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Abstract
To evaluate and holistically treat the mental health sequelae and potential psychiatric comorbidities associated with 
obstetric and gynaecological conditions, it is important to optimize patient care, ensure efficient use of limited 
resources and improve health-economic models. Artificial intelligence applications could assist in achieving the above. 
The World Health Organization and global healthcare systems have already recognized the use of artificial intelligence 
technologies to address ‘system gaps’ and automate some of the more cumbersome tasks to optimize clinical services 
and reduce health inequalities. Currently, both mental health and obstetric and gynaecological services independently 
use artificial intelligence applications. Thus, suitable solutions are shared between mental health and obstetric and 
gynaecological clinical practices, independent of one another. Although, to address complexities with some patients 
who may have often interchanging sequelae with mental health and obstetric and gynaecological illnesses, ‘holistically’ 
developed artificial intelligence applications could be useful. Therefore, we present a rapid review to understand 
the currently available artificial intelligence applications and research into multi-morbid conditions, including clinical 
trial-based validations. Most artificial intelligence applications are intrinsically data-driven tools, and their validation 
in healthcare can be challenging as they require large-scale clinical trials. Furthermore, most artificial intelligence 
applications use rate-limiting mock data sets, which restrict their applicability to a clinical population. Some researchers 
may fail to recognize the randomness in the data generating processes in clinical care from a statistical perspective 
with a potentially minimal representation of a population, limiting their applicability within a real-world setting. 
However, novel, innovative trial designs could pave the way to generate better data sets that are generalizable to 
the entire global population. A collaboration between artificial intelligence and statistical models could be developed 
and deployed with algorithmic and domain interpretability to achieve this. In addition, acquiring big data sets is vital 
to ensure these artificial intelligence applications provide the highest accuracy within a real-world setting, especially 
when used as part of a clinical diagnosis or treatment.
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Introduction

Artificial intelligence (AI) is a generic term referred to the 
use of a machine to model intelligent behaviour with mini-
mal human intervention. Since 1956, AI has developed 
into a powerful multi-mode tool across many different 
areas within modern society including healthcare. AI is 
considered as a composite of the fourth industrial revolu-
tion and demonstrates much promise to resolve key health 
issues (World Economic Forum). These AI tools could be 
classified based on their applicability and the scientific 
methods used to create them (see Figure 1). Machine 
learning (ML) is a commonly used AI method to develop 
many AI applications.

AI could be a vital component in the transformation of 
medicine, particularly digital medicine.1 It enables the 
development of precision methodologies applicable to 
multiple healthcare domains. AI-based advanced algo-
rithms and improvements in computing power could assist 
in meeting healthcare challenges such as efficiency and 
performance of clinical services in the forthcoming years. 
They could also be valuable to model healthcare data to 
improve the alertness of clinical services for infection con-
trol responses, managing increasing population and com-
plex disease requirements and the challenges posed by the 
world’s ageing population.

Artificial narrow intelligence (ANI) excels at solving a 
single specific task which is well-defined and has no scope 
for subjective ambiguities. Most of the current usage of AI 
in healthcare falls under this category.2 For example, 
AI-based advancements in robotic surgery demonstrate 
optimizing minimally invasive precision surgery instead 
of traditional open surgical methods.3 Artificial general 
intelligence (AGI) takes a step further by seeking to emu-
late human intelligence and capabilities. This aspect of AI 
is under extensive study and research. It could help facili-
tate the shift from traditional knowledge into practice 
models to knowledge into evidence-based practice (EBP) 
models that rely on extensive data and may even provide 
intelligent solutions within a fraction of the time taken by 
the traditional translational research pathways. Automation 
and formal reasoning–based AI applications are used 
across various clinical areas such as Radiology, Neurology, 
Orthopaedics, Surgery and Oncology. These AI tools could 
become decision support systems that could guide practi-
tioners to aid with their clinical decision-making process. 
It may be in the form of early detection, diagnosis, treat-
ment or improving long-term disease management. 
Generating clinical trial–based big data sets would also be 
useful for clinical population-based research.

While the EBP may sound logical and simplistic, the 
logistical aspects require further advancement and refine-
ment to take advantage of existing data sets and develop 
new data sets to address any practice gaps using more 
structured AI applications.4 To successfully utilize EBP, a 
barrier in many global healthcare systems could be 
Information Technology (IT) infrastructure in terms of 
security, timely accessibility and the collaboration between 
the clinicians and the IT personnel. Furthermore, chal-
lenges like heterogenous and unstandardized health data, 
diverse patient population, biased decision-makers and so 
on need to be appropriately addressed to avoid the risk of 
unintended and negative consequences. Thus, to truly 
achieve optimal gain from AI in combination with EBP, 
various factors would be required, including the introduc-
tion of structured methods of collating and analysing the 
data through existing IT systems. These could support 
clinical trials with sample sizes that could generate big 
data sets required to test the efficacy of AI applications and 
further support the development of novel ‘real-world’ 
research designs and methods.

While AI remains a challenging subject matter to eval-
uate and apply within healthcare service, especially 
within the context of obstetrics and gynaecology (OB/
GYN), or women’s health in general where primary and 
secondary disease sometimes shares sequelae,5–9 the dif-
fusion of AI knowledge and its application use have 
become an increasingly important topic to further 
research. It could be argued that this is an important facet 
for OB/GYN and mental health (MH) sequelae. 
Therefore, this rapid review aims to highlight the poten-
tial usefulness of AI methods in OB/GYN and MH 
domains and to demonstrate the major deficiencies in the 
current evidence base, hampering the development and 
use of AI technology to investigate the shared clinical 
sequelae of these important conditions relevant to wom-
en’s health (Figure 2).

Data analysis framework

It is vital to understand key concepts of AI to develop suit-
able applications that are patient-centric and also address 
clinical sequelae between OB/GYN and MH which is 
important in women’s health.

The objective of a data analysis procedure in medicine 
is to help clinicians diagnose or test a new treatment by 
extracting the potential information unobserved behind 
the raw data. Thus, raw data and statistical methodology 
are two indispensable parts during the data analysis pro-
cedure. With the improvement of data storage, collection 
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and analysis ability, various forms of data are available, 
including imaging data, acoustic data and questionnaires, 
which are different from traditional data. Thus, it is cru-
cial to extract valuable features and variables from the 
raw data, and the data pre-processing becomes as impor-
tant as the statistical methodology.

In this section, we would like to review some of the data 
sources in modern MH and gynaecology. We then discuss 
some data pre-processing methods and look at the statisti-
cal methodology applied to analyse the data set. In the next 

section, some use-cases of AI applications in the OB/GYN 
and MH domain are discussed.

Input (data source)

AI-based solutions are powered by data. Availability of 
data and leveraging it to extract useful information are criti-
cal to improve patient outcomes. Recent estimates show 
that a single patient generates up to 80 megabytes of data 
yearly through medical imaging and electronic medical 

Figure 1. A schematic representation of the classification of AI-based methods

Figure 2. Multi-faceted application on AI in healthcare
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records10 and the amount of patient health data is only 
growing exponentially. Therefore, a variety of data types – 
such as imaging data, electronic health records and ques-
tionnaires – can be collected to extract important features/
predictors through some computer science or statistical 
methods and then carry out an AI-based or statistical 
analysis.

Electronic Health Record (EHR) plays a critical role in 
modern health information management and service inno-
vations. A patient’s EHR data contain his or her visit his-
tory, diagnosis, treatment, medication and so on. The EHR 
system is usually established or managed by an authorized 
institute in digital form (e.g. International Statistical 
Classification of Diseases and Related Health Problems–
Tenth Edition (ICD-10)) so that the researchers could uti-
lize these well-developed data to provide health services, 
such as early stage disease detection, treatment advice. 
However, different healthcare data systems capture differ-
ent levels of data, requiring AI systems to compile data 
across systems.11

In gynaecological disease, imaging data are vital as is. 
Furthermore, AI-enabled usage of imaging data is emerg-
ing in diagnosis, precision medicine, treatment and moni-
toring. The most challenging task in imaging data analysis 
is object recognition.12 Computer science has evolved a 
long way in object recognition in images from the hand-
written digit recognition achieved in the early 1990s.13 For 
instance, the ImageNet project14 was designed for research-
ers to train their classification algorithms to achieve an 
error rate as low as possible. By April 2010, this large data-
base had more than 14 million images, with each image 
labelled into 21 000,  categories manually. In 2015, ResNet 
(Residual Network) from Microsoft’s Research team 
achieved an error rate of 3.5%,15 while the human bench-
mark for the same data set is at 5.1%. Many neural net-
works have been able to achieve sub 5% error rate since 
2015. Thus, many deep learning (DL) architectures per-
form particularly well in image pattern recognition and can 
be of great benefit to doctors who rely heavily on images 
in their diagnosis or treatment.

