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Abstract

Contemporary symptom-based diagnosis of post-traumatic stress disorder (PTSD) largely overlooks related
neurobehavioral mechanisms and relies entirely on subjective interpersonal reporting. Previous studies associating
biomarkers with PTSD have mostly used symptom-based diagnosis as the main outcome measure, disregarding the
wide variability and richness of PTSD phenotypical features. Here, we aimed to computationally derive potential
biomarkers that could efficiently differentiate PTSD subtypes among recent trauma survivors. A three-staged semi-
unsupervised method (“3C") was used to firstly categorize individuals by current PTSD symptom severity, then derive
clusters based on clinical features related to PTSD (e.g. anxiety and depression), and finally to classify participants’
cluster membership using objective multi-domain features. A total of 256 features were extracted from psychometrics,
cognitive functioning, and both structural and functional MRI data, obtained from 101 adult civilians (age =34.80 +
11.95; 51 females) evaluated within 1 month of trauma exposure. The features that best differentiated cluster
membership were assessed by importance analysis, classification tree, and ANOVA. Results revealed that entorhinal
and rostral anterior cingulate cortices volumes (structural MRl domain), in-task amygdala’s functional connectivity with
the insula and thalamus (functional MRl domain), executive function and cognitive flexibility (cognitive testing
domain) best differentiated between two clusters associated with PTSD severity. Cross-validation established the
results’ robustness and consistency within this sample. The neural and cognitive potential biomarkers revealed by the
3C analytics offer objective classifiers of post-traumatic morbidity shortly following trauma. They also map onto
previously documented neurobehavioral mechanisms associated with PTSD and demonstrate the usefulness of
standardized and objective measurements as differentiating clinical sub-classes shortly after trauma.

Introduction

Post-traumatic stress disorder (PTSD) symptoms are
commonly observed shortly after exposure to trauma, and
their initial intensity is associated with a high risk of poor-
recovery' >, PTSD diagnostics and prognostics are
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currently based on reported symptoms optimally captured
by structured interviews, such as the Clinician-
Administered PTSD Scale (CAPS)*. While these psycho-
logical assessment tools show good reliability, and both
construct and predictive validity, they have notable lim-
itations. The CAPS, for example, does not capture
symptoms frequently co-expressed with PTSD, such as
depression and anxiety”. It is also only weakly linked
objectively measured cognitive performance and
other putative biological features®™®. Additionally, the
CAPS solely relies on subjective interpersonal reporting
precluding objective indication of the clinical status.
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These limitations may be responsible for the temporal
instability of PTSD diagnosis’ and for its sub-optimal
performance as a guide for long-term individualized
clinical management'®,

Cognitive functioning is one of many dimensions often
overlooked in clinical evaluations of post-traumatic psy-
chopathology. Nonetheless, numerous cognitive deficits
have been associated with PTSD, including working
memory, information processing speed, verbal learning,
short-term and declarative memory, attention and
executive functioning, response inhibition and attentional
switching (see recent meta-analyses'"'?). Adaptive cog-
nitive functioning has been linked with resilience and a
reduced likelihood of development and maintenance of
PTSD symptoms'>'?. Similarly, several brain structure
and function characteristic might underlay PTSD clinical
manifestations®'*'7, including lower hippocampal
volume'®! or altered activity and connectivity amygdala,
insula, anterior cingulate cortex (ACC), medial prefrontal
cortex (mPFC), and the dorsolateral prefrontal cortex
(dIPFC); structures known to be involved in threat
detection, executive function, emotion regulation, and
contextual processing®'***7¢, Other structural and
functional abnormalities constitute putative predisposing
factors for developing PTSD'***7~2?,

Despite promising indications, however, these objective
cognitive and neural measures have not been integrated as
a routine assessment and management plan of post-
traumatic psychopathology. One obstacle in the clinical
translation of these findings is a poor understanding of
how these indicators cluster together into PTSD clinical
subtypes and thereby may better inform the use of
potential interventions. Moreover, most studies associat-
ing objective biomarkers with PTSD have used the dis-
order’s symptom-based diagnostics as the main outcome
measure, thereby overlooking the richness of phenotypical
features associated with post-traumatic psychopathology
such as depression and anxiety, and imposing an extra-
neous construct (PTSD diagnosis) as the only outcome of
interest.

