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Abstract

When mitochondrial respiration or ubiquinone production is inhibited in Caenorhabditis elegans, behavioral rates are slowed
and lifespan is extended. Here, we show that these perturbations increase the expression of cell-protective and metabolic
genes and the abundance of mitochondrial DNA. This response is similar to the response triggered by inhibiting respiration
in yeast and mammalian cells, termed the ‘‘retrograde response’’. As in yeast, genes switched on in C. elegans mitochondrial
mutants extend lifespan, suggesting an underlying evolutionary conservation of mechanism. Inhibition of fstr-1, a potential
signaling gene that is up-regulated in clk-1 (ubiquinone-defective) mutants, and its close homolog fstr-2 prevents the
expression of many retrograde-response genes and accelerates clk-1 behavioral and aging rates. Thus, clk-1 mutants live in
‘‘slow motion’’ because of a fstr-1/2–dependent pathway that responds to ubiquinone. Loss of fstr-1/2 does not suppress the
phenotypes of all long-lived mitochondrial mutants. Thus, although different mitochondrial perturbations activate similar
transcriptional and physiological responses, they do so in different ways.
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Introduction

Mitochondria generate most of the cell’s energy as well as its

reactive oxygen species (ROS), and mitochondrial dysfunction can

cause disease and accelerate aging. Paradoxically, mitochondrial

dysfunction can also increase longevity. Yeast petite mutants, which

lack mitochondrial DNA and do not carry out respiration, have an

increased replicative lifespan [1]. In C. elegans, two types of mutations

that affect mitochondrial function also increase lifespan. The first type

reduces respiration substantially. One such mutant, isp-1(qm150), was

identified in an EMS screen for mutants with delayed development

and defecation rates. These animals harbor a mutation in an iron-

sulfur protein in complex III of the electron transport chain and have

reduced rates of oxygen consumption [2]. In addition, two

independent RNA interference (RNAi) longevity screens revealed

that knock-down of genes encoding components of the respiratory

chain or ATP synthase decreased ATP production and rates of

respiration, reduced behavioral rates and increased lifespan [3,4].

Respiratory-chain RNAi-treated animals are smaller than isp-1

mutants [3,5], implying either a more severe reduction in respiration

or, conceivably, a qualitatively different response. Interestingly, a

mutation that reduces the level of the respiratory-chain component

cytochrome c oxidase extends the lifespan of mice [6], suggesting that

the underlying mechanism may be conserved in higher animals.

The second type of mitochondrial mutant is exemplified by clk-1

mutants, which are also long lived and have reduced behavioral

rates [7]. clk-1 mutants lack a mitochondrial hydroxylase necessary

for synthesis of ubiquinone, a prenylated benzoquinone required

for shuttling electrons from complexes I and II to complex III

during respiration [8]. Oxidative phosphorylation measurements

in isolated mitochondria have shown that clk-1 mutations reduce

electron transport between complex I and III, but not between

complex II and III [9]. In yeast, the clk-1 homologue COQ7 is

necessary for respiration, and coq7 mutants are unable to grow on

non-fermentable carbon sources. In contrast, C. elegans clk-1

mutants are not only viable, but they have nearly normal levels

of respiration and ATP [10,11]. clk-1 mutants compensate for the

lack of endogenous ubiquinone, Q9 (the subscript refers to the

number of isoprene units) with bacterial Q8, provided in their diet

[12,13]. In the absence of clk-1, the animals accumulate the Q9

precursor demethoxyubiquinone (DMQ9). There is some debate

over what role DMQ9 plays in the clk-1 phenotypes, but the data

suggest that they are caused by the absence of Q9 [13,14,15]. Mice

with reduced levels of Mclk-1 are also long lived [16]; though

curiously, these mice do not have reduced Q9 levels [17].

How do these mitochondrial mutations extend lifespan?

Because respiration is the major source of ROS, which could

potentially accelerate aging, a simple explanation for the increased

longevity of animals with reduced respiration is that they generate

less ROS as the animal ages. However, timed RNAi experiments

indicate that respiratory-chain activity must be reduced during

development for lifespan extension. Adult-only RNAi treatments
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reduce ATP levels and slow behavioral rates but do not extend

lifespan [3,18]. If reducing mitochondrial respiration extended

lifespan by reducing the level of ROS produced during the aging

process itself, then one might expect reducing respiration at any

time would extend lifespan. In addition, lifespan extension does

not correlate with resistance to the oxidative stressor paraquat [4]

or levels of protein carbonylation [18]. Likewise, little is known

about the mechanism by which clk-1 mutations, which have

relatively small effects on respiration, extend lifespan. Overex-

pression of clk-1 shortens lifespan and increases movement rates in

C. elegans [11] suggesting that whatever the mechanism, its

influence on longevity and rates of living is rate limiting in the

animal.

In previous studies, mutations that suppress the slowed

defecation phenotype (but not other defects) of clk-1 mutants have

been found [19]. One of these suppressor genes, dsc-1, has been

cloned and found to a encode homeodomain protein [20];

however, in general their mode of action is not well understood.

Several interesting studies have associated a clk-1 germ-line

phenotype with altered ROS signaling, and showed that sod-1

mutations can partially suppress clk-1 mutant’s developmental

delays [21,22]. This is suggestive that clk-1 mutations may alter

ROS signaling in cells.

How might mutations affecting respiration and ubiquinone

biosynthesis slow behaviors and extend the lifespan of C. elegans?

One possibility is that these perturbations trigger a transcriptional

response that alters the animal’s physiology and lifespan. In yeast,

loss of mitochondrial DNA is known to induce a robust

transcriptional response. This change in gene expression has been

called the ‘‘retrograde response’’, because it implies a reversal in

the normal direction of information flow between the mitochon-

dria and nucleus [1,23,24]. The genes expressed during the yeast

retrograde response lead to a metabolic remodeling of the cell,

heat-shock resistance, and increased mitochondrial biogenesis

[25,26,27,28]. The retrograde response has been shown to be

required for the increased longevity of these so-called yeast

‘‘petites’’. Thus, lifespan extension in these yeast cells is actively

regulated, and not simply a passive consequence of decreased

respiration. A gene expression profile similar to the yeast

retrograde response has been observed in cultured mammalian

cells when mitochondrial DNA is depleted using ethidium

bromide, suggesting that this transcriptional response has been

conserved evolutionarily [28].

The retrograde response may be a compensatory reaction to the

normal decline in mitochondrial function seen with age, since it is

observed in older cells [1]. Whether it could potentially play a role

in longevity determination in multicellular organisms is not

known. Consistent with this possibility, C. elegans isp-1 mutants

have increased levels of expression of at least one protective gene,

the superoxide dismutase sod-3 [2]. In this study, we carried out

microarray analysis of C. elegans mitochondrial mutants to test the

hypothesis that a transcriptional response to mitochondrial

perturbation slows the animal’s rates of behavior and aging.

Results

clk-1 Mutants Exhibit a Conserved Gene Expression
Profile

clk-1 mutants are enigmatic because they exhibit a respiration-

defective behavioral and longevity phenotype without having

major changes in respiration [16]. For gene expression profiling,

we grew synchronized populations of clk-1(qm30) mutants and

wild-type (N2) animals and collected them as pre-fertile adults.

One thousand seven genes (listed in Supplementary Table 5) were

found to be differentially expressed and were ranked using the

SAM (Significance Analysis of Microarrays) tool [29] using a False

Discovery Rate (FDR) of ,0.1 as cut-off. Interestingly, the

majority of the genes in this group (99%) were up-regulated

relative to wild type, as was also the case in yeast petites [25,26].

The genes were assigned to Gene-Ontology (GO) categories

using the software BiNGO [30], and several GO categories were

found to be overrepresented (Figure 1). The nature of these

categories suggested that clk-1 mutants undergo significant

metabolic reorganization and, in addition, activate a stress

response similar to that elicited by xenobiotics. For example,

GO categories 6006, 6007, and 6096 include genes involved in

glycolysis; GO categories 16835 and 44275 include genes

potentially involved in glycolysis, gluconeogenesis or anaplerotic

pathways; GO category 32787 contains genes involved in

anaplerotic reactions (which generate Krebs cycle intermediates);

GO categories 9072, 9074 and 30170 encompass genes involved

in amino acid metabolism; GO categories 6825 and 5375 include

genes involved in Cu transport; GO category 6629 includes genes

involved in lipid metabolism; GO category 46040 includes genes

involved in nucleotide metabolism; and GO categories 4499 and

16758 include genes involved in xenobiotic response and

maintenance of cellular redox state.