The rapid integration of AI into the field of healthcare 
has occurred at an exponential rate over the recent years. 
Innovative technology has created a multitude of opportu-
nities for millions of women who are affected by various 
MH conditions. There have been several cases whereby 
ML algorithms have been implemented in primary care to 
improve women’s MH. For example, suicide prevention is 
an imperative public health priority; however, the risk fac-
tors for suicidal behaviour/ideation after hospitalization 
are significantly under researched. Edgcomb et al.16 devel-
oped an algorithm to differentiate the risk of self-harm and 
suicide attempts, post-medical hospitalization, among 
women diagnosed with depression, bipolar disorder and 
chronic psychosis. They concluded that screening women 
for sex-specific predictors has the potential to improve the 
prevention of self-harm and suicide attempt. By assessing 

these sex-specific predictors, the algorithm has significant 
clinical implications in the prevention of suicidal behav-
iour/ideation in women.

The transition to use AI systems in lower- and middle-
income countries has become of increased interest over the 
years due to the substantial lack of trained MH profession-
als. Due to the staff shortages, common mental disorders 
that develop during pregnancy and the post-partum period 
often go undetected and untreated, even though there is a 
multitude of evidence-based interventions currently imple-
mented for use. Green et al.17 used an existing AI system 
that used mobile phones to deliver the ‘Thinking Healthy 
Programme’ to users. Results indicated those women who 
received the intervention, attributed positive life changes 
to it and recorded an overall improvement in their mood.

In many MH studies, factors/predictors could be put 
into predesigned or pretested questionnaires, and raw data 
could be collected by asking patients to finish these ques-
tionnaires. Although a questionnaire is a powerful and 
easy-to-use tool in MH issue diagnosis, it also suffers from 
heterogeneity. Newson et al.18 analysed 126  different 
questionnaires and interviews for 10  different MH disor-
ders, including depression, anxiety and so on. They 
observed that the similarity score across different assess-
ment tools ranges from only 29%  to 58%  for a given 
disorder. This inconsistency will lead to a bias on clinical 
diagnosis and treatment. Elsworth et al.19 highlighted the 
importance of factoring in subjectivity while inferring 
responses from data collected through questionnaires. 
Thus, we need standardized assessment tools that leave no 
room for subjective ambiguities in understanding underly-
ing aetiologies and improve the precision of modern statis-
tical algorithms based on the data from questionnaires.

In addition, with the substantial progress in natural lan-
guage processing (NLP) technologies, researchers and cli-
nicians in MH can now analyse linguistic and acoustic data. 
One way to collect this type of data is to carry out a prede-
signed interview with patients and evaluate their character-
istics from the interview based on NLP and ML methods.20 
Furthermore, non-clinical linguistic data – such as com-
ments written on Twitter, Facebook and blogs – are also a 
valuable data source for clinicians to make inferences about 
patient’s thoughts and opinions. Patient-reported outcomes 
are valuable to improving clinical practice and acceptabil-
ity of treatments. Wearable devices are another source of 
acoustic data that can provide personalized clinical ser-
vices.21 Therefore, exploring key AI-based scientific meth-
ods which are also technical components would further 
demonstrate their use in various applications.

Methodology

AI methodologies and methods vary, although their techni-
cal composites remain unified using a few key principles 
such as data pre-processing, extraction, classification, 
selection, statistical and ML models.



Delanerolle et al. 5

Data pre-processing. Data collated and collected from dif-
ferent sources like EHR, questionnaires, social networks 
and so on are not likely to be in a standard format,22,23 such 
that they could be directly used within statistical models or 
an ML algorithm for analysis. Therefore, data pre-process-
ing would be a useful step to complete. Data pre-process-
ing refers to the first step in the data analysis pipeline 
involving data-cleansing, transforming, encoding and for-
matting (Table 1) which could then be processed by an 
analytical framework.22 A few standard procedures fol-
lowed in data pre-processing are indicated below.

Feature extraction/feature selection. Modern statistical/AI 
models could be developed using pre-processed data to do 
prediction or classification. Output data gathered across 
multiple data systems in multiple formats may not be used 
in its original form or act as variables to assess predictive 
values. Data transformations are required to arrive at valu-
able predictors. With the predictors that have been 
extracted, several ML and/or statistical methods could be 
applied, such as logistical regression, random forest and 
deep neural networks (DNNs).

Although the representation and the quality of the data 
are improved following the data pre-processing stage, sta-
tistical algorithms may still have poor performance due to 
the high correlations that may exist among the features/pre-
dictors. Feature selection could eliminate the irrelevant and 
redundant from the set of original predictors; thus, it is an 
important step within the data mining process. 
Some of the traditional statistical methods used for feature 
selection include unpaired t-test,20 recursive feature elimi-
nation method,24 the Boruta algorithm25 and logistic regres-
sion (LR) with L1  penalty.11 However, the traditional 
methods work well when there are relatively fewer features 
to explore. In the presence of a high-dimensional data set 
for example, many traditional feature selection methods 
could become invalid; thus, a series of novel algorithms 

would be required. One such method commonly used is the 
‘penalized likelihood approach’ (PLA). PLA forces the 
model to select important features by following the likeli-
hood function with penalty terms. For instance, LASSO26 
and the Elastic Net27 are the two feature selection methods 
that have been widely applied to mental healthcare AI 
applications.25 Another selection feature-based method is 
called ‘sequential approach’ (SA), that uses a sequential 
procedure to select features one-by-one in a sequence. 
Another similar method is Least Angle Regression28 and an 
application example of this is L2Boost.29 However, PLA 
and SA are developed from different statistical logic mod-
els focusing on minimizing the prediction error and the 
identification of relevant features, respectively.

Statistical model – classification. Data mining is an impor-
tant statistical model–based classification. In data mining, 
classification means mapping of input observations to a 
decision class variable. Statistical classifiers do this job by 
learning from a data set of input variables and outcome 
variables. Therefore, a classifier can be expressed by a 
function

f D C: →

where D  denotes a set of variables and C  denotes a set of 
class sets. Thus, f  is a classification function which maps 
a set of variables to a decision set. For example, traditional 
statistical classification methods such as LR have been 
widely used in MH and OB/GYN disease diagnosis. 
However, given the complexity of using aggregated data 
sets which includes both research study and real-world data, 
linear relationships between variables and outcomes could 
be challenging to finalize without the involvement of a clini-
cian. Therefore, these applications are currently acting as 
diagnostic-support tools for clinicians. Equally, the simple 
linear models may also lead to some bias which is equiva-
lent to diagnosing clinical conditions. To better address this 

Table 1. Summarizes vital procedures associated with data pre-processing methods.

Quality assurance Data sampling Encoding Train/test split

Missing data values, 
inconsistent values, duplicate 
values are some of the data 
quality issues addressed in 
this step. The use of the 
‘garbage in – garbage out’ 
model is one of the standard 
concepts used in ML to refer 
to poor output obtained by 
processing flawed data.

Varying sampling methods 
and techniques raise data 
classification issues. Therefore, 
classification issues should 
be resolved prior to training 
an ML model that each class 
is equally represented in the 
training data. Mock data could 
be useful to train some of 
these ML models. Therefore, 
data sampling is one of the 
techniques used to ensure 
equal representation across 
classes.

Encoding is an important step 
to use differently labelled data 
that could still be part of a 
disease population. Certain 
features with text values, for 
instance, cannot be directly 
interpreted by a machine. 
However, through encoding, 
such features are transformed 
into a format that retains the 
original meaning of the feature, 
but still could be accepted as 
input by an ML algorithm.