The limitations mentioned above call for the use of
advanced computational and statistical methods that can
co-evaluate wide arrays of potential biomarkers, disorder
indicators, and clinical manifestations in PTSD. Machine
learning methods are particularly well-suited to address
such computational challenges, as they can account for
the intricate interrelation of many relevant factors™.
Indeed, the last decade has shown an exponential increase
in the use of machine learning for the study of post-
traumatic stress, including both supervised and unsu-
pervised approaches”* =3, While both approaches have
shown varying success, supervised methods are limited by
the accuracy of the prior knowledge they rely on, and
unsupervised methods are limited in that subpopulations
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are not tied to specific questions of interest**. As a result,
neither approaches typically discovers novel biomarkers
tied to the investigator’s questions of interest. A possible
solution is the use of hybrid analytic methods that com-
bine both supervised and unsupervised approaches, which
may yield more accurate disorder categories by identifying
novel combinations of potential biomarkers for specific
disorders>*.

The present study evaluates multi-domain objective
measurements’ ability to identify clusters, which we
hypothesize may represent post-traumatic psychopathol-
ogy subtypes. The term “subtypes” here accounts for
different demographics, clinical sub-scales, or symptom
severity. To do so, we applied a recently developed three-
stage hybrid analytic methodology, termed 3C (categorize,
cluster, and classify)ss, to a dataset obtained in 101 indi-
viduals recruited from the emergency room shortly after
exposure to a traumatic event. The 3C is a semi-
unsupervised method that combines theory- and data-
driven approaches, therefore used both subjective
symptom-driven clinical knowledge (supervised) with
state-of-the-art data-driven methods (unsupervised). Our
dataset included objective measures obtained from neu-
roimaging and cognitive testing of recent trauma survi-
vors, within 1 month following the traumatic incident. We
assumed that the 3C hybrid analytic approach would
unveil a unique set of potential mechanism-related cog-
nitive and neural biomarkers for PTSD, closely tied to
pre-existing diagnostic methods.

Materials and methods

The 3C method here used a multi-domain data set
composed of clinical interviews, psychometrics and
questionnaires, computerized cognitive testing, structural
and functional neuroimaging indices. The data were
obtained from recent trauma survivors seen in a general
hospital’s emergency department (ED) following trau-
matic events, as part of a larger project examining PTSD
development in trauma survivors during the first critical
year following exposure (for study protocol please see
Ben-Zion et al.>®). For this study, we used data obtained
within 1 month of trauma exposure.

Participants

A total of 101 recent trauma survivors (age = 34.80 +
11.95, range 18-65, 51 females) admitted to ED following
a traumatic experience were included in this analysis. The
most common trauma type was motor vehicle accidents
(n =179, 78%). Other traumatic events included assaults,
terror attacks, drowning, mass casualty incidents, robbery,
and electrocution. Out of 101 participants, 58 individuals
met all PTSD diagnostic criteria (“PTSD” group), and 43
expirienced subthreshold PTSD symptoms but did not
quantify for PTSD diagnosis (“No PTSD” group).
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Clinical instruments

PTSD symptom severity was quantified using the
Clinician-Administered PTSD Scale for DSM-IV (CAPS-
4)37, administered by trained and certified clinical inter-
viewers. Additionally, four self-report questionnaires were
administered: PTSD Checklist for DSM-IV (PCL-4)®
evaluating post-traumatic symptoms; Beck’s Depression
Inventory (BDI)* assessing current depressive symptoms;
Beck’s Anxiety Inventory (BAI)** measuring current anxi-
ety symptoms; and Participants’ Clinical Global Impression
Scale (CGI-P)*' evaluating patients’ subjective impression,
on a scale between 1 (“normal feeling”) to 7 (“the worst
feeling there is”). For detailed description see®®.

Cognitive functioning

WebNeuro®?, an internet-based comprehensive cogni-
tive assessment battery previously validated against tra-
ditional cognitive tests, was used to assess cognitive
functioning. To standardize testing conditions, all tests
were conducted in our laboratory and in Hebrew. Per-
formance on the different tasks was calculated by the
WebNeuro software that derived standardized Z-scores
for each participant on each of the following eleven cog-
nitive domains: motor coordination, processing speed,
sustained attention, controlled attention, cognitive flex-
ibility, response inhibition, working memory, recall
memory, executive function, emotion identification, and
emotional bias (see also Ben-Zion et al.'>3¢).

