery. Although we did not evaluate how non-linear associations with 

all-cause mortality can be directly used in clinical care delivery, other studies have used 

associations observed in an institutionalised population to provide evidence-based guidance 

for delivering clinical care to patients at high risk.40

This study has several limitations. First, we focused on mortality; however, the clinical use 

cases for most of these clinical physiological indicators are clinical outcomes such as disease 

(eg, cardiovascular disease, diabetes, or kidney disease). We cannot conclude that the same 

non-linear relationships hold for disease risk. Relatedly, chronic disease can lead to death, 

and we have not considered the role of multimorbidity in the trajectory between indicators 

and death. We recommend that future investigations consider outcomes that mediate the 

association between physiological indicators and mortality using longitudinal datasets 

with follow-up data available between measurements, disease incidence, and mortality. 

Second, we examined individuals who were, for the most part, asymptomatic and non

institutionalised. Broad testing of individuals who are asymptomatic might lead to incidental 

findings (ie, findings unrelated to the variables assessed in the study).41 Future analyses 
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could apply our data-driven approach to study how the associations between these indicators 

and mortality risk and the prediction performance of these models might change in a 

hospitalised population. Third, we did not consider changes in physiological measurements 

over the follow-up period. Fourth, we did not evaluate how other demographic or lifestyle 

factors might influence the associations between a physiological indicator and mortality. 

Future analyses could build upon our baseline model to quantify the type of role (eg, 

mediating, moderating, or confounding) that such factors have in these associations. 

Moreover, future directions could also examine how the prediction performance changes 

when including other lifestyle factors, as such analyses might lead to increased prediction 

performance and thus increase the reliability of the new proposed thresholds for the 

physiological indicators. However, the effect of bias becomes increasingly difficult to 

untangle with more complex models, therefore requiring other machine learning methods to 

account for complex interactions among the covariates. Fifth, we observed that physiological 

indicators with smaller sample sizes showed better prediction performance; thus we caution 

against using our results to infer the relative importance of the indicators on mortality. Sixth, 

we did not characterise the independent effects of the indicators on mortality by including 

all physiological indicators in the same multivariable model. Therefore, future studies could 

explore other machine learning methods to account for the complex interactions and multi 

collinearity (ie, whereby one predictor variable in a multiple regression model can be 

linearly predicted from the others) among the physiological indicators. Accounting for such 

interactions and multicollinearity could change the shape of the associations between the 

physiological indicators and mortality and thus, in turn, change the cutoff point at which 

the clinical thresholds should be defined. Seventh, although we considered sex-specific 

thresholds, we did not consider age-specific thresholds to prevent our study from becoming 

overly complex. However, future work could apply our methods to age-stratified analyses 

to compare age-specified clinical thresholds with those derived from mortality or disease 

risk, or both. In addition, as our study population is from the USA, we used US-based 

clinical thresholds, which are based on international guidelines for some indicators (eg, BMI 

and GFR). However, future investigations could incorporate clinical thresholds defined by 

WHO or other international guidelines to expand our methods to study participants from 

other countries. Finally, we were not able to confidently characterise the mortality risk for 

participants with extreme values due to a smaller sample size. Thus, there is a need for 

samples including more participants with extreme measurements.

The shape of the associations between physiological indicators and mortality has not 

been systematically nor precisely documented in the context of assessing how the current 

clinical thresholds perform in differentiating patients with high and low mortality risk. We 

extended a data-driven framework to establish the appropriate model to best characterise 

the associations with all-cause mortality for various physiological indicators. We established 

that most of the studied physiological factors have a non-linear association with mortality 

in a non-institutionalised adult population, identified unexpected directionality in the 

associations between estimated GFR and cholesterol-related biomarkers and increased risk 

of mortality, and observed substantial differences between the current clinical thresholds 

and those derived from mortality risk for several indicators, with differences for some 

indicators suggesting the need for both lower and upper bounds. Although we systematically 
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characterised the shape of physiological risk with respect to mortality, triangulation with 

other clinical outcomes is required for updates to clinical guidance.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We thank Brenda Gillespie for helping us with the statistical analysis and data interpretation. This work was 
supported by the Ravitz Family Foundation, the Forbes Institute for Cancer Discovery at the University of Michigan 
Rogel Cancer Center, Harvard Data Science Institute, and the National Institutes of Health (grant numbers R01 
ES028802, P30 ES017885, P30 CA046592, T32 GM070499, and R01 AI12725003).