An ML model is built using 
retrospective data, although it 
is practically useful when it is 
processed correctly. To test 
the generalization ability of an 
ML model, the retrospective 
data could be split into training 
and test data sets. While the 
algorithm is exposed to only the 
training data, the finished model is 
evaluated on the test data. Master 
test plans could be put together 
to demonstrate the outputs of 
these ML models.

ML: machine learning.
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limitation though, non-linear classification methods – such 
as Support Vector Machines (SVMs), Decision Trees (DT) 
and Artificial Neural Networks (ANNs) – have been applied 
to the development of AI-based software and hardware to 
resolve clinical problems. Although some of these algo-
rithms have demonstrated high performance and accuracy, 
limitations around interpretability are an issue. For instance, 
it is challenging to identify the relationship between the 
original predictors and the outcome using DNN architecture 
which could be a limitation when used in AI applications for 
clinical purposes.30,31 However, combining these methods 
with statistical learning could improve the development of 
any applications.

Statistical learning methods

Statistical learning methods are consistent of various meth-
ods, although a key component is ML. The core objective 
of ML is to apply one or more statistical algorithms on big 

data sets to demonstrate an automatic prediction or classi-
fication. The three vital statistical learning paradigms 
include supervised learning, unsupervised learning and 
reinforcement learning as summarized in Table 2.

Similarly, the three primary components of ML could 
be further classified as shown in Figure 3.

Clinical management starts with a diagnosis and most 
patients would have ongoing treatments leading to the 
gathering of large data sets with multiple data points con-
sisting of input–output pairs of data. For MH and/or OB/
GYN applications, supervised learning algorithms would 
be a useful aspect to explore. Key techniques used within 
AI applications are shown in Table 3.

LR. The usual LR model demonstrates key points to estate 
coefficients as demonstrated in the equation below.

Let {( , )}y xi i i
n
=1  denote the n  observations, where 

x x xi i ip1 2, ,,  are the p  features of the ith observation, 
and yi  is the binary output

Table 2. Summarizes the three primary methods of ML.

Supervised learning Unsupervised learning Reinforcement learning

This includes techniques such as 
logistic regression, support vector 
machine (SVM), and DNN involving 
learning from a training data set, 
where each data point is an input–
output pair, and the objective is to 
find the best function that maps the 
input and the output data sets.

This includes techniques such as learning 
algorithms, in contrast, deal with the data 
that contain inputs, which means that the 
data need not be labelled by a human. The 
objective in unsupervised learning is to 
identify patterns in the input data which is not 
otherwise apparent. For instance, the Principal 
Component Analysis (PCA) is a well-known 
unsupervised learning method that aims at 
reducing the dimension of a data set.

This includes techniques such as 
learning is a relatively new learning 
framework that also does not need 
the labelled input–output pairs, but 
lets the agent take actions repetitively 
while rewarding positive actions and 
penalizing negative ones. It tries to let 
the agents take actions that maximize 
the notion of cumulative reward.32

ML: machine learning; DNN: deep neural network.

Figure 3. A schematic representation of multiple ML algorithms, which are a subset of AI methods that are commonly used in the 
development of healthcare AI applications. This hierarchy of ML algorithms is composed of three primary techniques of supervised, 
unsupervised and reinforcement learning. Supervised and unsupervised techniques are primary categories that use classification and 
regression models that could focus on qualitative and quantitative data sets, respectively, to provide clear outputs.
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π β β β βi i i p ipx x x= + + + +0 1 1 2 2 

β β β0 1, , , p  being the coefficients or the mathematical 
weights.

Then, we consider yi i= σ π( ),  where σ ( ) /x e x= + −1 1  
is called the sigmoid function that binds the output to the 
interval (0,1). This forms the mathematical setup of LR 
model with the objective of estimating the coefficients 
β β β0 1, , , p .

Within this method, a number of input variables are lin-
early combined with appropriate weights and regressed to 
logical units (i.e. 0 or 1). It is a traditional yet powerful 
statistical tool to develop a binary (or multi-class) classifi-
cation algorithm. However, traditional LR would be ill-
posed when the dimension of the data p  is larger than the 
sample size n. Tikhonov and Arsenin33 added an L2  pen-
alty that follows the likelihood function, which is called 
ridge regression, that guarantees the existence of a solu-
tion.33 But the L2  penalty raised a new problem due to the 
strict convexity of the regularization function. Every fea-
ture of this mathematical equation would receive a non-
zero weight, as a result fail to carry out the variable 
selection. In 1996, Tibshirani26 substituted the L2  penalty 
in ridge regression with L1  penalty instead, that is, LASSO. 
The LASSO singularity of the L1  regularization at origin 
point guarantees that this could be a variable selection–
based algorithm, for example. In addition, in 2005, Zou 
and Hastie27 proposed the Elastic Net regularization, which 
is a compromise between L1  and L2  regularizations. Thus, 
it is not only a variable selection algorithm but also could 
be applied to the data with highly correlated variables.

Use of LR technique has been tested in some MH stud-
ies for classification purposes to confirm the presence or 
absence of depression.24 Although LR is a simplistic 
method, it could be an effective method within the context 
of a fitting clinical problem.24 However, the presumed lin-
ear relationship between the input variables and the out-
come could be problematic,25 creating the need for more 
novel methods like SVM, Decision Trees and the Gaussian 
process classifier.34

SVMs. SVM is one of the most theoretically driven classi-
fication algorithms in modern ML. It was first established 
by Vapnik et al.,35 and then was widely used in disease 
diagnosis,36 handwriting recognition37 as well as facial 

recognition.38 Linear SVM attempts to modulate an opti-
mal hyperplane in a multi-dimensional data set to classify 
testing data sets. The hyperplane border that separates 
objects across classes is optimal in the sense of maximiz-
ing the margin of separation, thereby increasing the gener-
alization of the model. This key characteristic of SVM 
models makes it an attractive technique to develop AI 
applications.

However, it is often not possible to find a linear separa-
tion in practice, especially in the context of real-world data 
or aggregated data. However, using the kernel trick, a non-
linear mapping Φ  from the input space X  to a high-
dimensional space, where finding a linear separation could 
be possible (Figure 4). Although, there is no set standard 
for the choice of kernel for a given problem, leading to pos-
sible bias in the model and hence poorer performance.11

Both linear and non-linear SVM classifiers are widely 
used in MH studies for diagnosing purposes. Key exam-
ples of applications of SVM in MH care include use of 
warning markers extracted from NLP to detect risk of vio-
lence in schools20 and detect psychological distress of uni-
versity students.39 However, these require to be further 
developed and tested if they are to be unilaterally used in 
various clinical contexts.

Ensemble learning. Ensemble methods are a group of gen-
eral techniques in ML where several predictors are com-
bined to develop a single entity. It is often difficult to 
directly design an accurate algorithm with high prediction 
accuracy. Therefore, a mixed-methods approach is widely 
suitable for developing AI applications for the purpose of 
clinical consumption. The underpinning concept of ensem-
ble learning would be to boost techniques, and to develop 
a series of weak learners to build a strong learner.

Techniques to create an ensemble model can be broadly 
classified into sequential and parallel. Sequential tech-
niques such as boosting create a sequence of base learners. 
Base learners are assumed to be weak in the beginning of 
the sequence, but with higher weights assigned to misrep-
resented cases in the subsequent learners although eventu-
ally, it is hypothesized stronger models would be obtained. 
Base learners in an ensemble model are usually homoge-
neous, that is, of the same type. However, it is also possi-
ble to ensemble different types of base learning algorithms 
resulting in heterogeneity, which is particularly explored 

Table 3. Machine learning algorithm–based AI application methods.