Imaging data acquisition

Structural and functional scans were performed in a 3.0
Tesla Siemens MRI system (MAGNETOM Prisma, Ger-
many), using a twenty-channel head coil, located in our
lab at Tel-Aviv Sourasky Medical Center. To allow high-
resolution whole-brain structural images, a T1-weighted
magnetization prepared rapid gradient echo (MPRAGE)
(TR/TE =2400/2.29 ms, flip angle = 8°, voxel size 0.7 x
0.7 x 0.7 mm, FOV = 224 x 224 mm) was acquired. Func-
tional whole-brain scan was performed in an interleaved
order, using a T2*-weighted gradient echoplanar imaging
pulse sequence (TR/TE=2000/28 ms, flip angle =90°,
voxel size 2.2 x 2.2 x 2.2 mm, FOV =220 x 220 mm, and
slice thickness = 3 mm, 36 slices per volume).

Structural imaging data analysis

Cortical reconstruction and volumetric segmentation
were performed with the FreeSurfer image analysis suite™®
(version 1.379.2.73), which is documented and freely
available for download online (http://surfer.nmr.mgh.
harvard.edu/). Briefly, this processing included motion
correction and the averaging** of multiple volumetric T1-
weighted images, removal of non-brain tissue using a
hybrid watershed/surface deformation procedure%,
automated Talairach transformation, segmentation of the
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subcortical white matter and deep gray matter volumetric
structures (including hippocampus, amygdala, caudate,
putamen, and ventricles)*®*, intensity normalization,
tessellation of the gray matter-white matter boundary,
automated topology correction, and surface deformation
following intensity gradients to optimally place the gray/
white and gray/cerebrospinal fluid borders at the location
where the greatest shift in intensity defines the transition
to the other tissue class. The automatic subcortical seg-
mentation of brain volume is based upon the existence of
an atlas (“aseg”) containing probabilistic information on
the location of structures®®, The maps are created using
spatial intensity gradients across tissue classes and are
therefore not simply reliant on absolute signal intensity.
The maps produced are not restricted to the voxel reso-
lution of the original data. Thus they are capable of
detecting submillimeter differences between groups.

Functional imaging data analysis

Preprocessing and statistical analysis of the functional
images were performed in a voxel-based approach using
Statistical Parametric Mapping (SPM)* version 12. In
short, this process included: slice time correction, using
one slice before the last as the reference slice. Head
motion correction by six-parameter rigid body spatial
transformations, using three translations and three rota-
tion parameters, with the first image serving as a volume
reference. A 4th degree interpolation was applied to
detect and correct head motions. Functional maps were
automatically co-registered to corresponding structural
maps using an objective function of normalized mutual
information (NMI). The complete dataset was trans-
formed into MNI space and spatially smoothed with an
isotropic 6-mm full-width at half-maximum (FWHM)
Gaussian kernel.

During this scan, participants performed the Emotional
Faces Matching Task®®, which was used to evaluate their
emotional reactivity. In this task, subjects were instructed
to select the face/shape (located at the bottom right or
bottom left of the screen) that matches the target face/
shape (located at the top of the screen), as accurately and
as quickly as possible. The tasks included four blocks of
shapes (that were used as a baseline) and four blocks of
emotional faces (angry, fearful, surprised, and neutral
faces). The order of the blocks of emotional faces was
counterbalanced between subjects using four different
versions for this task. Both whole-brain activations and
functional connectivity of the amygdala (seed region)
were calculated for the following contrasts: angry faces
(vs. shapes), fearful faces (vs. shapes), surprised faces
(vs. shapes), and neutral faces (vs. shapes). For a full list of
the functional brain measures derived from this analysis,
please refer to “brain function variables” in Supplemen-
tary Table 1.
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Procedure

A member of the research team identified potentially
trauma-exposed patients using the ED medical records.
Within 10-14 days after ED admission, and after being
discharged from the hospital, these individuals were
contacted for an initial telephone screening, which was
conducted by MA-level clinicians that were trained in the
specific assessment tools. After obtaining verbal consent,
the PCL-5 was administered to assess the risk of PTSD
development. Those who met PTSD symptom criteria
(except the “1-month duration” criteria) and did not meet
any of the exclusion criteria (see®), received verbal
information about the study and were invited to a clinical
assessment. The latter comprised the CAPS, self-
administered questionnaires (BDI, BAI, PCL, and CQGI)
and the WebNeuro cognitive battery. Participants were
then invited to a brain imaging session that included
structural and functional MRI. Each meeting (clinical
assessment and MRI scan) lasted ~3h, and both were
conducted within 30 days of ED admission. The partici-
pants received financial remuneration, in accordance with
the ethics committee regulations and approval.