When we looked at individual genes, we observed up-regulation

of genes encoding enzymes required for glycolysis, such as GPD-2,

GPD-3, (gliceraldehyde 3-phosphate dehydrogenase), T05D4.1

(aldolase A homologue), and LDH-1 (lactate dehydrogenase).

GEI-7, which is an enzyme necessary for the glyoxylate cycle in

worms (see Discussion), was also up-regulated. We also observed

increased expression of an isocitrate dehydrogenase, C30G12.2,

likely involved in the Krebs cycle, and other alcohol dehydroge-

nases (dhs-29, dhs-3) that could potentially act in anaplerotic

pathways. We found increased expression of proteins involved in

Author Summary

Mitochondrial respiration generates energy in the form of
adenosine triphospate (ATP), a molecule that powers many
cellular processes. When respiration is inhibited in C.
elegans, rates of behavior and growth are slowed and,
interestingly, lifespan is extended. In this study, we
investigated the mechanism of this response. We find that
inhibiting respiration increases the expression of genes
predicted to protect and metabolically remodel the
animal. This pattern of gene expression is reminiscent of
the expression profile of long-lived respiration-defective
yeast, suggesting ancient evolutionary conservation. Mu-
tations in clk-1, which inhibit the synthesis of the
respiratory-chain factor ubiquinone, produce gene expres-
sion, longevity, and behavioral phenotypes similar to those
produced by inhibiting components of the respiratory
chain. We find that knocking down the activities of two
similar genes—fsrt-1 and fstr-2—accelerates the behaviors
and aging rates of clk-1 mutants and inhibits the clk-1(2)
transcriptional response. Thus, fstr-1/2, which encode
potential signaling proteins, appear to be part of a
mechanism that actively slows rates of growth, behavior,
and aging in response to altered ubiquinone synthesis.
Unexpectedly, fsrt-1/2 are not required for the longevity
and behavioral phenotypes produced by inhibiting the
gene isp-1, which encodes a different component of the
respiratory chain. Our findings suggest that different types
of mitochondrial perturbations activate distinct pathways
that converge on similar downstream processes to slow
behavioral rates and extend lifespan.
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oxidative phosphorylation, such as asg-2 (subunit of ATP synthase

complex) and F17A9.4 (NADH oxidoreductase). Also, several

genes coding for enzymes involved in amino acid and nucleotide

metabolism were up-regulated in clk-1 mutants. There was also a

significant increase in enzymes involved in cellular detoxification,

including UDP-glycosyl transferases (UGT-53, UGT-13, UGT-

43, UGT-6, UGT-39), gluthathione S-transferases (GST-4, GST-

13, GST-36), superoxide dismutase (SOD-3), flavin-containing

monooxygenases (FMO-1, FMO-3) and other gene classes

potentially involved in xenobiotic metabolism (cytochrome

P450s, alcohol dehydrogenases and ABC transporters).

To compare the transcriptional profile of clk-1 mutants to the

yeast retrograde-response genes, we referred to two previous

publications studying the effects of inhibiting mitochondrial

respiration in yeast petites [25,26]. We applied BiNGO software

to the most differentially expressed genes reported in those studies

and compared the yeast-petite GO categories to those of clk-1

mutants. Among the top ranking GO categories (p,0.1), we

observed a remarkable degree of similarity (p,0.001) between the

clk-1 and yeast petite BiNGO categories (Figure 1).

One of the hallmarks of the yeast response to respiration

inhibition is an increase in mitochondrial biogenesis [31]. To test

whether there might be an increase in mitochondrial biogenesis in

clk-1 mutants, we used Real-Time qPCR to quantify mitochon-

drial DNA. Total mtDNA was measured relative to genomic

DNA, which provided the average number of mitochondrial

genomes per cell in a population of worms (see Methods). We

observed a significant increase in mitochondrial DNA levels

(Figure 2). Together, these data suggest that clk-1 mutants exhibit a

response to mitochondrial dysfunction that is similar to the yeast

retrograde response.

fstr-1/2 and aqp-1 Contribute to the Increased Longevity
of clk-1 Mutants

To identify genes necessary for the increased longevity of clk-

1(2) animals, we compiled a list of differentially expressed genes

from populations of L4 (late larval stage) as well as prefertile adults

(see Methods). We included L4 animals in this set because previous

work has shown that the L4 period is the critical period for lifespan

determination in at least some mitochondrial mutants [18] (and

data not shown). We picked the 75 top differentially expressed

genes ranked using the SAM software package, inhibited their

functions using RNAi and measured lifespan. Out of the initial list

of 75, we collected lifespan data for 63 genes over two independent

trials (Table S1). We established a significance cut-off of p,0.05

and selected RNAi clones that decreased clk-1 longevity signifi-

cantly in both trials or were statistically significant in one

experiment and showed a decrease of at least 5% in the other (a

5% decrease in overall lifespan corresponds to an ,25% decrease

in the lifespan extension produced by clk-1 mutation). We retested

the positive clones in clk-1(2) and wild-type animals for effects on

longevity (Table S2). Out of 63 RNAi clones tested, only two

decreased clk-1 mutant longevity in all three trials (Figure 3A and

3B). Neither of these clones significantly shortened wild-type

lifespan, suggesting that they may play a role specifically in clk-1

mutant lifespan (Figure S1). One of these clones corresponded to

aqp-1, which encodes a glycerol channel [32]. aqp-1 RNAi

decreased the lifespan extension that would normally be produced

by clk-1 mutations from 26% to 7% (p,0.05) and from 17% to 0%

(p,0.0001), and did not affect wild-type longevity in two separate

experiments (Figure S1). Interestingly, aqp-1 (also called dod-4) has

already been shown to contribute to the long lifespan of daf-2

insulin/IGF-1-receptor mutants [33]. The other RNAi clone,

corresponding to a gene we call fstr-1 (for ‘‘faster’’, also known as

gfi-1) decreased the lifespan extension produced by clk-1 mutations

from 26% to 3% (p,0.01) and from 17% to 0% (p,0.0001) while

not affecting wild-type lifespan in two separate experiments. The

effects of aqp-1 RNAi and fstr-1 RNAi on the longevity of clk-1

mutants were tested three times, with consistent results, although

the extent of suppression varied between experiments (Tables S1

and S2, Figure S1). We examined the genome for the possibility

that fstr-1 RNAi might cross-inhibit another gene, and found that

the RNAi clone was likely to knock down a close homolog (with

96% protein sequence identity) located next to fstr-1 that did not

exhibit clk-1-dependent regulation in our microarray analysis. We

call this gene fstr-2, and henceforth we refer to their combined

functions, as inferred from RNAi, as fstr-1/2 function.