Supervised learning Unsupervised Learning Reinforcement Learning

Logistic regression Principal component analysis (PCA) Monte Carlo simulation
Support vector machine (SVM) K-means clustering Q-learning
Deep neural network Expectation maximization (EM) algorithm State–action–reward–state–action
Naïve Bayes Hierarchical clustering Double Q-learning
K-nearest neighbour (KNN) algorithm  
Random forest  
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in neural network architectures.40 Parallel learner tech-
niques, however, generates independent base learners in a 
parallel format. Although individual base learners are 
likely to be weak, voting is done across all the learners that 
significantly reduces error of the system. For instance, ran-
dom forest is a parallel ensemble of multiple decision 
trees. These ensemble learning methods have been 
involved in MH and OB/GYN studies. Some examples 
include predicting late-onset pre-eclampsia among low-
risk patient populations in their early trimester,6 identify-
ing high-quality embryos in in vitro fertilization (IVF),40 
interpreting cardiotocography (CTG) reports to diagnose 
foetal compromise during pregnancy and labour.41

DL. DL is a complex ML technique and is a useful tool to 
utilize for epidemiological data sets in particular. Consider 
the problem of deciding whether a patient is suffering from 
both depression and anxiety when given a number of pre-
dictors which are reported as symptomatologies. One way 
to determine a primary diagnosis and/or secondary diagno-
sis, in other words a sequelae, would be to perform LR on 
the data set so that the weighted sum of the variables which 
in this case would be symptoms, would aid to indicate the 
primary causation of the reported symptomatologies and 
thereby confirm a diagnosis. Similarly, if there was a dis-
ease sequelae involved, this could be determined by evalu-
ating the weight-in. However, given the complexities of 
clinical and/or clinical trial data, the interaction terms, 
which depict the link between variables, may increase dra-
matically and lead to the failure of the traditional general-
ized linear model. The neural networks of DL, however, 
handles this issue well by adding multiple hidden layers of 
the data (Figure 5) to perform various non-linear transfor-
mations on the original data set. This is followed by the 
application of a back-propagation algorithm42 on the train-
ing data set to obtain a good set of evidence by way of 
hidden factors. Although the concept of neural networks 

was introduced as early as the 1960s43 and technique for 
practical implementation using back-propagation algo-
rithms dating back to 1986,42 application development was 
limited due to the requirement of high computational 
power and large volumes of data. However, since 2012 
with the availability of fast processors and big data, neural 
networks have been able to achieve high levels of predic-
tion and classification precision. Subsequently, many neu-
ral network architectures have been widely used within 
health care including MH and OB/GYN.

Figure 4. The non-linear SVM classifier with the kernel trick.

Figure 5. A representation of the ANN with a 16-dimensional 
input layer and two hidden layers; each one with 12 and 
10 neurons. Each of the two hidden layers may represent 
a specific type of features that need to be detected. The 
interaction between two nodes is represented by coloured 
edges, where positive interaction is shown by red and negative 
interaction is shown by blue. The edge width and edge opacity 
are proportional to edge weights.
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ANNs from the AI world are rough analogies to the 
functionality of the brain as described by Dr Sussillo, a 
Computational Neuroscientist within the Google Brain 
Team. The ANNs comprise multiple nodal layers analo-
gous to neurons, where the layers are connected through a 
series of mathematical weights that behaves like a syn-
apses between neurons. This hidden layer’s connection to 
the output layer allows the data to be analysed by an algo-
rithm that is embedded within an AI application. One of 
the most successful applications of DL has been image 
recognition. Thus, researchers and clinicians who rely on 
radiological methods to make diagnosis or manage treat-
ment optimization will benefit further through automation-
based algorithms. Predicting clinical outcomes, for 
example, of uterine fibroid embolization (UFE) based on 
pre-procedural magnetic resonance imaging (MRI) 
scans,44 using time-lapse images to identify high-quality 
embryos in IVF45 and evaluating myometrial invasion 
(MI) depth based on endometrial cancer MRI46 are a few 
examples of DL model applicability within the OB/GYN 
domain. DL techniques are also widely used in cases other 
than analysing images. For example, sentiment analysis 
from tweets40 and providing personalized recommenda-
tions using data gathered from wearable devices are a few 
wellbeing-based AI applications currently in use.

Model evaluation

Based on the evidence thus far, there are many algorithms, 
models and techniques to address classification problems. 
As per the ‘no free lunch’ theorem,47 a single ML algo-
rithm cannot be universally applied. Therefore, AI tech-
niques and methods used to develop application to solve 
clinical problems need further exploration within them-
selves and mixed-methods approaches should be utilized 
to construct fit-for-purpose models. Thus, post-construc-
tion of any statistical or ML models, it is vital to evaluate 
its performance. Similarly, in order to generalize models, 
testing of these within a clinical population, for example, 
is important. As a result, model evaluation procedures 
would be required first in an experimental setting. 
Depending on the objective, the model evaluation could be 
divided into two sections: classification evaluation (for 
classification) and regression evaluation (for prediction). 

In terms of regression evaluation, there is a wealth of cri-
teria by which the models can be evaluated and compared, 
such as mean square error, relative square error, standard-
ized residuals and coefficient of determination ( )R2 .48 
However, these still require validation within a clinical 
trial so that ‘real-world’ applicability could be tested.

Since most models in MH and OB/GYN are constructed 
for diagnosis, the primary focus on reviewing classifica-
tion evaluation methods would be to consider a confusion 
matrix. A confusion matrix showcases the number of cor-
rect and incorrect predictions made by the classification 
model compared to the true outcomes (Table 4). Apart 
from model accuracy (number of correctly classified cases 
to the total number of cases), it provides researchers a clear 
insight into the sensitivity (the true positive rate) and spec-
ificity (the true negative rate) of the classifier, which are 
the two most commonly used metrics used to measure the 
performance of a model.

Within the confusion matrix, Kolmogorov–Smirnov 
(KS) chart measures the degree of separation of a classifi-
cation algorithm.49 The K–S scores 100  if the classifier 
separates the positive data points and negative data points 
perfectly, while the K–S score is 0  if the model selects the 
cases randomly. This is followed by assessing the receiver 
operating characteristic (ROC) curve developed by plot-
ting the ratio of sensitivity and (1 − specificity) at various 
thresholding settings. The ROC curve plays a similar role 
as the K–S score. A simple area under the ROC curve 
(AUC) is equal to the probability that a classifier will rank 
a randomly chosen positive observation higher than a ran-
domly chosen negative one.50 At this point, an assumption 
is made about positive observations, in that they rank 
higher than the negative ones. Therefore, a ‘perfect’ classi-
fier should achieve an AUC of 100%  ideally.

While interpretability of a metric is important to accept 
the results of a model, it is also vital to choose an appropri-
ate metric to optimize for, depending on the objective of 
the model. Accuracy, for instance, is straight-forward in its 
definition and interpretation. But, in cases where there are 
missing data or lack of a positive case is more important 
than failing to properly classify a negative case. A model’s 
performance particularly in terms of sensitivity and speci-
ficity should be preferred over overall accuracy, similarly, 
to reaching an accurate diagnosis for a patient.

Table 4. Confusion matrix.

Confusion matrix Actual  

Positive Negative  

Predicted Positive a b Positive predictive value = +a a b/ ( )
Negative c d Negative predictive value = +d c d/ ( )

 Sensitivity Specificity Accuracy = + + + +( ) / ( )a b a b c d
 a/(a+c) d/(b+d)



10 Women’s Health  

OB/GYN-MH sequelae

Equipped with the brief understanding of the AI/ML pipe-
line in a broader context, the next step would be to evaluate 
potential applications to evaluate MH and OB/GYN indi-
vidually as well as in the context of the sequelae of OB/
GYN and MH. Interestingly, while physical and MH share 
a complex symbiotic relationship, there is a dearth of evi-
dence for multi-morbidity research globally. This limits the 
ability of AI researchers and clinical researchers alike to 
develop cross-specialist applications. Theoretically, multi-
purpose and generalizable AI applications would be cost-
effective to many healthcare systems, thus allowing 
multiple clinicians to access their patient’s clinical informa-
tion more conveniently. Currently, communication between 
clinicians in acute healthcare and mental healthcare ser-
vices are quite disconnected. This is further complicated in 
healthcare systems where patients may access primary, sec-
ondary and tertiary care centres or a combination of national 
services and private healthcare as the data are maintained in 
separate systems. As a result of this, patients may receive 
suboptimal care. This is a significant problem for patients 
needing both OB/GYN and MH care, since symptomatolo-
gies and patient-reported outcome as well as differing clini-
cian approaches even, in some cases, could misinterpret a 
potential mechanistic relationship between the two condi-
tions. However, current research data demonstrate the need 
for a better understanding of OB/GYN sequelae with MH, 
for example, as is the case in post-partum depression, ges-
tational diabetes or endometriosis. This is furthered by 
patients using social media to discuss health issues and 
recurring symptoms, for example. De Choudury et al.51 
noted this observation and considered developing a predic-
tive model to forecast significant post-partum changes in 
mothers using their Twitter posts. They analysed 36,948 
tweets from 376 mothers who were in their prenatal period 
and the tweets from the same Twitter users were then 
reviewed during their post-partum period. A total of 40,426 
tweets were analysed through an SVM method that showed 
a better prediction accuracy post-partum changes compared 
to other ML models with an improvement range from 10% 
to 35%.