Statistical approach

The 3C method® assumes that existing medical
knowledge of a given disorder is critical but not sufficient
for an accurate diagnosis. It offers to build upon and
expand the current diagnostics with unsupervised data-
driven methods. The 3C utilizes previously validated
clinical measures, relevant to the disease diagnosis, to
divide patients into homogeneous clusters based on
common characteristics. It then further characterizes
those groups (i.e., clusters) by exploring multi-domain
potential biomarkers, which relate to the specific
disorder-subtype. Previous studies using the 3C>"** dis-
covered new sub-phenotypic groups and their specific
biomarkers in a large Alzheimer’s disease dataset
(“ADNI"3).

The 3C procedure comprises three stages; categorize,
cluster, and classify. During categorization, the multi-
domain variables are sorted into three categories; (1)
Assigned diagnosis as applied in the field. (2) Clinical
measurements; variables that describe the patient’s con-
dition and the expression of the disease (symptoms and
signs). (3) Potential biomarkers; variables that could
improve existing diagnostic procedures but are not cur-
rently in clinical use. Clustering includes two steps: (1)
Feature Selection: A supervised selection of the most
relevant clinical variables to the assigned diagnosis, based
on a permissive threshold of Benjamini—Hochberg®* False
Discovery Rate (FDR)-adjusted of p =0.2 (from now on,
the use of “FDR” in this manuscript will specifically refer
to the BH procedure). This was done to eliminate clinical
variables that are not relevant to the disease as defined by

Page 4 of 11

the assigned diagnosis category. Although there is no
single specific FDR value recommended for this purpose,
and different values chosen may affect the clusters
formed, the value of prpr = 0.2 is often used in genomics
and in other a screening efforts preceding analyses. (2)
Unsupervised clustering: Utilizing the selected clinical
measurements was performed using k-medoids with
Manhattan distance metrics. This allowed us to discover
data-driven homogeneous clusters that are related to
existing diagnostics (i.e., dividing participants into sub-
types based on commonly used variables). Nevertheless,
these clusters are not limited to formal symptom-based
PTSD diagnosis (as indicated by CAPS), but rather cap-
ture the actual richness of phenotypical features asso-
ciated with post-traumatic psychopathology within a
dataset. Before clustering, the optimal number of clusters
was determined based on two metrics: gap statistics” and
silhouette®®. Lastly, classification includes characteriza-
tion of the clusters based on the objective potential bio-
markers, via three distinct approaches: importance
analysis (mean decrease GINIS7); classification tree; and a
marginal one-way analysis of variance (ANOVA) between
clusters for each potential biomarker.

Algorithms, codes, and software

Algorithms and codes were performed using R software
version 3.4.4. Data imputation was performed using the 5-
nn method in order to deal with missing data (<1% of the
full dataset). Variables were monotonically transformed to
gain symmetry when needed, using a semi-automated
Shiny App®®. Importance, measured as the marginal loss
of classification accuracy for each variable by randomly
permuting it on the out-of-bag validation set, was calcu-
lated using the {randomForest} R package®’. R package
{cluster}*® was used for clustering, and R package {rpart}
was used for classification and regression trees (CART).

Results

During categorization, features were divided into the
following three distinct categories: assigned diagnosis was
based on the CAPS-4 total scores; clinical measurements
included the total scores of the four self-report ques-
tionnaires (PCL, BDI, BAI, and CGI); potential bio-
markers included 11 standardized total scores obtained
from computerized cognitive testing, 192 features from
structural imaging (volumes and thickness of subcortical
and cortical areas), and 48 features extracted from fMRI
during the emotional faces matching task (whole-brain
activations and functional connectivity of left and right
amygdala during the task). For a full list of the features
used for this analysis, see Supplementary Table 1.