Funding Ravitz Family Foundation, Forbes Institute for Cancer Discovery, and National Institutes of Health.

References

1. Prince Nelson SL, Ramakrishnan V, Nietert PJ, Kamen DL, Ramos PS, Wolf BJ. An evaluation 
of common methods for dichotomization of continuous variables to discriminate disease status. 
Commun Stat Theory Methods 2017; 46: 10823–34. [PubMed: 29962658] 

2. Matsushita K, van der Velde M, Astor BC, et al. Association of estimated glomerular filtration 
rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a 
collaborative meta-analysis. Lancet 2010; 375: 2073–81. [PubMed: 20483451] 

3. Rappaport SM, Smith MT. Epidemiology. Environment and disease risks. Science 2010; 330: 460–
61. [PubMed: 20966241] 

4. Mazidi M, Mikhailidis DP, Banach M. Associations between risk of overall mortality, cause-specific 
mortality and level of inflammatory factors with extremely low and high high-density lipoprotein 
cholesterol levels among American adults. Int J Cardiol 2019; 276: 242–47. [PubMed: 30473336] 

5. Hojs Fabjan T, Penko M, Hojs R. Cystatin C, creatinine, estimated glomerular filtration, and 
long-term mortality in stroke patients. Ren Fail 2014; 36: 81–86. [PubMed: 24028541] 

6. Zaccardi F, Dhalwani NN, Papamargaritis D, et al. Nonlinear association of BMI with all-cause 
and cardiovascular mortality in type 2 diabetes mellitus: a systematic review and meta-analysis of 
414,587 participants in prospective studies. Diabetologia 2017; 60: 240–48. [PubMed: 27888288] 

7. Song X, Jousilahti P, Stehouwer CDA, et al. Cardiovascular and all-cause mortality in relation to 
various anthropometric measures of obesity in Europeans. Nutr Metab Cardiovasc Dis 2015; 25: 
295–304. [PubMed: 25315666] 

8. Patel CJ, Burford B, Ioannidis JPA. Assessment of vibration of effects due to model specification 
can demonstrate the instability of observational associations. J Clin Epidemiol 2015; 68: 1046–58. 
[PubMed: 26279400] 

9. WHO. Physical status: use and interpretation of anthropometry; report of a WHO Expert Committee 
Geneva: World Health Organization, 1995. https://apps.who.int/iris/bitstream/handle/10665/37003/
WHO_TRS_854.pdf?sequence=1&isAllowed=y (accessed Sept 8, 2021).

10. Eknoyan G, Lameire N, Eckardt K, et al. KDIGO 2012 clinical practice guideline for the 
evaluation and management of chronic kidney disease. Kidney Int 2013; 3: 5–14.

11. Centers for Disease Control and Prevention. National Center for Health Statistics National 
Health and Nutrition Examination Survey Data. 2020. https://wwwn.cdc.gov/nchs/nhanes/
continuousnhanes/default.aspx (accessed Sept 8, 2021).

12. Centers for Disease Control and Prevention. National Center for Health Statistics. NDI mortality 
data Centers for Disease Control and Prevention. 2020. https://www.cdc.gov/nchs/data-linkage/
mortality.htm (accessed Sept 8, 2021).

13. National Center for Health Statistics. Survey Design Factors Course. Continuous NHANES web 
tutorial 2013. https://www.cdc.gov/nchs/tutorials/NHANES/SurveyDesign/intro.htm (accessed 
Sept 8, 2021).

Nguyen et al. Page 12

Lancet Healthy Longev. Author manuscript; available in PMC 2021 November 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://apps.who.int/iris/bitstream/handle/10665/37003/WHO_TRS_854.pdf?sequence=1&isAllowed=y
https://apps.who.int/iris/bitstream/handle/10665/37003/WHO_TRS_854.pdf?sequence=1&isAllowed=y
https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/default.aspx
https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/default.aspx
https://www.cdc.gov/nchs/data-linkage/mortality.htm
https://www.cdc.gov/nchs/data-linkage/mortality.htm
https://www.cdc.gov/nchs/tutorials/NHANES/SurveyDesign/intro.htm


14. Durrleman S, Simon R. Flexible regression models with cubic splines. Stat Med 1989; 8: 551–61. 
[PubMed: 2657958] 

15. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach 
to multiple testing. J R Stat Soc B 1995; 57: 289–300.