Figure 2. Mitochondrial DNA quantification. Percent increase in
total mitochondrial DNA relative to wild type is shown, as measured by
qPCR. Data are shown for two different mitochondrial primer pairs
across five independent biological repeats. (*) indicates significance of
p,0.05 after Bonferroni multiple comparison correction. Error bars are
6SEM. clk-1(2) primer set A: m (mean) = 1.3160.07, primer set B:
m = 1.2960.08; cyc-1(RNAi) primer set A: m = 1.0760.03, primer set B:
m = 1.0860.03; isp-1(2) primer set A: m = 1.3560.14, primer set B:
m = 1.2160.13.
doi:10.1371/journal.pgen.1000450.g002

Figure 1. Up-regulated GO categories in worm and yeast mitochondrial mutants. Tables A and B show the p-values for the most significant
GO categories found in isp-1(2), clk-1(2) and cyc-1(RNAi) animals (p,0.1; FDR,0.1 in at least one mutant) (red represents more significant, yellow
represents less significant). The ‘‘yeast petite’’ column indicates whether each GO category found in one or more of the C. elegans mutants was also
overrepresented in petite yeast data sets. GO categories are aggregated into GO ‘‘branches’’ (same cell in table) if they are part of the same GO
hierarchy and are directly related to each other. NS represents non-significant, for GO categories that were below our cut-off. NA represents not
available, for GO categories that had no annotated genes in yeast or for situations in which no expression data was available for that category. GO
categories were separated into two tables (A and B). A) GO categories present in two or more C. elegans mitochondrial mutants. All overlap sets, both
between different combinations of two mutants, as well as between all three mutants, are highly significant (p,0.001). In addition, the number of
categories shared between all three C. elegans mutants and yeast ‘‘petites’’ is also much higher than expected by random chance (p,0.001; one
would expect 2 categories by random chance). B) GO categories present in only one mitochondrial mutant. Categories that were present in only one
mutant were also less likely to be present in the yeast petite dataset. Note that cell-protective genes are not well annotated as distinct GO classes in
current C. elegans data bases (i.e., WormBase).
doi:10.1371/journal.pgen.1000450.g001
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fstr-1/2 Knockdown Increases the Behavioral Rates of clk-
1 Mutants

In addition to increased longevity, the most striking phenotypes

of C. elegans mitochondrial mutants are their decreased behavioral

rates. In principle, these rates could decrease as a direct

consequence of impaired mitochondrial function. Alternatively,

it is possible that their slowed behavioral rates reflect a regulated

response to mitochondrial perturbation; simply speaking, they slow

down to conserve energy. To look for genes that slow the

behaviors of clk-1 mutants, we inhibited the top 100 up-regulated

genes from microarrays of L4 and pre-fertile adults using RNAi

and measured time it took for L1 larvae to develop to adulthood.

We found that knockdown of fstr-1/2 in clk-1 mutants consistently

increased the rate of growth to adulthood (Figure 4A). This

phenotype was most striking when the animals were examined 75–

80 hours after hatching. At this time, no control clk-1(2) mutants

had reached adulthood, whereas 95–100% of the fstr-1/2 RNAi

treated animals were adults. fstr-1/2 RNAi treatment also

increased the behavioral rates of clk-1(2) animals, as measured

by thrashing and pumping (Fig 4B and 4C). These effects were not

observed in wild type; in fact, in wild type, knock-down of these

genes had the opposite effect, slowing development and decreasing

rates of thrashing and pumping.

To test whether fstr-1/2 RNAi somehow restored wild-type clk-1

function, we examined ubiquinone profiles. Using HPLC, we

observed the expected decrease in UQ9 and increase in DMQ9 in

clk-1 mutants, and we observed the same mutant pattern of

ubiquinone species in clk-1 mutants subjected to fstr-1/2 RNAi

(Figure 4D). Thus, fstr-1/2 RNAi suppresses the phenotypes of

animals that still have an altered, Clk-1(2), pattern of ubiquinone

species. This suggests that the wild-type fstr-1/2 gene slows

behavior and extends lifespan in response to the changes in

ubiquinone produced by clk-1 mutations.

fstr-1/2 Is Necessary for Gene Expression Changes in clk-1
Mutants

Next we asked whether FSTR-1/2 modulates the clk-1 mutant

phenotype by influencing the retrograde response. Using real-time

qPCR, we looked at the effects of fstr-1/2 RNAi on the expression

levels of five of the genes whose expression was most significantly

up-regulated in the microarrays: gpd-2, a glyceraldehyde 3-

phosphate dehydrogenase involved in glycolysis; T22B7.7, an

Acyl-CoA thioesterase, involved in anaplerotic reactions; dhs-26,

an alcohol dehydrogenase; ugt-43, an UDP-glucoronosyl transfer-

ase; and the aquaporin gene aqp-1. The qPCR data confirmed the

microarray studies, in that all of these genes were up-regulated in

clk-1 mutants. We found that fstr-1/2 RNAi significantly and

consistently decreased expression of these genes in a clk-1(2)

background (Figure 5) but not in wild type (Figure S2). Thus, the

gene expression changes observed in clk-1 mutants are at least

partially dependent on fstr-1/2. Together these findings suggest

that in clk-1 mutants, fstr-1/2(+) decreases rates of behavior and

extends lifespan by triggering downstream changes in gene

expression.

fstr-1(+) May Act in the Intestine and/or Nervous System
to Slow Down clk-1 Mutants

Because fstr-1 is up-regulated in clk-1 mutants, we were

particularly interested to learn where in the animal it was

expressed. To investigate this, we generated transgenic animals

expressing the fluorescent protein mCherry under the control of

the fstr-1 promoter. We observed strong expression in three

neurons located in the head and throughout the intestine,

particularly in the anterior intestinal cells (Figure 6). We identified

the three neurons as RIH and I1L/R. RIH is a nerve-ring

interneuron of unknown function and I1L/R are pharyngeal

interneurons that regulate pharyngeal pumping rates in response

to touch and removal of bacteria. We saw the same pattern of

expression in the clk-1(2) mutant and wild-type, but the intensity

of expression was increased in the mutant, consistent with our

qRT-PCR and microarray data. Together these findings suggest

that fstr-1 acts in the intestine and/or in specific neurons to slow

the rates of aging and behavior in clk-1 mutants.