For clustering, the clinical measurements that were
found highly correlated with PTSD symptom severity (as
indicated by CAPS-4 total scores) were used: PCL, BDI,
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Fig. 1 Parallel coordinates plot of assigned diagnosis and clinical measurements. a Confusion matrix of PTSD diagnosis versus proposed
clusters. Table rows represent individuals' current clinical DSM-based PTSD diagnosis (PTSD/No PTSD), while the columns represent the two proposed
clusters (Cluster! = LoClus = low-symptomatic cluster/Cluster2 = HiClus = high-symptomatic cluster). This division to clinical diagnosis and
proposed clusters created four different groups, colored according to the four lines they represent in part b of this figure. b Parallel coordinates plot
of the different groups. The X-axis depicts the four clinical measurements on which the clusters were built (BDI, BAI, PCL, and CGl), as well as the
assigned diagnosis (total CAPS score), while the Y-axis depicts their percentiles (standardized values, ranging from 0 to 1). The figure presents the
means of each variable for each of the four groups, created by the division to two clusters (HiClus — turquoise, squares; LoClus — red, triangles) and
two clinical DSM-based diagnosis (PTSD — darker colors; No PTSD - lighter colors). CGl = Total Score of Clinical Global Impression Scale Questionnaire,
PCL = Total Score of PTSD Checklist Questionnaire, BAI = Total Score of Beck Anxiety Inventory Questionnaire, BDI = Total Score of Beck Depression

Clinical Measures

BAI, and CGI (based on the ad-hoc threshold, prpr < 0.2).
Participants were divided into an optimal number of two
clusters, based on both gap statistics® and silhouette®®
methods, which presented the best separation on all four
clinical measurements (PCL, BDI, BAI, and CGI).

To test the association between these two clusters
(representing high and low “disease load”) and the formal
clinical PTSD diagnosis (PTSD or no-PTSD, according to
CAPS-4), a two-sample test for equality of PTSD pro-
portions between the two clusters was conducted. Results
revealed a significant link between the proposed clusters
and PTSD dichotomous diagnosis (Z = 4.57, p < 0.001; see
table in Fig. 1la). Accordingly, cluster 1 will now be
referred to as the “low-symptomatic” cluster (LoClus, also
corresponding to low severity PTSD), and cluster 2 as the
“high-symptomatic” cluster (HiClus, also corresponding
to high severity PTSD severity). Furthermore, a one-way
ANOVA showed a significant difference between the two
clusters in continuous PTSD symptom severity (ie.,
CAPS-4 total scores) (Fjg9=35.47, p<0.001). Results
indicated that individuals belonging to the HiClus had
significantly higher CAPS-4 total scores and proportion
(P=0.77, M=61.91 + 18.16) compared to those belong-
ing to the LoClus (P=0.32, M = 37.45 £ 23.12; p < 0.001;
see Supplementary Fig. 1). It is important to note that
these clusters do not reflect a new diagnosis of PTSD, but
rather a means to an end to find potential biomarkers.

As mentioned, these clusters were found to correlate with
PTSD clinical diagnosis and severity, but were not iden-
tical to it, and therefore represent clusters of “disease
load” or “severity subtypes”.

The differences in the assigned diagnosis (total CAPS
score) and clinical measurements (BDI, BAI, PCL, and
CGI) between the proposed clusters (HiClus, LoClus) and
the DSM-based diagnosis (PTSD, No PTSD) are pre-
sented in Fig. 1b. Examining the differences between
HiClus (light and dark turquoise, groups a & b) and
LoClus (light and dark red, groups ¢ & d), participants of
the HiClus showed an average higher severity on all four
clinical measurements (representing symptoms of PTSD,
anxiety and depression, as well as general subjective
feeling), compared to those of the LoClus. Examining the
two groups within the HiClus, as expected, individuals
diagnosed with PTSD (HiClus PTSD, group a, dark tur-
quoise) showed higher severity scores on all four clinical
measurements, compared to those not diagnosed with
PTSD in this cluster (HiClus No PTSD, group b, light
turquoise). Examining the two groups within the LoClus
however, surprisingly, individuals diagnosed with PTSD
(LoClus PTSD, group d, dark red) showed lower severity
on three (out of four) clinical measurements (BDI, BAI,
and PCL), compared to those not diagnosed with PTSD in
this cluster (LoClus No PTSD, group c, light red).
Nevertheless, this LoClus PTSD group (group d, dark red)
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exhibited higher total CAPS scores, compared to both
LoClus No PTSD and HiClus No PTSD groups (group b
and ¢, respectivley). This demonstrates the added value of
our division to clusters, exmaining a braoder array of
clinical measures, rather than relying only on CAPS total
scores.