Another project that used social media platforms like 
Twitter, Facebook and Instagram examined the possibility 
of using social media as a public health tool, in order to 
ensemble a recurrent neural network (RNN) and convolu-
tional neural network (CNN) to identify pregnant women. 
Warikoo et al.40 analysed a small corpus of 3000 tweets and 
could identify pregnancy cases with F1 score of 95%. 
Furthermore, among those identified as accounts with legit-
imate pregnancy case, they could classify 62 tweets as ones 
discussing health issues or expressing health concerns (like 
nausea, swollen feet, etc.) and 157 tweets with negative 
behavioural emotions (sad, depressed, exhausted, etc.). 
This was an interesting finding and could be further devel-
oped to improve the understanding of the psychosocial or 

negative effects often discussed in relation to the use of 
social media as well as cognitive behavioural interventions 
that could aid digital interphases to minimize distress. 
Through these projects, AI demonstrates its versatility in 
terms of design via conceptual development for ‘real-
world’ problems.

Tasks such as facial recognition could be assembled 
within the ANN as a series of numbers to describe the pixel 
of the images.52 Tulchinsky et al.53 further report that ANN 
interacts to deliberately mimic cognitive functions to pro-
vide probabilistic responses using dependable and trained 
mathematical systems interpreting multi-factorial data 
from multi-morbid conditions such as the sequelae of pre-
term labour and MH. This gives rise to complex algo-
rithm–based AI systems known to most as Medical 
Technologies. These medical technologies could give rise 
to important AI software applications in OB/GYN espe-
cially for refining genomics. Most of the recent advances 
in genomic medicine can be attributed to use of AI tech-
niques to some extent.54 With this growth, obstetricians-
gynaecologists are encouraged to leverage genetic testing 
and support their patients though proper counselling dur-
ing the process.55

Apart from biotechnological innovations, AI could be 
used to leverage data collected from wearable devices. 
These could be used by OB/GYN patients to demonstrate 
a variety of data that could assist clinicians, especially to 
highlight any ongoing symptomatologies either physical 
or MH related, as symptoms and potential psychiatric 
comorbidities, for example, need to be managed differ-
ently (Figure 6).

AI and personalized medicine

AI applications have already demonstrated their applicabil-
ity in various other clinical specialties and the directionality 
of these covers the development of patient-centric clinical 
care pathways for the future, in areas such as the utilization 
of data analytics, which drives the novel treatment land-
scape and personalized medicine (PM).56 PM is a compre-
hensive approach to treat patients who demonstrate a 
primary and secondary condition. In order to improve accu-
racy and performance of PM, AI systems that use patient 
reports and clinical outcomes are required to adapt and con-
tinuously improve the decision outcomes. Equally, it is also 
important to develop analytical methods, tools and data sets 
that could augment the analysis of real-world patterns of 
disease progression and prognosis. Harnessing this infor-
mation in the development of AI applications is fundamen-
tal to ensure that they perform the desired tasks effectively.57 
Advanced cloud computing and human machine interfaces 
are also vital to support DL analytics, since solutions from 
such AI systems need to be easily interpretable and acces-
sible in a timely manner.

Another vital precept of AI applications, within PM in 
particular, would be the identification of sub-groups of the 
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primary disease population that may then influence the 
characterization of the overall disease risk, pathology, 
prognosis and subsequent treatment.58 For example, 
patients who have had preterm births (PTBs) are sub-cate-
gorized to extremely preterm (<28 weeks), very preterm 
(28–32 weeks) and moderately to late preterm (32–
37 weeks). These patients may have a varying degree of 
risk, prognosis and treatments depending on their disease 
sub-group. In addition, their physical and MH would dif-
fer. In order to better evaluate the clinical management 
requirements of these patients, multi-dimensional and 
multi-morbidity data sets would be useful to evaluate clini-
cal outcomes. This would aid in developing better person-
alized interventions and AI could play a vital role, given its 
ability to analyse large data sets with a higher precision 
accuracy by collating and reviewing the evidence.

The use of digital phenotyping methods by AI is a tech-
nique that could further aid personalization of treatments.59 
Some of these methods have already been used in areas 
such as Psychiatry59 and similar approaches could be used 
in OB/GYN areas. This is in contrast to traditional health-
care data analytics methods, where long-term epidemio-
logical data are needed to address key issues in healthcare, 
such as over-treatment, under-treatment, delayed diagno-
sis, misdiagnoses, low productivity and over-expenditure. 
In the traditional process, clinical research had to be con-
ducted over a long period to develop statistical models. It 
may take an average of 10–15 years with additional time 

and operational requirements using implementation meth-
ods before being able to make any changes to the relevant 
clinical services. This in turn would delay any clinical care 
improvements that could benefit patients and healthcare 
services alike. On the contrary, AI is able to use a variety 
of data sets, simultaneously even, in different formats and 
use advanced analytical methods to identify relevant pre-
dictors and provide more accurate outcomes, even with 
heterogeneous data, to almost contemporaneously support 
healthcare systems.58,60,61 Principles such as digital pheno-
typing by way of using scientific and logic models in an AI 
application could help predict the burden of disease for 
example, response to treatment, prognosis and any subse-
quent changes to patient-reported outcomes.56 In contrast 
to the current traditional clinical processes for character-
izing symptoms, AI would use probabilistic learning 
within this context. This approach could prevent the dis-
ease and/or monitor progression of the disease and/or aid 
overall long-term management. Thus, as a result of AI, a 
bespoke clinical decision-making process can be gener-
ated to enhance the current ‘fragmented and disintegrated’ 
system that could be economical for healthcare systems as 
well.62,63

While the AI application development sphere could use 
multiple methods to identify and report digital phenotypes 
relevant to clinical outcomes, these are not well-examined 
complex multi-morbid conditions. For example, endome-
triosis patients report depression and anxiety, although 

Figure 6. Treating multi-morbid conditions: traditional approach (left) versus AI-supported integrated approach (right).
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research into determining the mechanistic nature remains 
unknown. Furthermore, the lack of a multi-morbid data set 
to this effect could further introduce rate-limiting factors. 
Also, the use of AI, particularly in PM, depends on high 
performance computing methodologies and big data sets 
to improve the precision accuracy. Thus, the recent 
advances of AI applications and its testing requires greater 
focus on conducting comprehensive clinical research if 
these are to be introduced to clinical practice. In addition 
to this, expansive, multi-centre, multi-national clinical tri-
als are required to obtain accurate data sets to develop 
large data sets that enable the testing and verification of the 
efficacy of the AI tool to be reliable and patient friendly. 
This is particularly important for AI applications that are 
considered as medical devices based on the evolving regu-
lations and legislations. Despite these limitations, a large 
proportion of AI-based research is broadly defined and 
published before appropriate conformity assessments are 
performed.

However, prediction modelling and the use of algo-
rithms have been successfully demonstrated in Radiology, 
Oncology, Cardiovascular and Orthopaedics surgery.64–65 
In these clinical specialties, AI has been reported to 
enhance the prediction of risk with high levels of precision 
and allow development of software applications, as well as 
technical protocols to enhance performance for tailored 
diagnosis and treatments. Neural network–driven machine 
learning and evolutionary algorithms have shown much 
promise in predicting some difficult problems using poly-
nomial algorithms through supervised, semi-supervised or 
unsupervised imputation. Although this requires invest-
ment in high performance computing infrastructure, it 
could be replaced with the use of algorithms embedded 
into existing electronic systems as combination or stand-
alone software. Therefore, implementation of the PM 
pathways impact healthcare significantly and could pro-
vide substantial cost savings and could be particularly use-
ful for high impact areas such as OB/GYN by reducing 
costs in high-cost areas such as fertility treatments. This 
collective evidence warrants a more intimate review of the 
use of AI currently in key OB/GYN and MH disorders.