A Similar Gene-Expression Profile in Animals with
Reduced Respiration

To compare the pattern of gene expression in clk-1 mutants to

that of respiration mutants that have more strongly reduced levels

of oxygen consumption and ATP, we performed microarray

analysis of isp-1(qm150) and cyc-1(RNAi) animals. (cyc-1 encodes

cytochrome c reductase, which is a component of complex III of

the electron transport chain.) We grew synchronized populations

of isp-1(qm150) mutants and cyc-1 RNAi-treated animals in parallel

with wild-type control animals, collected them as young, pre-fertile

adults and analyzed the resulting microarray data as described

above for clk-1 mutants. The SAM algorithm with a false discovery

rate of ,0.1 yielded 814 significant genes for isp-1(2) mutants and

7662 significant genes for cyc-1(RNAi) animals. (For the complete

list, please see Tables S6 and S7.) Thus, it seems that cyc-1 RNAi

induces a broader transcriptional response than do clk-1 and isp-1

mutations, which correlates with the increased severity of the

Cyc-1(RNAi) phenotype. In addition, cyc-1 RNAi-treated

animals, when compared to isp-1 and clk-1 mutants, showed

increased expression of additional cell-protective genes, including

Figure 3. Lifespan measurements of long-lived mitochondrial mutants subjected to RNAi of individual retrograde-response genes.
A) aqp-1 RNAi significantly decreased the lifespan extension produced by clk-1 mutations from 26% (control) to 7%; p,0.05 (left panel) and from 17%
(control) to 0%; p,0.0001 (right panel). Left panel - WT subjected to control (vector-only) RNAi: N = 103, m = 13.4 days; clk-1(2) mutants subjected to
control RNAi: N = 105, m = 16.9 days; clk-1(2) mutants subjected to aqp-1 RNAi: N = 105, m = 14.4 days. Right panel - WT subjected to control (vector-
only) RNAi: N = 77, m = 15.1 days; clk-1(2) mutants subjected to control RNAi: N = 137, m = 17.3 days; clk-1(2) mutants subjected to aqp-1 RNAi:
N = 70, m = 15.1 days. aqp-1 RNAi did not significantly affect WT lifespan (Figure S1). B) fstr-1/2 RNAi significantly decreased the lifespan extension
produced by clk-1 mutation from 26% to 3%, p,0.01 (left panel) and from 17% (control) to 0%; p,0.0001 (right panel). Left panel - WT subjected to
control RNAi, same as in Figure 2A; clk-1(2) mutants subjected to control RNAi, same as in Figure 2A; clk-1(2) mutants subjected to fstr-1/2 RNAi:
N = 108, m = 13.8 days. Right Panel - WT subjected to control (vector-only) RNAi: N = 77, m = 15.1 days; clk-1(2) mutants subjected to control RNAi:
N = 137, m = 17.3 days; clk-1(2) mutants subjected to fstr-1/2 RNAi: N = 63, m = 14.5 days. fstr-1/2 RNAi did not significantly affect WT lifespan (Figure
S1). C) cdr-2 RNAi suppressed the longevity increase produced by isp-1 mutation from 43% to 26% (p,0.001) and did not significantly affect wild-type
longevity. WT subjected to control RNAi: N = 90, m = 18.1 days; WT subjected to cdr-2 RNAi: N = 87, m = 19.1 days; isp-1(2) mutants subjected to
control RNAi: N = 89, m = 22.4 days; isp-1 (2) mutants subjected to cdr-2 RNAi: N = 89, m = 20.1 days. In a second trial, cdr-2 RNAi decreased the
lifespan extension produced by isp-1 mutation from 24% to 11% (p,0.001) (Table S4). Lifespans were determined at 20uC. D) fstr-1/2 RNAi did not
shorten the lifespan of isp-1 mutants. isp-1(2) mutants subjected to control RNAi: N = 108, m = 24.6 days; isp-1 (2) mutants subjected to fstr-1/2 RNAi:
N = 104, m = 23.6 days. These experiments were repeated twice more with similar results (Table S4).
doi:10.1371/journal.pgen.1000450.g003
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Figure 4. fstr-1/2 RNAi speeds up clk-1(2) animals. A) Time to adulthood. clk-1 mutants take much longer to reach adulthood than wild-type
animals. This rate of development is accelerated by fstr-1/2 RNAi. In contrast, fstr-1/2 RNAi slowed the growth rate of wild type. These effects were
very robust and were observed in every experiment. WT subjected to control RNAi: 47.461.6 hours; WT subjected to fstr-1/2 RNAi: 53.261.7 hours;
clk-1(2) mutants subjected to control RNAi: 82.261.2 hours; clk-1(2) mutants subjected to fstr-1/2 RNAi: 7261.7 hours. B) Boxplots illustrating
thrashing rates measured on day 3 of adulthood. fstr-1/2 RNAi treatment significantly reduced the average thrashing rate of wild-type animals and
significantly increased the average thrashing rate of clk-1(2) mutants. WT subjected to control RNAi: 115.663.1 thrashes/min; WT subjected to fstr-1/2
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chaperones (hsp-6, hsp-70), superoxide dismutases (sod-4, sod-3) and

xenobiotic detoxification enzymes (ugt-2, ugt-47, ugt-36, gst-8, gst-

22, gst-24, dhs-5, dhs-28). Interestingly, other genes encoding

detoxification enzymes were down regulated, possibly implying the

deployment of a specific detoxification program. Using BiNGO

analysis, we identified several GO categories that were overrep-

resented in each mutant (Figure 1). A highly significant fraction of

the top GO categories (p,0.1) was shared between either two, or

all three, of the mutant strains (p,0.001; Figure 1). By chance, one

would expect 2 of the 10 GO categories shared by all three

mitochondrial mutants and annotated in yeast to also be

significant in the yeast petite cells. In contrast, we observed 8

categories in common (p,0.001).

In addition to identifying GO categories, we looked for

individual genes that were expressed in a similar way in the three

C. elegans mitochondrial mutants. We found a highly significant

(p = 7.19E-15) overlap set of 73 differentially-expressed genes

(Table S3). In addition, we observed an increase in mitochondrial

DNA levels in isp-1 mutants and a smaller increase in cyc-1(RNAi)

animals that did not reach statistical significance (p = 0.354)

(Figure 2). Taken together, these data suggest that the gene

expression profiles of different C. elegans mitochondrial mutants are

similar to one another and to the yeast retrograde response.

cdr-2 RNAi Suppresses the Increased Longevity of isp-1
Mutants

Since isp-1(2), clk-1(2) and cyc-1(RNAi) animals are all long-

lived, gene expression patterns that are shared between all three

might be particularly likely to contribute to lifespan extension.

Double RNAi experiments in C. elegans can be difficult to interpret,

so we did not attempt RNAi knockdowns in cyc-1(RNAi) animals.

However, we did attempt to knock down the top thirty statistically-

significant shared genes, individually, in an isp-1 background. (Of

these, 21 were not present in the clk-1 set we described above,

which contained only the top 75 differentially expressed genes).

We obtained data for all of these genes (Table S4). Of these, only

one RNAi clone, cdr-2, consistently made our significance cut-off

[p,0.05 and a 10% decrease in isp-1 mutant longevity, which

corresponds to a 50% decrease in the lifespan extension produced

RNAi: 97.564.3 thrashes/min; clk-1(2) mutants subjected to control RNAi: 61.265 thrashes/min; clk-1(2) mutants subjected to fstr-1/2 RNAi: 78.965.7
thrashes/min. C) Boxplots illustrating pumping rates. fstr-1/2 RNAi decreased the average pumping rate of wild type and increased the pumping rate
of clk-1(2) mutants. WT subjected to control RNAi: 273.3641.1 pumps/min; WT subjected to fstr-1/2 RNAi: 231.8624.7 pumps/min; clk-1(2) mutants
subjected to control RNAi: 188.5641 pumps/min; clk-1(2) mutants subjected to fstr-1/2 RNAi: 238.9636.4 pumps/min. In Figs. 3A, 3B and 3C, error
bars depict SEM; * depicts a significance of p,0.05 when compared to controls, ** depicts a significance of p,0.008 when compared to controls, ¥¥
depicts a significance of p,0.008. P,0.008 is the cut-off set by the Bonferroni correction for multiple comparisons. D) HPLC analysis of quinone
content. The chromatograms show a representative run of three independent experiments for each of the different conditions (WT subjected to
control RNAi, WT subjected to fstr-1/2 RNAi, clk-1(2) mutants subjected to control RNAi and clk-1(2) mutants subjected to fstr-1/2 RNAi). The Q9 peak
is absent from clk-1(2) animals and instead the intermediate DMQ9 peak is present. fstr-1/2 RNAi had no effect on Q9 levels in wild-type or clk-1(2)
mutants, in clk-1 mutants Q9 levels remained below the detection threshold.
doi:10.1371/journal.pgen.1000450.g004

Figure 5. fstr-1/2 RNAi inhibits expression of clk-1 retrograde-
response genes. The graph shows the effect of fstr-1/2 RNAi on the
degree of up-regulation of the five individual clk-1 retrograde-response
genes we examined, as determined by quantitative RT-PCR. (**)
represents a significance of p,0.01, (*) represents a significance of
p,0.05, in comparing mRNA levels from clk-1(2); fstr-1/2(RNAi) animals
vs. clk-1(2) control animals. Each bar represents the average of 3
independent biological repeats. Error bars are 6SEM. clk-1(2) animals
subjected to control RNAi showed significantly higher expression than
did wild type subjected to control RNAi (p,0.05) for all genes tested.
With the exception of gpd-2, all genes showed a significant decrease in
expression (p,0.05) in the presence of fstr-1/2 RNAi. Note that gpd-2
shared the trend, with p = 0.061, and was clearly affected when assayed
using the pgpd-2::gfp reporter in vivo (Figure 7 and Figure S5).
doi:10.1371/journal.pgen.1000450.g005

Figure 6. fstr-1 is expressed in the intestine and three neurons.
The figure shows the expression of a pfstr-1::mCherry promoter fusion in
clk-1(2) mutants. The transgene is expressed in the intestine, especially
in anterior cells, as well as in RIH and I1L/R neurons. Small arrows point
to cell bodies of I1L/R neurons, with their characteristic processes
visible; large arrows point to the cell body of the RIH neuron. The small
panel shows a more detailed view of RIH neuron. Scale bar represents
20 mm. We observed a similar, but fainter, mCherry distribution in a
wild-type background (not shown).
doi:10.1371/journal.pgen.1000450.g006
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by the isp-1 mutation.] cdr-2 RNAi reduced the lifespan extension

produced by the isp-1 mutation from 43% (control RNAi) to 26%

(p,0.001), while not affecting wild-type longevity (Figure 3C).

cdr-2 encodes a member of the glutathione S-transferase family.