During the classification stage, objective variables that
differentiate between the classes, hence could serve as
potential biomarkers, were examine by using a mean
decrease importance index (GINI). The most significant
potential biomarkers associated with the resulted clusters
included left entorhinal cortex (EC) volume (importance =
0.884), cognitive flexibility (importance = 0.487), rostral
anterior cingulate cortex (rACC) volume (importance =
0.429), and average amygdala functional connectivity with
the thalamus while watching angry faces vs. shapes
(importance = 0.419). The top ten potential biomarkers for
the clustering are presented in Fig. 2.

To further characterize patients within each cluster
according to the identified biomarkers, classification tree
was built (see Fig. 3). Results indicated that left hemi-
sphere EC volume had the greatest influence on
clustering — 70 out of 101 participants had left EC volume
equal to or >1449 mm?, of which there was almost an
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The other 31 participants had a left EC volume
<1449 mm®, of which the vast majority (84%) belonged to
HiClus; indicating that subjects with lower EC volume
were more likely to belong to the HiClus. Further down
on the left branch of the tree, HiClus subjects had larger
left caudal middle frontal gyri volume. Down the right
branch of the tree, high executive functioning was more
associated with LoClus, and vice versa. Further down, low
supramarginal gyrus cortical thickness, together with high
paracentral volume, were related to LoClus. In contrast,
low executive functions with low functional connectivity
between the amygdala and the left insula while watching
fearful faces vs. shapes was strongly related to HiClus.

Finally, a marginal one-way ANOVA was conducted
on the potential biomarkers with HiClus/LoClus as the
dependent variable. Benjamini—Hochberg adjustment to
control the FDR at level 0.05, yielded no significant
difference for any potential biomarker between HiClus/
LoClus, FDR-corrected (partly due to hundreds of
p-values that were adjusted).

To assess robustness and consistency within this sam-
ple, the procedure detailed above was cross-validated. The
3C method was performed on a different percentage, P =
20%, 30%, ..., 90% of all participants to be used as a

equal distribution between the two clusters (56%/44%). training sample. Two clusters were chosen and
<
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Shructural: Right Rostral ACC Volume (0.43) - v
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Cognitive Domain: Cognitive Flexibility (0.49) -

Shructural: Left Pars Orbitalis Volume (0.41) -
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samplings were drawn, and their median and 0.025 and 0.975 percentiles are plotted per cluster.
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Fig. 2 Parallel coordinates plot of potential biomarkers. The Y-axis depicts the top 10 most important potential biomarkers in classifying the two
clusters, together with their mean decrease GINI measure (i.e. importance index). The domain of each biomarker is presented as a prefix — structural
brain measurements (“structural”), functional brain measurements (“functional”), and cognitive domains. Average CAPS-4 total scores is presented for
both “low-symptomatic” cluster (cluster 1, LoClus, red) and “high-symptomatic” cluster (cluster 2, HiClus, turquoise). The medians of 400 Bootstrap
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Fig. 3 Classification tree based on the two clusters. The classification tree depicts variables important for the division of the participants to the
two clusters, starting from the most important one at the top of the tree (left entorhinal cortex volume). Each block is labeled either HiClus or LoClus,
indicating whether most of the subjects in that block belong to the HiClus or the LoClus (turquoise or red) and their proportion (from 50%=lighter
colors to 100%=darker colors, see color bar at the top right). Furthermore, each block shows the number of subjects belonging to the dominant
cluster (either HiClus or LoClus), and the total number of subjects in that specific block. Inspecting the top block for example, 70 out of 101
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classification tree for these two clusters were built, all on
the training sample. The other 100%-P individuals were
used as a validation sample, and were classified to the new
clusters based on the newly created classification tree. We
report the mean percentage (and SD) of individuals
classified by the smaller trees into the original full data
built clusters, after matching the new clusters to the
overall ones based again on the validation test. The results
across 1000 iterations for each percentage P is presented
in Table 1. For example, when the 3C algorithm was based
only on a training set of 20% of the subjects, 83% of the
validation sample were classified to the original high and
low severity clusters (on average). Incidentally, we always
used two clusters, but when the algorithm was allowed to
estimate optimally the number of clusters, two clusters
were chosen in 82% of the iterations, the rest requiring 3
or more clusters.