16. Astor BC, Levey AS, Stevens LA, Van Lente F, Selvin E, Coresh J. Method of glomerular 
filtration rate estimation affects prediction of mortality risk. J Am Soc Nephrol 2009; 20: 2214–22. 
[PubMed: 19762497] 

17. National Center for Health Statistics. Table 21. Selected health conditions and risk factors, by 
age: United States, selected years 1988–1994 through 2015–2016 2018. https://www.cdc.gov/nchs/
data/hus/2018/021.pdf (accessed Sept 8, 2021).

18. Le Grange D, Swanson SA, Crow SJ, Merikangas KR. Eating disorder not otherwise specified 
presentation in the US population. Int J Eat Disord 2012; 45: 711–18. [PubMed: 22407912] 

19. Pho N, Manrai AK, Leppert JT, Chertow GM, Ioannidis JPA, Patel CJ. Association of 152 
biomarker reference intervals with all-cause mortality in participants of a general United States 
survey from 1999 to 2010. Clin Chem 2021; 67: 500–07. [PubMed: 33674838] 

20. Flegal KM, Graubard BI, Williamson DF, Gail MH. Excess deaths associated with underweight, 
overweight, and obesity. JAMA 2005; 293: 1861–67. [PubMed: 15840860] 

21. Di Angelantonio E, Bhupathiraju SN, Wormser D, et al. Body-mass index and all-cause mortality: 
individual-participant-data metaanalysis of 239 prospective studies in four continents. Lancet 
2016; 388: 776–86. [PubMed: 27423262] 

22. Ball J, Løchen ML, Wilsgaard T, et al. Sex differences in the impact of body mass index on the risk 
of future atrial fibrillation: insights from the longitudinal population-based Tromsø study. J Am 
Heart Assoc 2018; 7: e008414. [PubMed: 29674336] 

23. Okada R, Yasuda Y, Tsushita K, Wakai K, Hamajima N, Matsuo S. The number of metabolic 
syndrome components is a good risk indicator for both early- and late-stage kidney damage. Nutr 
Metab Cardiovasc Dis 2014; 24: 277–85. [PubMed: 24418372] 

24. Perkins RM, Bucaloiu ID, Kirchner HL, Ashouian N, Hartle JE, Yahya T. GFR decline and 
mortality risk among patients with chronic kidney disease. Clin J Am Soc Nephrol 2011; 6: 1879–
86. [PubMed: 21685022] 

25. Donfrancesco C, Palleschi S, Palmieri L, et al. Estimated glomerular filtration rate, all-cause 
mortality and cardiovascular diseases incidence in a low risk population: the MATISS study. PLoS 
One 2013; 8: e78475. [PubMed: 24147135] 

26. Palatini P. Glomerular hyperfiltration: a marker of early renal damage in pre-diabetes and pre
hypertension. Nephrol Dial Transplant 2012; 27: 1708–14. [PubMed: 22431709] 

27. Dalal R, Bruss ZS, Sehdev JS. Physiology, renal blood flow and filtration 2021. https://
www.ncbi.nlm.nih.gov/books/NBK482248/ (accessed Sept 8, 2021).

28. Liu B-C, Tang T-T, Lv L-L, Lan H-Y. Renal tubule injury: a driving force toward chronic kidney 
disease. Kidney Int 2018; 93: 568–79. [PubMed: 29361307] 

29. Esson ML, Schrier RW. Diagnosis and treatment of acute tubular necrosis. Ann Intern Med 2002; 
137: 744–52. [PubMed: 12416948] 

30. Udler MS, Nadkarni GN, Belbin G, et al. Effect of genetic African ancestry on eGFR and kidney 
disease. J Am Soc Nephrol 2015; 26: 1682–92. [PubMed: 25349204] 

31. Mottl AK, Vupputuri S, Cole SA, et al. Linkage analysis of glomerular filtration rate in American 
Indians. Kidney Int 2008; 74: 1185–91. [PubMed: 18854848] 