These enzymes catalyze the conjugation of reduced glutathione to

electrophilic centers on different substrates. This activity contrib-

utes to detoxification of both endogenous toxins and xenobiotics,

suggesting that the increased longevity of isp-1(2) mutants is at

least partially dependent on a cellular detoxification response. We

note that in one of our three trials, cdr-2 RNAi significantly

shortened the lifespan extension produced by clk-1 mutation (from

21% to 14%). This finding suggests that cdr-2 may be involved

more generally for lifespan extension in mitochondrial mutants.

fstr-1/2’s Regulatory Function Is Specific to clk-1 Mutants
Given the remarkable reversal of the clk-1 mutant phenotype by

fstr-1/2 RNAi, we were interested in examining its function in the

respiratory-chain mutants. We found that fstr-1 was significantly

up-regulated in isp-1 mutants but, unexpectedly, not in cyc-1(RNAi)

animals. Using RNAi, we asked whether fstr-1/2 might influence

the behavioral phenotypes of isp-1(qm150) mutants. We restricted

our analysis to lifespan and time to adulthood because isp-1

mutants did not move often enough to provide consistent

behavioral rates. We found that the developmental rates of isp-1

mutants were severely decreased in the presence of fstr-1/2 RNAi,

leading to developmental arrest of many animals. We found that

fstr-1/2 RNAi had no effect on the lifespan of isp-1 mutants that

reached adulthood (Figure 3D). Thus the effect of fstr-1/2 RNAi

on isp-1 mutants was more similar to the effect of fstr-1/2 RNAi on

wild type than to its effect on clk-1 mutants.

We wanted to know whether fstr-1/2 was necessary for gene

expression changes in an isp-1(2) background, but because isp-1

mutants subjected to fstr-1/2 RNAi grew very slowly and

asynchronously, we could not use qRT-PCR. Instead, we assayed

gene expression in vivo by introducing the isp-1 mutation into a

strain expressing GFP under the control of the gpd-2 promoter,

which drives expression of a glycolysis gene that is up-regulated by

these mitochondrial mutations (Figure 7). We found that fstr-1/2

RNAi prevented the up-regulation of this reporter in a clk-1

background but not in an isp-1 background. Together, these data

suggest that the Isp-1(2) and Clk-1(2) behavioral and longevity

phenotypes are established by distinct mechanisms.

Discussion

C. elegans respiration mutants appear to live in ‘‘slow motion’’, as

the rates of a wide variety of processes, including rates of growth to

adulthood, aging and behavior, are all reduced. This phenotype is

shared by clk-1 ubiquinone-biosynthetic mutants, which exhibit

only a mild and temporary decrease in overall rates of respiration,

and have normal ATP levels [10]. This spectrum of behavioral

and longevity phenotypes is not seen in the many C. elegans mutants

whose longevity requires the transcription factor DAF-16/FOXO,

or in calorically restricted animals, so these mitochondrial mutants

appear to comprise a distinct class of longevity mutants. Reducing

clk-1 activity extends the lifespan of mice, as does reducing

cytochrome c oxidase levels, suggesting that a better understand-

ing of these mutants could potentially have implications for human

health and longevity.

In this study, we used microarray analysis and RNAi to ask

whether a transcriptional response to mitochondrial perturbation

might cause these distinctive behavioral and longevity phenotypes.

A C. elegans Retrograde Response
Gene expression profiling of these mutants was quite revealing,

because each of their expression profiles exhibited striking

similarity to the yeast retrograde response. The yeast retrograde

response, which also lengthens lifespan, appears to remodel the

cell’s metabolism. Without respiration, the Krebs cycle cannot be

completed, as succinate cannot be oxidized to fumarate (Figure 8).

This prevents the formation of oxaloacetate (OAA), which in turn

decreases the availability alpha-ketoglutarate, which is the

precursor of glutamate, an essential metabolite in amino acid

metabolism. In order to generate precursors of glutamate,

respiration-deficient cells must activate alternative (anaplerotic)

Figure 7. fstr-1/2 RNAi does not affect gpd-2 expression in an isp-1 mutant. Worms harboring a pgpd-2::gfp promoter fusion were ranked as:
Dim Fluorescence, Medium Fluorescence and High Fluorescence based on visual inspection. Each bar represents a different population (N = 80
worms). Two separate observations were made for each condition. See Figure S5 for representative high- and dim-fluorescence populations.
doi:10.1371/journal.pgen.1000450.g007
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pathways that supply the mitochondria with OAA and acetyl-CoA

[27]. Activation of anaplerotic pathways was observed in

respiration-defective yeast [25,26] and human cells [28].

Our microarrays reveal transcriptional activation of genes

encoding several metabolic enzymes that have roles in anaplerotic

reactions, such as the glyoxylate cycle and fatty acid oxidation.

The glyoxylate cycle occurs mainly in the peroxisomes and

bypasses the succinate-to-fumarate step of the Krebs cycle through

the formation of glyoxylate, eventually leading to the formation of

succinate, which can be fed back into the Krebs cycle (Figure 8).

We observed increased expression of the gene encoding the major

C. elegans glyoxylate-cycle enzyme, GEI-7, in the three mitochon-

drial mutants we examined. We did not observe an RNAi

phenotype for this clone in the clk-1 mutant; however, because a

gei-7 mutant was available, we examined cyc-1(RNAi); gei-7 animals

and found a large suppression of the cyc-1(RNAi) longevity

phenotype, decreasing lifespan extension from 80% to 15% with

little effect on wild type (Figure S4). Malate dehydrogrenases

catalyze synthesis of OAA from malate, which is also an important

step in recycling Krebs cycle intermediates. F46E10.10 encodes a

malate dehydrogenase and is significantly up-regulated in all three

long-lived mitochondrial mutants we examined. Fatty-acid

oxidation provides acetyl-CoA, which feeds into the Krebs cycle

by reacting with OAA to form citrate. This pathway is activated in

long-lived yeast lacking mitochondrial DNA [27]. We also

detected increased expression of several genes that are involved

in fatty acid oxidation. clk-1(2) animals exhibited increased

expression of acs-2 (acetyl-CoA synthetase ) and fat-6 (fatty acid

desaturase); and isp-1 mutants exhibited increased expression of

T02G5.4 (acetyl-CoA thiolase) and T05G5.6 (enoyl-CoA hydra-

tase). The expression profiles of cyc-1(RNAi) animals, however,

contained fewer significant genes involved in fatty acid oxidation,

Figure 8. C. elegans retrograde response. The picture diagrams metabolic changes thought to occur during the yeast retrograde response
(Butow and Avadhani 2004). ‘‘++’’ indicates that these same changes are observed in the C. elegans retrograde response. Impairment of electron flow
during oxidative phosphorylation is predicted to have two effects. The first is an increase in ROS, due to increased likelihood of electrons transferring
to free oxygen (Lenaz 2001). Consistent with increased ROS stress (which we did not assay directly), we observed an increase in cell-protective genes.
Secondly, the Krebs cycle is disrupted because the enzyme succinate dehydrogenase is an integral part of both the electron transport chain and of
the Krebs cycle. When succinate dehydrogenase oxidizes succinate into fumarate, it feeds electrons into the ETC, and when this flow is blocked, the
enzyme’s activity is inhibited. The Krebs cycle is necessary for synthesis of glutamate, which in turn is required for amino acid metabolism.
Impairment of the electron transport chain leads to decreased glutamate production. Possibly in order to counteract this decrease in glutamate
production, the cell induces anaplerotic pathways that feed intermediates into the Krebs cycle, thus allowing production of glutamate. Under
conditions of impaired respiration, glycolytic gene expression increases, consistent with glycolysis’ becoming a major source of ATP. Consistent with
a compensatory response, expression of genes involved in oxidative phosphorylation is up-regulated. OAA, Oxaloacetate; GLU, glutamate; ETC,
electron transport chain; a-KG, a-ketoglutarate.
doi:10.1371/journal.pgen.1000450.g008
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suggesting there may be some differences in metabolic adjustments

between different mitochondrial mutants. Interestingly, recent

work has shown that long-lived mice with decreased levels of Mclk-

1 have an increase in a-ketoglutarate dehydrogenase activity,

consistent with an up-regulation of the Krebs cycle [17].