Discussion

This work illustrates the principles and results of a
novel three-staged hybrid analytic approach (3C). First,
we demonstrated a classification of recent trauma survi-
vors into two different subtypes, related to PTSD symp-
tom severity (HiClus & LoClus). Importantly, these
subtypes differ from formal PTSD diagnosis (i.e., CAPS

Table 1 Cross-validation results.

P 20% 30% 40% 50% 60% 70% 80% 90%
Mean (%) 83 86 86 88 89 90 90 95
SD (%) 10 7 10 9 7 7 6 7

The table presents the mean percentage and standard deviation (SD) of subjects
who were correctly classified (according to the results of the 3C methodology
based on all subjects).

For each P, n = 1000 iterations were performed.

scores), as they encompass additional symptoms’ pheno-
types of depression and anxiety. Second, a wide range of
potential biomarkers, derived from cognitive and neural
domains, were screened computationally, and yielded an
effective separation between these new subtypes. Third,
we demonstrated the usage of such potential biomarkers
to form an individual-based diagnosis of PTSD based on
multi-domain objective measurements.

Hybrid approach for PTSD classification

The 3C “hybrid” data- and theory-driven approach
combined current diagnostic-based  categorization,
symptom severity-based unsupervised clustering, and
data-driven classification using a wide range of psycho-
logical, cognitive, and neural potential biomarkers. Unlike
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supervised machine learning models that “flatten” infor-
mation and dimensions into one data matrix, the 3C
method uniquely and in a stepwise manner combines
current information from PTSD diagnostics with two
layers of data-driven exploration: a broad picture of
clinical symptoms presented shortly after trauma
(including those derived from other clinical categories)
and concurrently-recorded objective measurements of
cognitive functioning, brain structure and function. This
practice, therefore, does not impose an extraneous con-
struct (DSM-based diagnosis) as an only outcome of
interest, but instead utilizes the richness of phenotypical
features associated with post-traumatic psychopathology.
In our case, we utilized self-reports of PTSD, depression,
anxiety and global impression (PCL, BDI, BAI, and CGI;
respectively), to expand and enrich DSM-based diagnosis
of PTSD. This was clearly demonstrated in Fig. 1b, where
a subgroup of 14 individuals (group d, dark red) showed
high total CAPS scores, while exhibiting the lowest
severity in other clinical measurements (self-reported
PTSD, depression and anxiety). This is one of the added
values of our hybrid 3C approach, going beyond the DSM
formal diagnostic categorization.

Potential biomarkers for PTSD subtypes

The potential biomarkers revealed by the 3C analytic
approach are in line with previously documented neural and
cognitive correlates of PTSD, providing a framework for an
early objective mechanism-based and clinically meaningful
categorization of trauma survivors’ psychopathology.
Accordingly, the potential biomarkers included features
obtained from both neuroimaging and cognitive testing.

The structural brain feature with the greatest influence on
PTSD classification was entorhinal cortex (EC) volume (both
according to importance analysis and classification tree, see
Figs. 2 and 3); lower EC volume was associated with higher
post-traumatic stress symptoms severity load. The EC plays
an important role in memory, a key feature of post-traumatic
psychopathology, as uncontrolled recall of the traumatic
event determines symptom severity60_62. Another structural
feature of importance to classification was the volume of the
rostral anterior cingulate cortex (rACC); lower rACC volume
was associated with higher PTSD severity. Indeed, rACC
volume has previously been associated with PTSD****%* and
was shown to predict cognitive-behavioral treatment
response®”; suggesting its potential as a guide for early
mechanism-based intervention.

Of note, our classifier did not identify several struc-
tural abnormalities found in previous cross-sectional
PTSD studies®'****’, This includes the most repli-
cated finding of small hippocampus volume®®, but also
abnormal amygdala volume, insular cortex, medial, and
dorsal prefrontal cortices (mPFC and dIPFC respec-
tively)'”2%2>%7=%% This could stem from our classifier
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identifying early-stage biomarkers related to high and
low disease-load, rather than DSM-based dichotomized
PTSD diagnosis. Furthermore, most of the above-
mentioned structural abnormalities were detected in
individuals suffering from chronic PTSD, and not in
individuals in an early stage after trauma. Here we
identified structural abnormalities within 1 month after
trauma as related to symptom severity. Since major
changes in gray matter volume within this time frame
are less likely to occur’’, these abnormalities might be
early predisposing risk factors for chronic PTSD
development. Future studies in populations prone to
trauma exposure with longitudinal measurement
could shed more light on the causal inference of our
findings”' ">,