AI in obstetrics

Pregnancy health surveillance. Pregnancy surveillance is 
one of the most important issues during the early stages 
of pregnancy and the rest of the antenatal period, particu-
larly, in high-risk pregnancies. Pregnancy-associated 
clinical research provides insightful knowledge to 
improve clinical practices, although research to identify 
the possible MH sequelae remains limited. In addition, a 
stronger emphasis is indicated undoubtedly towards 
maternal mortality and morbidity associated with preg-
nancy-related complications. To simultaneously address 
both these aspects effectively and potentially, predictive 

models could be developed using AI tools that may 
reduce both morbidity and mortality rates. Reviewing 
available literature on use of AI in healthcare for preg-
nant women, Davidson et al.66 observed that AI methods 
have been explored on the entire range of the pregnancy 
process, from preconception to postnatal health concerns. 
However, the study found that the current research lacks 
thorough external validation, thereby limiting the gener-
alizability of the proposed methods. Also, they found 
limited research on understanding the impact of pharma-
cological intervention after pregnancy.

Another example is the use of CTG, which is consid-
ered to be an effective and reliable method of diagnosis of 
foetal compromise during pregnancy and labour. However, 
interpretation of the CTG is subjective. As a result, 
AI-based methodologies could be introduced to improve 
the effectiveness and efficiency for the interpretation and 
support clinicians to improve their decision-making as 
well as reduce the cost-burden of carrying out high-risk 
surgical interventions. Fergus et al.67 explored this further 
using 13 features that were extracted from CTG reports to 
ensemble a classification tool comprising of a Fisher linear 
discrimination analysis (FLDA), Random Forest and SVM 
to classify different caesarean section and vaginal delivery 
births. SVM is a classifier that seeks a hyperplane that 
maximizes the margins between the classes. FLDA aims to 
project the data to a line that maximizes the distance 
between the means of classes while minimizes the vari-
ance within each class. Thus, SVM and FLDA are rela-
tively easier to separate those observations that are far 
away from the decision boundary. However, SVM and 
FLDA perform poorly when used to classify caesarean and 
vaginal delivery births that are close to the boundary. 
Random Forest algorithms, however, use data points to 
vote and classify new observations, which make it useful 
to classify observations that are located close to the bound-
ary. Therefore, the ensemble model used in Fergus et al.67 
syntheses demonstrated the strength of each model and a 
possible solution to improve the overall prediction accu-
racy. This algorithm was then trained on 552 intrapartum 
recordings that indicated an AUC of 0.96. While interest-
ing, a significant limitation in Fergus and colleagues’ study 
is the size of the data set, which is fairly small for testing 
and validating ML algorithms. Interestingly, Lu et al.68 
developed a novel framework for intelligent analysis and 
automatic interpretation of digital CTG signalling. They 
extracted several features and characteristics from the 
CTG trace, and incorporated multiple scoring methods of 
Kreb’s, Fischer’s and Modified Fischer’s for evaluating 
foetal wellbeing. Their hypothesis was to accurately place 
the changes in the foetal heart rate alongside uterine con-
tractions, thus making the clinical interpretation more 
accurate. This tool could either be used in hospitals or at 
home by the patients themselves. Therefore, this tool has 
the potential to support obstetricians’ function more 
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effectively. However, like many other AI tools that show 
initial promise, it requires clinical trials to test and validate 
its use for a wider population, as well as demonstrate its 
superiority over other existing methods.

PTB. Although antenatal care plays a key role in the birth 
of a healthy baby, predicting the time of delivery is consid-
ered as one of the most challenging problems for both the 
mother-to-be and for the obstetricians. PTB is considered 
a major cause of perinatal mortality and is an important 
health issue, particularly in low- and middle-income coun-
tries (LMICs). The psychological impact of PTB is signifi-
cant and often a sensitive area of discussion among women, 
which is further complicated by cultural stigmatization. 
Therefore, it is not a surprise that there is limited research 
available within the PTB sequelae with MH especially 
among the Black, Asian and Minority Ethnic (BAME) 
populations. Furthermore, the financial burden of PTB on 
the woman, their families and healthcare systems are 
equally burdensome. Therefore, using non-invasive tools 
developed via statistics and AI could provide a valuable 
solution that could include self-reporting methods, for 
example, to be introduced to women using mobile apps or 
mobile chat-bots. These applications use conceptual algo-
rithms to operate and could provide women support (non-
clinical) in the first instance. Currently, there are various 
patient diaries that are accessible using either the Apple or 
Android applications. These could be further developed 
for use within the clinical domains.

However, further development of the digital sphere 
using AI would require exploration of the current evidence 
base. For example, the subjectivity aspect associated with 
PTB could also be supported by developing prediction 
models using ML algorithms. Electrohysterography 
(EHG), an effective and reliable tool to monitor pregnancy 
and labour, could also be used to predict PTB.67 Many 
studies have demonstrated that peak frequency, medium 
frequency, root mean square and sample entropy of uterine 
contractions that are extracted from EHGs to be signifi-
cantly different between preterm and term deliveries. 
Fergus et al.67 and Idowu et al.69 considered combinations 
of this with the impregnability of the frequency-related 
parameters in terms of signal quality variation, as core fea-
tures to perform various ML classifiers on an open data 
set.67,70 They showcased that ML classification algorithms 
could provide a robust method to predict PTB while Idowu 
et al.69 suggested that Random Forest Classifier outper-
forms other algorithms with a specificity of 86%, a sensi-
tivity of 97% and an area under the curve (AUC) of 94%. 
Encouraged by these results, Despotovic et al.71 consid-
ered a novel set of features to perform a series of ML clas-
sifiers, and the Random Forest Classifier still outperformed 
other methods with an AUC of 99% and a sensitivity of 
98.4%. Thus, this level of optimization could be translated 
to cost-effective software packages that could support 

clinicians to deliver optimized care for their patients. 
While these AI tools have the potential to act as innovative 
tools, to determine their precise viability and effectiveness 
among a wider population of patients, global clinical trials 
with significant sample sizes are needed. This would also 
assist healthcare organizations and policy-makers to pro-
duce informed decisions around care pathways that are 
cost-effective and sustainable.

AI in gynaecology

IVF. AI application use in reproductive medicine is another 
exciting partnership between humans and machines. The 
execution of emulating or exceeding human intelligence is 
at the forefront of using AI concepts, especially within the 
field of laboratory science associated with IVF. Within the 
last decade or so, several technological advancements 
have emerged, including time-lapse microscopy that 
became a ‘revolving door’ to automatization of embryo 
culture techniques. Formerly, the classic morphological 
evaluation is the most widespread approach for blastocyst 
selection during the embryo fertilization process.96 How-
ever, with the use of time-lapse imaging, the morphologi-
cal appearance and morphokinetic events can be monitored 
and evaluated for selection of viable embryos. But the pro-
cess of embryo evaluation and transfer is determined by 
embryologists, which could be subjective like most other 
clinician-based reviews. AI could facilitate optimization 
and standardization of this process, by providing improved 
image reconstruction for recognition and selection of via-
ble embryos in an automated manner.

As a result of this, continuity of the development of 
observations could be applied in the form of an ANN 
architecture to evaluate quality of embryos using mor-
phokinetic and morphological events that achieved an 
83% accuracy as shown by Zaninovic et al.72 also showed 
the application of an Inception-V1 algorithm to improve 
the parameters to obtain a 97.6% accuracy to discriminate 
between groups of poor and good blastocysts by way of 
using 50,392 images and selecting only 10,148 embryos 
using the time-lapse system. Despite this evidence, time-
lapse hardware use is prohibited in most laboratories due 
to the lack of statistically significant clinical trial data to 
show the possible superiority of this software in compari-
son to conventional methods.73 As a result, Khosravi 
et al.45 developed a single static two-dimensional image 
capture optical light microscopy using an AI-based ensem-
ble model. Eight final prediction models based on ResNet 
or DenseNet were selected to form the ensemble model, 
and individual model selection relied on diversity and con-
trasting criteria, which made this model to be more robust 
and accurate. Although this showed a further improve-
ment, a larger data set is required to test its use within 
clinical practice. A significant limitation appears to be the 
existing poor accessibility to clinical trial data sets with 
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sufficiently large sample sizes, since successful testing of 
any AI application requires a considerably large data set to 
showcase precision accuracy.