Furthermore, the animals have a decrease in overall NAD levels,

which in itself could hamper normal Krebs cycle activity and

further decrease glutamate synthesis [26].

In all three long-lived mitochondrial mutants, we observed a

significant increase in expression of genes involved in glycolysis.

This was expected, since glycolysis becomes a more important

source of ATP when oxidative phosphorylation is inhibited.

In addition to these metabolic shifts, we also observed increased

expression of a significant number of stress response genes in all

three mitochondrial mutants, ranging from genes increasing

xenobiotic drug resistance to protein chaperones. This is consistent

with previous in vitro observations that impairment of electron flow

during oxidative phosphorylation is actually likely to generate

more ROS [34], and suggests these animals may be responding to

this additional cellular insult.

Finally, in all three strains, genes involved in the oxidative

phosphorylation process itself were up-regulated, and we observed

increased levels of mitochondrial DNA in clk-1 and isp-1 mutants.

Thus, apparently C. elegans mitochondrial mutants, like yeast

petites [26], attempt to compensate for reduced levels of

respiration. Together these findings indicate that the transcrip-

tional response triggered by conditions that inhibit respiration in

C. elegans is similar to that triggered in yeast, and suggest the

presence of a conserved underlying mechanism for lifespan

extension.

While this manuscript was in preparation, Falk et al. reported

the gene expression pattern of a mixture of long-lived and short-

lived respiration-defective mutants compared to wild type [35]. In

the future, it will be interesting to learn whether the expression

patterns of short-lived mitochondrial mutants differ from those of

the long-lived mutants. The lifespan of one such short-lived

mutant, mev-1(kn1) was increased when respiration was lowered

further using respiratory-chain RNAi (Figure S3), arguing that

their short lifespans are not due simply to insufficient respiratory-

chain activity.

Long-Term Reductions in Respiration Are Not Necessary
to Maintain Expression of the Retrograde Response

It was interesting to find that clk-1 mutations trigger a conserved

transcriptional response even though they only have a mild effect

on respiration. There are at least two possible interpretations for

this finding. The first is that the transcriptional response to clk-1

mutation need not be triggered by reduced respiration itself, but

instead can be triggered by signals that are generally associated

with reduced respiration, such as fluctuations in ubiquinone levels.

Such fluctuations could have acquired the ability to induce the

retrograde response during evolution because they allowed the

animal to conserve energy in the face of a perceived energy

shortage. Alternatively, perhaps the clk-1 mutation does inhibit

respiration more severely initially, but the physiological changes

elicited by the retrograde response restore the steady-state level of

respiration closer to normal.

The Retrograde Response Is Probably Required for the
Longevity of C. elegans Mitochondrial Mutants

In yeast, the retrograde response is induced via helix-loop-helix

transcription factors that do not appear to be present in C. elegans.

When the genes encoding these transcription factors are deleted in

yeast, inhibiting respiration does not induce the retrograde

response, and lifespan is not extended [1]. Thus, in yeast, the

retrograde response likely increases lifespan. Our data suggest that

this is the case in this multicellular animal as well. First, inhibiting

the activity of at least some of the genes up-regulated in

mitochondrial mutants was sufficient to shorten their lifespan

without obviously affecting the lifespan of wild type. In particular,

the glutathione S-transferase gene cdr-2 was up-regulated in all of

the long lived mutants and it contributed to lifespan extension

consistently in isp-1 respiration-defective mutants and, at least in

some trials, in clk-1 mutants as well. This finding suggests that the

prominent cell-protective gene expression response that we

observe contributes to longevity. In addition, the metabolic shifts

we observed are also likely to influence lifespan, as the longevity of

cyc-1(RNAi) animals required the glyoxylate-cycle gene gei-7, and

the longevity of clk-1 mutants was promoted by the glycerol

channel aqp-1.

Our failure to observe effects on lifespan with most of the RNAi

clones we tested does not necessarily mean that they do not

influence lifespan (though this may be the case). It seems possible

that many of these genes could act cumulatively to influence

lifespan. The lifespan extension of clk-1 and isp-1 mutants was only

,20% in most experiments, so only perturbations that are fairly

strong would be visible in our assays. In general, although we have

no reason to discount the importance of genes whose knockdowns

produced statistically significant effects on lifespan, because the

magnitude of the effects were small, we remain cautious in our

interpretation.

The second argument for the importance of the C. elegans

transcriptional response in the longevity of mitochondrial mutants

comes from our studies of fstr-1/2. fstr-1 was up-regulated in clk-1

mutants, and this gene, and/or its constitutively-expressed

homolog fstr-2, is required, in turn, for a robust transcriptional

retrograde response. Knocking down fstr-1/2 activity with RNAi

did not suppress the primary ubiquinone defect. However, none of

the five up-regulated genes we tested was up-regulated in the

presence of fstr-1/2 RNAi. These genes included metabolic as well

as cell-protective genes, arguing that fstr-1/2 may be a major

regulator of the retrograde response in clk-1 mutants. This

restoration of a normal transcriptional profile correlated with a

suppression of the behavioral, growth and longevity phenotypes of

clk-1 mutants. Together all of these findings support the hypothesis

that a conserved mitochondrial retrograde response extends

lifespan in metazoans as well as in yeast. We note, however, that

fstr-1/2 RNAi had stronger effects on the induction of the

retrograde-response genes we tested than it had on the clk-1

behavioral phenotypes. This suggests either that part of the

retrograde response is expressed independently of fstr-1/2, or that

mechanisms that do not involve transcription also influence the

clk-1 phenotype.

The Function of FSTR-1/2
How does FSTR-1/2 regulate gene expression? Little is known

about the molecular function of FSTR-1/2. The predicted FSTR-

1 and FSTR-2 proteins contain 21 ET modules, which are

domains of unknown function containing 8–10 conserved cysteines

predicted to form 4–5 disulphide bridges and a C-terminal

putative transmembrane domain. Sequence alignment studies

using the BLAST algorithm showed weak similarities to a secreted

yeast protein (AGA1) and a predicted mouse membrane protein

(Zonadhesin). We also looked for structural homologues of fstr-1/2

using the software package PHYRE [36] and found highly

significant predicted structural similarities to portions of ErbB1/2/

3/4. ErbB proteins belong to a highly conserved family of receptor
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tyrosine kinases that play many roles in cell biology and disease.

Members of the ErbB family usually contain an extracellular

region (,620 amino acids) that recognizes and binds ligands, a

single membrane spanning region and an intracellular tyrosine

kinase domain. However, we did not find a predicted tyrosine

kinase domain or a secretion signal in fstr-1/2’s sequence, which

makes a potential connection to the ErbB family unclear. Finally,

FSTR-1 (originally called GFI-1, for GEX-interacting protein) was

identified in a two-hybrid screen as a potential binding partner of

UNC-68, a muscle-specific C. elegans ryanodine receptor. Our

attempts to find phenotypic similarities or functional interactions

between these two genes were unsuccessful (data not shown), so

their potential relationship remains unclear.

Our finding that FSTR-1 is expressed in the intestine (which is

C. elegans entire endoderm, including its site of fat storage), as well

as a small number of neurons, raises the possibility that these two

tissues are particularly important for the response to mitochondrial

perturbation. Interestingly, the glycerol channel aqp-1 is expressed

exclusively in the intestine and pharynx [32], further implicating

the intestine in the clk-1 longevity pathway. In the future, it will be

very interesting to learn how FSTR-1 and FSTR-2 function at the

molecular level to initiate a response to altered ubiquinone levels.