From the functional neuroimaging domain, amygdala
functional connectivity with both the insula and the tha-
lamus was found to be particularly important for classi-
fication (both according to importance analysis and
classification tree, see Figs. 2 and 3). Aberrant con-
nectivity of the amygdala with other structures is con-
sistent with previous studies, and abnormal amygdala
activation had been hypothesized to contribute to PTSD
pathophysiology’*~”¢. Moreover, thalamic dysfunction has
been found in patients with PTSD, suggesting its role in
the disorder’s psychopathology’”’®. Therefore, although
neuroimaging studies have implicated several functional
brain abnormalities in the pathophysiology of PTSD, our
computational analysis showed that some of these
abnormalities are involved in the PTSD severity subtype
in the early aftermath of trauma.

The most significant cognitive related potential bio-
markers were indices of cognitive flexibility (according to
importance analysis, see Fig. 2) and executive function
(according to classification tree, see Fig. 3). Indeed, meta-
analyses regarding the role of cognitive functions in PTSD
consistently show an impaired ability in executive func-
tioning, including cognitive flexibility (the ability to switch
between two different tasks or strategies) among PTSD
patients’”®’, More so, cognitive flexibility shortly after
trauma was shown to be a significant predictor of PTSD
severity 1 year later, and ameliorating it by a cognitive
intervention was associated with better treatment out-
comes'®. Altogether, implying the role of cognitive flex-
ibility in early recovery following trauma exposure. One
possibility is that intact cognitive flexibility enables the
individual to better differentiate between threat-related and
neutral situations, thus assisting in the extinction of fear-
motivated learning, a core-element in PTSD recovery®.

Clinical considerations

Our 3C approach revealed two PTSD subtypes (classes) in
recent trauma survivors, correlated with high and low clinical
severity, according to total CAPS scores, and across all CAPS
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subscales (re-experiencing, avoidance, negative alterations in
cognitions and mood, and alternations in arousal and reac-
tivity). Our analysis did not find classes representing different
clinical subtypes, such as greater dissociation or avoidance.
This could be because the 3C is based on a given set of
subjective clinical measures (BDI, BAI, PCL, and CGI), and
classification was further based on predetermined objective
measures of potential biomarkers. Indeed, in an effort to
account for the heterogeneity in PTSD expression, several
studies attempted to characterize different clinical subtypes
of the disorder. For example, an externalizing subtype char-
acterized by low constraint and high negative emotionality,
compared to an internalizing cluster with high negative
emotionality and low positive emotionality®*~**; or a dis-
sociative subtype for patients with PTSD and de-
personalization and/or de-realization symptoms, introduced
by the fifth edition of the DSM*~%". Furthermore, the cog-
nitive and neural biomarkers presented here are not yet
biologically validated markers (see suggested strategy for the
development of biomarker tests for PTSDsS), and therefore
could only be regarded as “potential biomarkers”.

It is overall acknowledged that a larger dataset (i.e., more
measures and more participants), could allow for the
identification of unique clinical classes of different symp-
tomatic subtypes, possibly more than two. More so, adding
longitudinal measures from different time-points following
trauma may reveal classes corresponding to PTSD clinical
trajectories. This may be crucial for the identification of
individuals at risk for developing PTSD, as well as providing
appropriate early-stage treatment.

Conclusion

Our study implemented an innovative semi-unsupervised
computational approach that unveiled novel variables cor-
related with the morbidity classification of recent trauma
survivors. The method utilized current DSM-based PTSD
diagnostic categories and other clinical severity measures of
depression and anxiety, as well as a classification of cognitive
and neural potential biomarkers. Intriguingly the two sub-
types of PTSD severity were also associated with known
neurocognitive mechanisms underlying post-traumatic stress
symptoms. Our results point to an alternative approach for
identifying objective variables linked to PTSD severity sub-
types (high and low), based on testing within a single session
shortly after exposure to trauma. If successful, this objective
computational classification may further guide mechanism-
driven diagnosis and interventions for PTSD (e.g., cognitive
remediation or neuromodulation treatments). If performed
on a broader data set and with more clinical measures and
potential biomarkers, this hybrid approach may refine post-
traumatic diagnostic subtypes, playing an important role in
the clinical management of recent trauma survivors.
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