32. Krewski D, Acosta D Jr, Andersen M, et al. Toxicity testing in the 21st century: a vision and a 
strategy. J Toxicol Environ Health B Crit Rev 2010; 13: 51–138. [PubMed: 20574894] 

33. Colpo A. LDL Cholesterol: ”bad” cholesterol or bad science? J Am Physicians Surg 2005; 10: 83.

34. Olsson AG, Angelin B, Assmann G, et al. Can LDL cholesterol be too low? Possible risks of 
extremely low levels. J Intern Med 2017; 281: 534–53. [PubMed: 28295777] 

35. Vyroubal P, Chiarla C, Giovannini I, et al. Hypocholesterolemia in clinically serious conditions-
review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2008; 152: 181–89. [PubMed: 
19219206] 

Nguyen et al. Page 13

Lancet Healthy Longev. Author manuscript; available in PMC 2021 November 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.cdc.gov/nchs/data/hus/2018/021.pdf
https://www.cdc.gov/nchs/data/hus/2018/021.pdf
https://www.ncbi.nlm.nih.gov/books/NBK482248/
https://www.ncbi.nlm.nih.gov/books/NBK482248/


36. Kilpatrick RD, McAllister CJ, Kovesdy CP, Derose SF, Kopple JD, Kalantar-Zadeh K. Association 
between serum lipids and survival in hemodialysis patients and impact of race. J Am Soc Nephrol 
2007; 18: 293–303. [PubMed: 17167113] 

37. Chmielewski M, Verduijn M, Drechsler C, et al. Low cholesterol in dialysis patients—causal factor 
for mortality or an effect of confounding? Nephrol Dial Transplant 2011; 26: 3325–31. [PubMed: 
21357213] 

38. Muller G, Flecher E, Lebreton G, et al. The ENCOURAGE mortality risk score and analysis 
of long-term outcomes after VA-ECMO for acute myocardial infarction with cardiogenic shock. 
Intensive Care Med 2016; 42: 370–78. [PubMed: 26825953] 

39. Hoffman M. Creatinine test 2020. https://www.webmd.com/a-to-z-guides/creatinine-and
creatinine-clearance-blood-tests#1 (accessed Sept 8, 2021).

40. Manz CR, Parikh RB, Small DS, et al. Effect of integrating machine learning mortality estimates 
with behavioral nudges to clinicians on serious illness conversations among patients with cancer: 
a stepped-wedge cluster randomized clinical trial. JAMA Oncol 2020; 6: e204759–204759. 
[PubMed: 33057696] 

41. Kohane IS, Masys DR, Altman RB. The incidentalome: a threat to genomic medicine. JAMA 
2006; 296: 212–15. [PubMed: 16835427] 

Nguyen et al. Page 14

Lancet Healthy Longev. Author manuscript; available in PMC 2021 November 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.webmd.com/a-to-z-guides/creatinine-and-creatinine-clearance-blood-tests#1
https://www.webmd.com/a-to-z-guides/creatinine-and-creatinine-clearance-blood-tests#1


Research in context

Evidence before this study

Mortality risk stratification based on dichotomising a physiological indicator with a 

cutoff can be poor. We searched PubMed for studies in any language published from 

database inception up to Jan 20, 2020, using the key words “mortality”, “linear”, 

“non-linear”, “validate”, and the name of a given physiological indicator. We found 

12 753 studies characterising linear associations. We found 436 cohort studies that 

identified non-linear associations. 29 (7%) of these studies compared non-linear and 

linear associations. We found several studies (n=398) that compared the prediction 

performance across the different models but that have not validated their findings by 

defining separate training and test sets.

Added value of this study

The linear and non-linear models performed similarly in characterising the association 

between a given physiological indicator and mortality, but this result creates challenges 

in selecting the most appropriate model. We developed a visualisation tool to compare 

the linear and non-linear shapes of the association to help select the most appropriate 

model. Our analyses highlighted the unexpected non-linear associations of glomerular 

filtration rate and cholesterol-related indicators, which could have important clinical 

implications as both lower and higher values than the mid-range are associated with 

increased mortality risk. We used the non-linear associations to identify substantial 

differences between the current clinical thresholds and our proposed cutoffs based on 

mortality risk for several physiological indicators. Such differences suggest the need to 

understand why physiological risks of mortality are changing over time and the need for 

replication in other databases and using clinical outcomes to establish the utility of an 

additional bound or to reconsider the thresholds used for minimal risk.