Different Paths to a Similar Phenotype
Long-lived C. elegans mitochondrial mutants share many

phenotypes; however, there are also some significant differences

between them. As mentioned above, they differ in their respiration

rates, ATP levels and body size. In addition, respiratory-chain

RNAi and clk-1 mutations both extend the lifespans of daf-2

insulin/IGF-1 receptor mutants [3,7], whereas isp-1 mutations do

not [2] (DC and CK, unpublished). These differences have

prompted the question of how similar the C. elegans mitochondrial

mutants really are to each other [5]. Our microarray observations

suggest that the overall nature of the response is similar, though

the specific genes affected and the extent to which they are

activated varies between mitochondrial mutants. Perhaps these

differences are phenotypically significant; for example, clk-1

mutants may have near normal respiration rates because they

can compensate more fully than the other mutants to a primary

respiratory-chain defect. On the other hand, there is a clear

difference in the regulation of the clk-1 and isp-1 mutant

phenotypes, since fstr-1/2 is necessary for the clk-1 mutant

phenotypes but not for the isp-1 mutant phenotypes (Figure 9).

It is possible that there exist yet-unidentified regulators that control

the transcriptional response to mitochondrial perturbation in all of

these mutants, thus unifying their phenotypes. In any case, it will

be interesting to learn how the isp-1 and cyc-1 retrograde responses

are regulated and at what point these pathways converge to

control the same downstream genes.

Methods

Strains
The strains used in this study were: N2-Bristol (WT), fer-15(b26);

fem-1(hc17), clk-1(qm30) [37], isp-1(qm150) [2], gei-7(ok531), mev-

1(kn1) [38], muEx491[pfstr-1::mCherry+podr-1::cfp], clk-1(qm30);

muEx491, sEx11128[pgpd-2::gfp], isp-1(qm150); sEx11128[pgpd-

2::gfp]. All strains used except for mev-1(kn1) were outcrossed to

our laboratory’s wild-type N2 strain 4 times.

Microarray Hybridizations
We constructed microarrays using single-strand DNA oligos

representing 20,374 unique C. elegans genes. These were purchased

from Illumina [39]. Populations were starvation-synchronized as L1s

overnight and collected at two different times: as L4s staged based on

vulval morphology and as pre-fertile adults soon after the L4-to-adult

molt, to guarantee maximum synchronicity between animals that

grew to adulthood at different rates. Hybridizations were performed

using standard techniques described in [33]. Total RNA was purified

using TriZol reagent, mRNA was purified using Oligotex (Qiagen)

and cDNA was labeled using Cy-dyes prior to hybridization. The

chips described are direct comparisons between N2 and either clk-

1(qm30) or isp-1(qm150) animals; or between fer-15(b26); fem-1(hc17)

animals subjected to control (vector only) RNAi versus cyc-1 RNAi.

The animals were harvested as L4 larvae or young (pre-fertile) adults.

We performed four independent biological repeats for each

condition with the exception of clk-1(2) and isp-1(2) L4-staged

populations, where we only collected data for two biological repeats.

Dye-swaps and technical repeats were averaged and analyzed as one

biological repeat. Scanning was done using a GenePix 4000B

scanner, and initial spot quality check was done using Genepix 6.0

software. During the analysis we used two different sets of chips for

each mutant: the ‘‘combined set’’ includes a combination of all L4

and adult chips, and the ‘‘adult-only set’’ only includes chips from

populations collected as adults.

Significance Analysis
The microarray data were analyzed twice over the several-year

period spanned by these studies. The initial analysis, used to

generate candidate genes that may be functional in the extended

longevity of mitochondrial mutants, was performed on the

combined set (L4 and adults) of microarrays. In this analysis,

Figure 9. C. elegans mitochondrial mutants activate similar transcriptional responses in different ways. In this model, clk-1 mutation
decreases ubiquinone levels, which increases fstr-1 expression (possibly with the assistance of fstr-2, which is expressed constitutively). fstr-1/2 are
then necessary for expression of other genes that are part of the retrograde response, which in turn are likely to be responsible for the longevity and
slowed phenotypes. clk-1, isp-1 and cyc-1(RNAi) mutants show similar transcriptional responses, however, fstr-1/2 is necessary for the transcriptional
response of clk-1 but not isp-1 mutants.
doi:10.1371/journal.pgen.1000450.g009
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standard ratio-based normalization and default program settings for

flagging missing or ‘‘bad’’ spots were used in the Acuity 4.0 software

package. Gene significance was calculated using the SAM software

package. All of the lifespan analysis described herein was based on

genes at the top of the list when the data were analyzed in this way.

The second analysis, used to generate genes for use in the

comparative GO analysis, was performed on the adult-only set of

arrays. These data were renormalized using lowess as well as ratio-

based normalizations. On the assumption that genes within the

same operon should in general have similar expression patterns,

flagging parameters were adjusted to those that maximized the

expression correlation of genes within the same operon on a

‘‘training’’ subset of the arrays. Genes not present in at least three

of the arrays were not considered. These data were analyzed using

the SAM software package and genes were considered significant

below a FDR (false discovery rate) of 0.1.

Gene Set Overlap Analysis
An algorithm, which we named the ‘‘p-q algorithm’’, was

designed and implemented in the Python programming language

to determine the set of genes that are differentially regulated in all

three combined (L4 and adult) microarray data sets. The

algorithm takes as input a set of microarray hybridization data

and estimates the q-value for each gene using the method described

in [40] and p-values estimated using Student’s t-test. It then iterates

through each q-value and calculates the probability of seeing the

observed number of genes that would be significant in all three

data sets, should that q-value be used as the threshold for

significance. The algorithm reports the set of genes that overlap

between the three data sets at the q-value cut-off that achieved

maximum overlap significance, as well as the probability of seeing

such a degree of overlap by random chance. Probabilities are

calculated using the hypergeometric distribution when possible, or

the Poisson approximation when necessary.

GO Analysis
GO categories were found using the BINGO software starting

from a list of differentially expressed genes obtained from running

SAM on the set of adult-only microarrays, with a significance cut-off

of FDR, = 0.1 for each C. elegans mutant. Yeast GO categories were

obtained by analyzing a dataset that we constructed pooling the

differentially-expressed genes from two different publications [25,26].

RNAi
Bacterial feeding RNAi experiments were performed as

described previously [33]. Clones were picked from Julie Ahringer

RNAi library and were all verified by DNA sequencing.

Survival Measurements
Lifespan analysis was conducted as previously described [3]. All

assays were done at 25uC unless otherwise stated. The lifespan

measurements depicted in Supplementary Table 1 were done in

the presence of 20 mM FUDR (fluorodeoxyuridine) to inhibit

progeny growth. The Stata 8.0 software package (Stata Corpora-

tion) was used for statistical analysis and to calculate means and

percentiles. In all cases p-values were calculated using the logrank

(Mantel-Cox) method.

Mitochondrial DNA Quantification
Mitochondrial DNA was quantified using Real Time-qPCR.

We used two primer sets for mitochondria DNA graciously

provided by Dana Miller from the Roth lab at the Fred

Hutchinson Cancer Research Center:

Mito1 Forward: GTTTATGCTGCTGTAGCGTG, Reverse:

CTGTTAAAGCAAGTGGACGAG; Mito2- Forward: CTAGG-

TTATATTGCCACGGTG, Reverse: CAATAAACATCTCT-

GCATCACC. The results were normalized to genomic DNA

using a primer pairs specific for ama-1 and nhr-23: ama-1- Forward:

TGGAACTCTGGAGTCACACC, Reverse: CATCCTCCTT-

CATTGAACGG; nhr-23 – Forward: CAGAAACACTGAA-

GAACGCG, Reverse: CGATCTGCAGTGAATAGCTC. Ani-

mals were grown and collected as described above for microarray

studies and lysed in a standard buffer containing proteinase K for

1 hour at 65uC. qPCR was performed using SYBR GREEN PCR

Master Mix (Applied Biosystems). Each comparison pools 5

biological repeats. Results were normalized to wild type using

7300 System SDS Software.

Rates of Growth and Behavior
Time to adulthood was measured as time (62 hours) at which

95% of animals reached adulthood. Measurements shown

represent pooled data from five independent experiments, error

bars represent SEM. Pumping rate was measured as the average

number of pharyngeal pumps per minute (n = 10) over three

independent trials. Thrashing rate was measured as the average

number of body thrashes in M9 buffer in one minute (n = 10) over

three independent trials. All measurements were conducted on day

three of adulthood.