Management of uterine fibroids. Fibroids (leiomyoma) are 
non-cancerous growths of the uterine muscle that often 
occur in pre-menopausal women. Fibroids can vary in size 
from tiny seedling growths to large pelvic masses, which 
can occupy most of the pelvis and the abdominal cavity. 
Many women with fibroids are asymptomatic, yet depend-
ing on the size, number and location of fibroids, others suf-
fer with multiple symptoms caused by a fibroid such as 
heavy periods, pressure symptoms, or discomfort and sub-
fertility. UFE is an effective treatment for the management 
of fibroids and alleviating the associated symptoms. How-
ever, currently there are no means of predicting the 
response to treatment. MRI is used before and after UFE to 
determine response to treatment. Luo et al.44 have used a 
DL model to predict clinical outcomes of UFE based on 
pre-procedure MRI scans. They trained and tested a Resid-
ual Convolutional Neural Network (ResNet) to predict 
fibroid volume reduction and clinical outcome using a ret-
rospective cohort of 409 patients with 727 fibroids at a sin-
gle institution. All AI models achieved higher accuracy in 
predicting outcome when compared with experienced 
radiologists. The limitations to the study included reliance 
on data from a single institution and the lack of an advanced 
MR sequence. Cancerous change in a fibroid (sarcoma) is 
rare and uterine sarcomas account for 8% of uterine malig-
nancies.74 The prognosis of malignant leiomyosarcoma is 
poor, and the incidence is low. For example, leiomyosar-
coma in women under 40 is less than 1:1000, while up to 
one in three women will have a fibroid. There is no single 
non-invasive investigation that can reliably identify rare 
and malignant leiomyosarcomas from benign and common 
fibroids.75 Diagnosis and screening of women with uterine 
masses, using AI offers promise. Malek et al.76 developed 
an AI method based on an ensemble ML approach (includes 
K-nearest neighbour (KNN), Random Forest and SVM) to 
distinguish uterine sarcoma from benign leiomyomas 
based on perfusion-weighted MRI parameters. This study 
demonstrated that the Random Forest classifier achieves 
the best result with a 100% sensitivity and a 90% specific-
ity in 42 women with 60 fibroids.

Gynaecological surgery. In addition to the improvements 
demonstrated in diagnosis and predicting prognosis in a 
variety of gynaecological conditions thus far, gynaeco-
logical surgery could also significantly benefit from AI 
applications. This has already demonstrated cost reduc-
tions in complex Orthopaedics and Oncology surgery 
with the use of robotics surgical methods, another AI tool 
that often consists of multiple AI applications. Another 
good example of AI applications in surgery is the virtual 
reality-AI used to identify patient factors, repetitive 

patterns and treatment algorithms to project outcomes. 
This is particularly important as AI is unaffected by many 
variables associated with traditional surgical approaches, 
for example, the surgical skills of the surgeon or differ-
ences between patients. While it is challenging to create 
a precise algorithm to address these aspects built on the 
current AI knowledge base, it has enabled the introduc-
tion of robotics and AI-assisted software use in imaging 
spatial awareness. These systems could aid surgeons by 
producing better images and by developing three-dimen-
sional printing (3DP) that could duplicate a surgical site, 
which is superior to a standard two-dimensional image. 
These superior images are representative of a higher 
degree of precision accuracy in a virtual context. As a 
result, a more accurate preoperative plan with minimal 
errors could be constructed. Since this method would 
increase awareness of the surgeon and thereby assist pre-
cision navigation and protection of surrounding struc-
tures, it is particularly useful for complex surgical cases. 
For example, this methodological protocol was applied to 
a patient with deep infiltrating endometriosis (DIE) by 
Ajao et al.77

A similar approach could also be used when introduc-
ing simulation studies for trainee surgeons to advance 
their skills during their clinical training programmes. 
Augmented reality is another common AI application 
used in simulation studies to reconstruct objects in a real-
world setting. This step generates more informative 
images for trainees to focus on and will reduce the risk 
mitigation protocols needed during their surgical training. 
Yet another contribution from the AI world in this niche is 
computer-generated holography (CGH) that can aid in 
providing continuous depth sensation. Naturally, such 
adaptations in a surgical training programme, will reduce 
the training time, allow targeted improvement of skills of 
trainees and facilitate objective appraisal and selection of 
the trainees, while reducing risks to the patients. As a 
result of these types of training programmes, indemnity 
insurance, which healthcare organizations are required to 
put in place, could cost less as the individual organiza-
tions can produce credible data on the quality of the train-
ing provided according to a robust strategy for minimizing 
surgical risk. The cost savings made from such training 
programmes could be reverted into creating better infra-
structure for safe and efficient delivery of surgeries related 
to women’s health.1,59,60,78–84

The use of AI in the operating room set up will need 
strong AI systems that are more complex and complicated 
akin to self-driving cars. This form of general AI does not 
currently exist for clinical application. Strong AI systems 
should be capable of demonstrating human intelligence 
coupled with soft skills possessed by physicians. Ability to 
reason, solve problems, make judgements and communi-
cate while demonstrating consciousness and self-aware-
ness is the Holy Grail to developing strong AI.
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Endometrial cancer. Endometrial cancer is the most com-
mon gynaecological cancer and there are clinical and path-
ological features such as pelvic and para-aortic node 
metastasis, MI which reduces the survival rate of the 
women.85 Accurate clinical staging of endometrial cancer 
will aid in efficient and accurate stratification of patients 
for the best surgical treatment or for adjuvant therapy. 
Therefore, identification of the high-risk patients is impor-
tant, since only those can be allocated to have more exten-
sive surgery or further adjuvant treatment, and thus, their 
survival chances will be improved while not disadvantag-
ing the low-risk patients with unnecessary invasive treat-
ments and the associated risks.

Lymph node metastasis reduces survival in women 
with endometrial cancer and that risk is ameliorated by 
the addition of lymph node resection to the hysterectomy 
as their surgical treatment. However, it is a procedure 
associated with significant additional surgical morbidity; 
therefore, efficient and accurate stratification of patients 
for the more extensive surgery (lymph node dissection) 
with preoperative identification of women who have 
lymph node involvement will improve survival while 
reducing the surgical risk and morbidity. This is particu-
larly true for up to 22% of women who have low-grade 
primary cancers but have lymph node metastasis. Ahsen 
et al.86 developed a ℓ1-, ℓ2-norm SVM algorithm to carry 
on an ML classifier on a high-dimensional data set (213 
micro-RNA features with only 86 samples) to predict the 
metastasis in endometrial cancer. Note that the traditional 
ℓ2-norm does not offer a sparse solution and ℓ1-norm and 
Elastic Net regularization both have a poor performance 
while the features are far more than the sample size, the 
SVM with convex linear combination of ℓ1- and ℓ2-norm 
as penalty provides a classification method that could not 
only handle the high-dimensional data set but also guaran-
tee the sparsity of the solution. Using this novel algorithm, 
18 discriminatory micro-RNAs are detected from 213 
micro-RNAs and achieved 100% accuracy on the training 
cohort. When applied to an independent testing cohort, 
the classifier correctly predicted 90% of node-positive 
cases, and 80% of node-negative cases with a 6.25% false 
discovery rate (FDR).

MI also increases the clinical stage of the endometrial 
cancer, which may be associated with distant spread and 
poor survival. Chen et al.46 pointed out that women with 
more than 50% MI have an increased risk of lymph node 
involvement therefore may also require lymph node resec-
tion in addition to hysterectomy as their surgical therapy. 
This study included a training set of 500 MRI images of 
women with endometrial cancer, to establish a two-stage 
DL diagnostic model to facilitate the clinicians to diagnose 
MI. Combined accuracy of the radiologists and trained 
network model was 86.2% in determining deep MI, with 
authors presenting it to be a time-efficient diagnostic 
pathway.