Implications of all the available evidence

Choosing modelling approaches that do not capture the non-linear relationship with 

mortality can lead to non-optimal, non-precise, and non-sensitive risk stratification. 

Systematically characterising the non-linear relationships can provide clinical guidance 

on deriving reliable thresholds to differentiate patients who are at high risk and low 

risk for mortality and other disease endpoints. However, replication of our findings 

with respect to mortality and additional diverse clinical outcomes (eg, disease) requires 

follow-up in other databases to help provide insights on how clinical guidelines might be 

updated.

Nguyen et al. Page 15

Lancet Healthy Longev. Author manuscript; available in PMC 2021 November 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



See Online for appendix

For NHANES Laboratory Data see https://wwwn.cdc.gov/nchs/nhanes/search/

datapage.aspx?Component=Laboratory

For analytical code see https://github.com/vynguyen92/nhanes_mortality_associations

For the interactive app see https://chiragjp.shinyapps.io/nhanes_mortality_associations/

For the interactive app see https://chiragjp.shinyapps.io/nhanes_mortality_associations/

For data see https://wwwn.cdc.gov/nchs/nhanes/Default.aspx

For data and data dictionary see https://wwwn.cdc.gov/nchs/nhanes/Search/

variablelist.aspx?Component=Demographics

For analytical code see https://github.com/vynguyen92/nhanes_mortality_associations
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Figure 1: Concordance index and Nagelkerke R2 for the associations of all physiological 
indicators with all-cause mortality
The prediction performances are displayed for two populations: one including all 

participants and the other including those participants who have measurements within 

the first and 99th percentiles for a given physiological indicator. Sample sizes for each 

physiological indicator are provided to indicate the number of participants who had data for 

mortality, age, sex, race or ethnicity, and the given indicator. Results were adjusted for age, 

sex, and race or ethnicity.
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Figure 2: HRs relative to physiological indicators across all models
Relative mortality risk for body-mass index (A), mean systolic blood pressure (B), ratio 

of total to HDL cholesterol (C), C-reactive protein (D), homoeostatic model assessment 

of insulin resistance (E), and glomerular filtration rate (F). Participants with measurements 

between the first and 99th percentiles of a physiological indicator are included. Relative 

risks for mortality from the novemtiles model are represented by the boxes with the width 

representing the range of a novemtile and the height representing the 95% CI of the HR. The 

mean HR for each novemtile is represented by a digit. The hazard compares participants in a 

novemtile to those in the reference group at the novemtile shown without a box. The purple 

dot represents the reference point and the measurement of a physiological indicator shown 

to have the lowest HR for the linear and spline models. The red and blue lines represent the 

relative mortality risk with respect to reference point for the linear (red) and spline models 

(blue). The black dot represents the median of a physiological indicator. The dashed green 
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line represents when the HR is 10% higher than the minimum HR—ie, when the HR is 

1·1. The blue diamonds indicate the concentration at which the HR shows a 10% increase 

from the minimum HR. The light purple lines and rectangles represent the values of the 

clinical thresholds with the width of the rectangles representing the ranges of the threshold. 

The values to the left of the purple box indicate early stage of risk and the values to the 

right indicate substantial risk except for F where the direction is reversed. The set of tick 

marks along the base of the plot represent the distribution of a physiological indicator with 

increased opacity implying increased number of participants. The y-axis is log10-scaled. 

Results were adjusted for age, sex, and race and ethnicity. HR=hazard ratio.
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Table 1:

Baseline characteristics

Participants (n=47 266)

Mortality status at follow-up

Deceased 6301 (13·3%)

Alive 40 965 (86·7%)

Sex

Men 22 780 (48·2%)

Women 24 486 (51·8%)

Race or ethnicity

Mexican 8945 (18·9%)

Other Hispanic 3453 (7·3%)

Non-Hispanic white 21 434 (45·3%)

Non-Hispanic Black 10 039 (21·2%)

Other* race or multiracial 3395 (7·2%)

Data are n (%).

*
Other included Asian, Pacific Islander, and Native American people.
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