Quantitative RT-PCR
Real-time RT-PCR was carried out using the 7300 Real Time

PCR System (Applied Biosystems, Foster City, CA, USA). Primers

and probes were designed specifically for each gene using Primer3

software.

Construction of the Pfstr-1::mCherry Promoter Fusion
To generate pfstr-1::mCherry-expressing animals, a pfstr-

1::mCherry construct was made using the Invitrogen Gateway

Cloning technology. The promoter was amplified from genomic

DNA using a primer set obtained from Mark Vidal’s online

promoterome database (Forward: ggggacaactttgtatagaaaagtt-

gaggccagctttagataat; Reverse: ggggactgcttttttgtacaaacttgtcatct-

gaaatttgaatgtgttagt). The construct obtained was sequenced and

injected as described (Mello and Fire, 1995) at 10 ng/ml into N2

animals to generate a transgenic line (indicated by muEx491

designation). The coinjection marker Podr-1::gfp was injected at

50 ng/ml.

Supporting Information

Figure S1 Lifespan measurements of long-lived mitochondrial

mutants subjected to RNAi of individual retrograde-response

genes. A. aqp-1 RNAi did not significantly affect WT longevity.

WT subjected to control (vector-only) RNAi: N = 103, m = 13.4

days; WT subjected to aqp-1 RNAi: N = 106, m = 13.4 days. B.

aqp-1 RNAi significantly decreased the lifespan extension pro-

duced by clk-1 mutations from 33% (control) to 20%; p,0.001.

WT subjected to control (vector-only) RNAi: N = 81, m = 14.0

days; clk-1(2) mutants subjected to control RNAi: N = 85,

m = 18.6 days; clk-1(2) mutants subjected to aqp-1 RNAi:

N = 81, m = 16.8 days. C. fstr-1/2 RNAi did not significantly

affect WT longevity. WT subjected to control (vector-only) RNAi:

N = 103, m = 13.4 days; WT subjected to fstr-1/2 RNAi: N = 105,

m = 13.9 days. D. fstr-1/2 RNAi significantly decreased the

lifespan extension produced by clk-1 mutations from 33% (control)

to 26%; p,0.05. WT subjected to control (vector-only) RNAi:

N = 81, m = 14.0 days; clk-1(2) mutants subjected to control
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RNAi: N = 85, m = 18.6 days; clk-1(2) mutants subjected to fstr-1/

2 RNAi: N = 78, m = 17.8 days.

Found at: doi:10.1371/journal.pgen.1000450.s001 (0.63 MB TIF)

Figure S2 Retrograde-response genes respond differently to fstr-

1/2 RNAi in wild-type animals and clk-1 (2) mutants. For gene

expression patterns in a clk-1 background, see Figure 5.

Found at: doi:10.1371/journal.pgen.1000450.s002 (0.18 MB TIF)

Figure S3 The short lifespan of mev-1 mutants is increased by

respiratory-chain RNAi. WT subjected to cyc-1 RNAi: N = 81,

m = 27.6 days; WT subjected to control RNAi: N = 81, m = 19.7

days; mev-1(kn1) mutants subjected to cyc-1 RNAi: N = 80,

m = 16.7 days; mev-1(kn1) mutants subjected to control RNAi:

N = 78, m = 13.2 days. This lifespan analysis was performed twice,

p,0.001 both times.

Found at: doi:10.1371/journal.pgen.1000450.s003 (1.22 MB TIF)

Figure S4 The glyoxylate cycle gene gei-7 is partially necessary

for cyc-1 RNAi to increase longevity. WT subjected to cyc-1 RNAi:

N = 109, m = 40.1 days; WT subjected to control RNAi: N = 113,

m = 22.3 days; gei-7(ok531) mutant subjected to cyc-1 RNAi:

N = 118, m = 26.6 days; gei-7(ok531) mutant subjected to control

RNAi: N = 119, m = 22.1 days. This lifespan analysis was

performed twice, p,0.001 both times.

Found at: doi:10.1371/journal.pgen.1000450.s004 (1.14 MB TIF)

Figure S5 fstr-1/2 RNAi treatment decreases gpd-2::gfp expres-

sion in a clk-1 mutant. Since there is significant variability within

populations, all our scoring for Figure 5 was done by observing

populations, not individual worms. Panel A represents a

population scored as high fluorescence in Figure 5 and panel B

represents a population scored as dim fluorescence. Populations

with intermediate brightness were scored medium fluorescence. A.

Image depicts clk-1; gpd-2::gfp animals subjected to control RNAi.

B. Image depicts clk-1; gpd-2::gfp animals subjected to fstr-1/2

RNAi.

Found at: doi:10.1371/journal.pgen.1000450.s005 (1.95 MB TIF)

Table S1 RNAi inhibition of the top 75 up-regulated genes in

clk-1 mutants. Out of 75, we successfully completed two lifespans

for 63 genes, over 4 different time periods (each experiment is

represented by a different color). A. Table S1A shows the control

lifespans for each experiment plotted as percent clk-1(2) longevity

difference relative to WT (2nd line) or percent WT longevity

difference relative to clk-1(2) (4th line). B. Table S1B includes the

lifespan data for the different RNAi experiments and is shown as

percent longevity difference relative to clk-1(2). Calculated as: clk-

1(2) control longevity minus RNAi treatment longevity divided by

clk-1(2) control longevity.

Found at: doi:10.1371/journal.pgen.1000450.s006 (0.03 MB

XLS)

Table S2 RNAi clones that consistently shortened the lifespan of

ckl-1 mutants but not wild type. Out of 7 RNAi clones tested a

third time, two, fstr-1/2 RNAi and aqp-1 RNAi, decreased clk-1

mutant longevity while having no effect on WT in two separate

trials.

Found at: doi:10.1371/journal.pgen.1000450.s007 (0.02 MB

XLS)

Table S3 The most significant differentially-expressed genes

overlapping between isp-1, clk-1 and cyc-1(RNAi) mutants. The set

of overlapping genes was determined using the ‘‘p-q’’ algorithm

(see Methods), using the combined set of L4 and adult microarray

data as input. Significance values shown were calculated using the

SAM software package, also run on the combined set of L4 and

adult data. The top 30 genes listed were tested for suppression of

lifespan extension in isp-1 mutants (see Table S4). Also shown are

the SAM significance values for these genes using the adult-only

set of microarrays.

Found at: doi:10.1371/journal.pgen.1000450.s008 (1.34 MB

XLS)

Table S4 Genes tested for suppression of the extended lifespan

of isp-1 mutants. We tested 31 genes for suppression of the

increased longevity of isp-1 mutant increased longevity using a cut-

off of p,0.05 and 10% overall decreased longevity. The RNAi

clones that made the cut-off were retested. (Each experiment is

represented by a different color). A. Table S4A shows the control

lifespans for each experiment plotted as percent isp-1(2) longevity

difference relative to WT (2nd line) or percent WT longevity

difference relative to isp-1(2) (4th line). B. Table S4B includes the

lifespan data for the different RNAi experiments and is shown as

percent longevity difference relative to isp-1(2). Calculated as: isp-

1(2) control longevity minus RNAi treatment longevity divided by

isp-1(2) control longevity. C. Table S4C represents retests done in

a wild-type background.

Found at: doi:10.1371/journal.pgen.1000450.s009 (0.02 MB

XLS)

Table S5 Significant genes from clk-1(2) microarrays using

SAM algorithm with an FDR<0.1 from adult-only chips. SAM

plot attached, plotting observed distribution versus randomized

distribution.

Found at: doi:10.1371/journal.pgen.1000450.s010 (0.86 MB

XLS)

Table S6 Significant genes from isp-1(2) microarrays using

SAM algorithm with an FDR<0.1 from adult-only chips. SAM

plot attached, plotting observed distribution versus randomized

distribution.

Found at: doi:10.1371/journal.pgen.1000450.s011 (1.04 MB

XLS)

Table S7 Significant genes from cyc-1(RNAi) microarrays using

SAM algorithm with an FDR<0.1 from adult only chips. SAM

plot attached, plotting observed distribution versus randomized

distribution.

Found at: doi:10.1371/journal.pgen.1000450.s012 (2.47 MB

XLS)
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