AI in MH

MH is a highly complex field and psychiatric disorders can 
be challenging to diagnose and treat. As a result of this, the 
sequential relationship of MH symptoms in OB/GYN con-
ditions can be especially difficult. Therefore, a simpler, 
delineated method to ‘unpick’ any symbiotic relationship 
would help understand the mechanisms, compounding and 
perpetuating factors. To do this, the use of self-reporting 
tools that could aid clinical decision-making to diagnose, 
monitor and treat any ongoing issues in a more personal-
ized manner could be naturally useful. Such applications 
are becoming more common now with the advancement of 
digital medicine. The acceptance and tolerability of treat-
ments as a result having more personalized approaches 
could provide improved patient-reported outcomes. 
Therefore, in this regard, developing AI tools could offer a 
pragmatic and cost-effective solution.

MH diagnosis usually involves binary classification 
problems (such as high risk of violence and low risk of 
violence) or multi-class problems (such as highly stressed 
level, stressed level and normal level). Both can be man-
aged in ML models or DL algorithms. The diagnosis of 
psychiatric disorders is often supported using criteria from 
the Diagnostic and Statistical Manual of Mental Disorders 
Association87 or the International Classification of 
Diseases.88 In order to address the shortage of psychiatrists 
and psychologists and enhance the efficiency of the deci-
sion-making, some ML methodologies are applied to for-
mulate a model to predict anxiety and depression.24 Based 
on literature review, 16 factors were considered as predic-
tors and added to an interview questionnaire. Five kinds of 
ML strategies were applied on the data among 470 sailors 
with these features to identify the at-risk seafarers for early 
referral to psychological treatment. For this binary classi-
fication problem, Catboost, an ensemble ML model, 
appeared to be the best one with accuracy and precision of 
82.6% and 84.1%, respectively. In addition, Morel et al.25 
and Sanderson et al.89 focused on comparing the perfor-
mance of LR and XGBoost on binary classification prob-
lems. The AUC was applied to evaluate the reliability of 
the ML methods and it shows that XGBoost outperforms 
the LR on hospital re-admission data and death-by-suicide 
data. Another study combined the ML mechanism and 
NLP to carry out an assessment scheme to evaluate the risk 
for school violence. By NLP technologies, different types 
of linguistic features were extracted from the interview 
that was fed to ML classifiers to make a prediction on the 
risk of school violence for each student. The use of linguis-
tic features significantly improved ML classifiers’ predic-
tive performance with 94.6% AUC on test data.20 For 
multi-nomial classification problem, Ahuja et al.39 
extracted the features from Perceived Stress Scale (PSS) 
test which includes 14 questions overall and involves 
Random Forest, Naive Bayes, SVM and KNN to analyse 
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stress in the college students. The students were divided 
into three categories: highly stressed, stressed and normal. 
The result showed that SVM outperforms the other four 
methods with increased accuracy (85.71%).

According to a World Health Organization (WHO) 
report, wide arrays of MH disorders are present but often 
underdiagnosed in women. The global MH disease burden 
is approximately 790 million, with 41% attributed to 
depressive disorders among women.90 Currently, the pro-
portion of this sample that has existing gynaecological 
and/or obstetric conditions is unclear due to limitations in 
multi-morbidity research and study design (e.g. limited 
sample sizes and cross-sectional methods) within these 
specialties. Another rate-limiting factor could be the con-
tinued stigmatization around MH disorder which may pre-
vent patients with these issues from presenting to services. 
Digital medicine and PM approaches combined with AI 
could provide methods to identify prevalence data more 
comprehensively91 and provide interventions at a fraction 
of the cost. Using PM methods, patients would be able to 
self-report and transmit this data to a clinician using digital 
solutions such as a simple mobile application. These appli-
cations could also be personalized in a manner that allows 
patients to become more engaged and as a result, proac-
tively seek clinical assistance using digital MH or telepsy-
chiatry methods. Chat bots are a good example of this 
method where patients could have conversations through a 
digital interface. This method was used by the creators of 
the app Woebot, where users could express their emotions 
by having therapeutic discussions through the digital inter-
face.92 This was originally developed as a Cognitive 
Behavioural Therapy (CBT) platform as part of the UK’s 
National Health Service (NHS) to assist patients manage 
their MH through an independent ‘think and behave’ con-
cept. Woebot was built using NLP methods with the assis-
tance of clinicians and patients who discussed their 
intended therapeutic experience. However, Woebot did not 
complete a Clinical Trial; thus, it has limited usage 
although over 1000 downloads from the Google app store 
have been reported.

Another AI-based tool used in MH is Wysa, where 
Google play store reported over 100,000 downloads. Wysa 
was developed by researchers in Columbia and Cambridge 
Universities using an AI-based emotional intelligence con-
cept to help their users with processing emotions and 
thoughts via a multitude of tools and techniques such as 
evidence-based CBT, dialectical behavioural therapy and 
meditation.93 However, this application is also yet to be 
tested for routine clinical use, therefore, currently lacks 
clinical trial data to justify its applicability to a wider audi-
ence. These ‘telemedicine’ methods have been considered 
by users, clinicians, clinical trialists and academics with 
much more enthusiasm during the COVID-19 pandemic, 
as the use of digital techniques has been key to keeping 
some clinical services open. The COVID-19 pandemic 

also encouraged policy-makers and health care systems to 
streamline their services using innovative methods and to 
re-think their care delivery models where possible. 
E-consultations are now commonly used in a variety of 
specialisms, including MH. There are a variety of telepsy-
chiatry research projects running globally, to increase 
access to MH care providers and improve patient benefit. 
However, there are issues that still need to be addressed, 
such as access to digital tools, especially among the older 
population, the availability of encrypted software to pro-
tect cloud-based systems’ data storage, to name a few.

Despite the positive steps, a significant challenge for AI 
scientists in developing clinically relevant applications 
remains the lack of large and representative data sets, access 
to developing clinical trials and NLP for text and speech in 
multiple languages. For example, current AI application’s 
ability to learn the nuances primarily of the English lan-
guage is largely dependent on users themselves. This could 
be problematic when generalizing these tools to global 
healthcare systems.94 Straw and Callison-Burch95 performed 
a literature review on use of NLP for MH and observed that 
most of the current solutions have significant bias with 
respect to religion, race, gender, nationality, sexuality and 
age. In the development of technology to track mood, track-
ing body language and facial recognition, as well as verbal 
communication, maybe vital. These applications are also 
not usually accessed by clinicians themselves, but these data 
could be incredibly useful to formulate clinical management 
plans or to determine if there are any underlying conditions 
requiring more clinical interventions.

Due to these factors, the use of AI applications within 
the clinical MH domain still remains a futuristic ambition. 
However, many clinicians are starting to consider the 
potential benefits they could bring.

Conclusion

This rapid review indicates that AI could be extremely 
valuable within the OB/GYN and MH domains. Although 
there is available evidence of AI being used in these indi-
vidual domains in silos, the potential use of AI in the com-
bined OB/GYN-MH sequelae is yet to be explored. Using 
multi-morbid big data sets would further improve the AI 
applications and its use in a clinical setting, provided they 
are tested and validated sufficiently using clinical trials. It 
is equally important to have multi-morbid data sets com-
prising clinical trial and real-world data sets as well as, be 
inclusive of different populations, race and gender, as 
these could influence patient-reported outcomes and pos-
sible personalization of treatments where comorbidities 
are involved. Failure to take these into account when 
developing AI applications especially within areas such as 
OB/GYN and MH may lead to the underestimation of 
patient risk, adversely influence the ethical and legal 
implications, limiting its potential application at a global 
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scale. With the evolving progress made in AI across vari-
ous industries and the cross-disciplinary approach based in 
computer science, psychology and medicine, AI is a dis-
ruptive technology innovation that leads to ground-break-
ing tools, thus needs serious consideration. Reassuringly, 
given that a plethora of AI applications has been developed 
thus far using various ML methods, it appears to be 
accepted within the medical and scientific community. 
However, the dilemma remains that these have had limited 
testing, including the ones currently used in clinical prac-
tice. As such, to use AI applications widely, to its full 
potential, clinical trials are required to demonstrate the 
true efficacy and reliability within generalizable popula-
tions. The pervasive application of AI-based tools might 
support physicians with patient care by predicting accurate 
treatment outcomes while minimizing adverse events. The 
objectivity of AI systems, propelled by the enhanced data 
processing capabilities, can also contribute to minimizing 
bias in clinical care.
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