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Respiratory syncytial virus (RSV) is a ubiquitous pathogen of viral bronchiolitis

and pneumonia in children younger than 2 years of age, which is closely

associated with recurrent wheezing and airway hyperresponsiveness (AHR).

Alveolar macrophages (AMs) located on the surface of the alveoli cavity are the

important innate immune barrier in the respiratory tract. AMs are recognized as

recruited airspace macrophages (RecAMs) and resident airspace macrophages

(RAMs) based on their origins and roaming traits. AMs are polarized in the case

of RSV infection, forming two macrophage phenotypes termed as M1-like and

M2-like macrophages. Both M1 macrophages and M2 macrophages are

involved in the modulation of inflammatory responses, among which M1

macrophages are capable of pro-inflammatory responses and M2

macrophages are capable of anti-proinflammatory responses and repair

damaged tissues in the acute and convalescent phases of RSV infection.

Polarized AMs affect disease progression through the alteration of immune

cell surface phenotypes as well as participate in the regulation of T lymphocyte

differentiation and the type of inflammatory response, which are closely

associated with long-term AHR. In recent years, some progress have been

made in the regulatory mechanism of AM polarization caused by RSV infection,

which participates in acute respiratory inflammatory response and mediating

AHR in infants. Here we summarized the role of RSV-infection-mediated AM

polarization associated with AHR in infants.
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Introduction

Respiratory syncytial virus (RSV) is the dominant cause of

lower respiratory tract infection in children younger than 2 years

of age worldwide. It is estimated that 4 million children are

admitted to hospitals for RSV infection and 200,000 of the

hospitalized children die each year (1, 2). Due to the immature

composition and functions of their immune cells and molecules,

infants infected with RSV often progress to lower respiratory

tract inflammation, and some of them can develop a chronic

lung disease (3, 4). When re-infected or exposed to allergens, this

infection in infants can manifest as recurrent wheezing. The

pandemic of the coronavirus disease 2019 (COVID-19) has

changed the epidemic pattern of RSV; it is estimated that the

recurrence of RSV will be more intense in the future and may

become a major economic burden to society (3, 4).

Alveolar macrophages (AMs) are the important part of the

respiratory tract’s innate immune barriers and play a key role

in engulfing pathogens and antigen presentation (5, 6), and

together with epithelial cells, contribute to setting the threshold

and the quality of the innate immune response in the acute

and convalescent phases of RSV infection. It has been reported

that AM polarization is driven by RSV in a variety of

microenvironments to exert multiple biological effects (7).

Polarized AMs participate in local inflammatory responses and

in mediating intercellular communication to stimulate naive

lymphocyte differentiation (8, 9), thus regulating the intensity

of the inflammatory response, which is associated with

immunosensi t izat ion and the pathology of airway

hyperresponsiveness (AHR) in the late life of infants infected

with RSV (10–12). Therefore, immunomodulatory therapy

targeting AMs may be one of the approaches to further

explore effective treatment strategies. In this paper, we

summarize the potential association between AM polarization

and AHR after RSV infection in infants.
RSV infection and host response

RSV is a single-stranded negative-sense RNA virus

belonging to the Pneumovirus genus of the Paramyxoviridae

family (13). Its genome can encode 11 proteins that play roles in

mediating viral replication, packaging, and assisting the virus to

escape immune surveil lance. Glycoprotein binds to

glycosaminoglycans on the cell surface, interfering in immune

cell recruitment and various cytokine production. Fusion

protein mediates the fusion between the virus and the cell

membranes of the host to form syncytia. Non-structural

protein 1 and 2 inhibit interferon (IFN) production and its

signaling conduction (14). Phosphoprotein inhibits exogenous

apoptotic signals and contributes to persistent RSV infection in

macrophage-like cells (15). By disrupting the host gene
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transcription and interfering with the synthesis of

mitochondrial proteins, matrix protein weakens the body’s

immune recognition of RSV (16).

In host cells, RSV activates pathogen-associated molecular

patterns (PAMPs), which promotes the maturation of antigen-

presenting cells (APCs) to express pattern recognition receptors,

toll-like receptors (TLRs), and retinoic acid-inducible gene 1

(RIG-I)-like receptors (RLRs) (17–19). RSV can also invade lung

macrophages directly, is recognized by mitochondrial antiviral

signaling protein (MAVS)-coupled RLR (12), and can activate

nuclear transcription to regulate innate immune responses

(Figure 1). The expression of pro-inflammatory mediators and

the recruitment of inflammatory cells to the infected or injured

tissue and their migration across the endothelium are crucial

events in early immune extravasation defense against RSV

infection (20).

AM-mediated lung pathological lesions are usually not invaded

by RSV directly, but mainly immune-mediated inflammatory

responses (21). The acute infection phase is dominated by airway

inflammation such as bronchiolitis, and the convalescent phase is

characterized by airway hypersensitivity. Both of them belong to

airway hyperresponsiveness. A variety of molecules are involved in

the acute phase across epithelial cells (ECs), including interleukin

(IL)-6, tumor necrosis factor-a (TNF-a), granulocyte-colony
stimulating factor, granulocyte-macrophage colony stimulating

factor (GM-CSF), chemokines (CXCL8, CXCL10, and CCL5),

antibacterial factors including nitric oxide (NO), b-defensins,
lysozyme, and lactoferrin (10, 17), which might cause tracheal

smooth muscle spasm, hyperemia, edema, inflammatory cell

aggregation, secretion, and cell shedding to block the airway (22–

25). Reinfection or inhalation of allergens during the convalescent

period can both trigger the overexpression of CD8 T and Th2-like

cytokines involved in triggering wheezing.
Classification and characteristics of
AMs

Lung macrophages are usually divided into two

subpopulations depending on their distinct locations: AMs

located on the surface of the alveoli cavity and interstitial

macrophages (IMs) located in the interstitial pulmonary

stromata (26, 27). In inflammatory states, AMs are recognized

as the resident airspace macrophages (RAMs) and the recruited

airspace macrophages (RecAMs), depending on their origins

and wandering characteristics (Figure 2) (28, 29).

RAMs are steady-state “AMs” that derive mainly from

embryonic yolk sacs and fetal liver cells (30), which reside on

the surface of the alveoli cavity for a long time. RAMs are not

evenly distributed in each alveolus, and notably only 30–40% of

alveoli contain RAMs. Most of the RAMs crawl in and between

alveoli through the pores of Kohn to monitor the
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microenvironment, while the remaining 10% of RAMs are

entirely sessile (5). In the physiological environment, there is

contact inhibition between RAMs, which contributes to

preventing RAMs from accumulating in the alveoli. This

distribution characteristics are regulated in part by IL-34 and

macrophage-colony stimulating factor (M-CSF) in the alveoli

(31). Through the regulation of GM-CSF and the mechanistic

target of rapamycin complex 1, RAMs, as long-lived cells, can

proliferate in situ to replenish themselves without the need for

mononuclear macrophages from circulating blood as

supplement or replacement, with an annual renewal rate of

about 40% (32). GM-CSF have been confirmed to upregulate the

expression of anti-apoptotic genes in RAMs, which is necessary

to promote maturation and prolong their lifespan (5, 33).

RAMs, being capable of engulfing foreign particles and

endogenous proteins (including surfactants and cell debris) to

initiate an immune response, play a key role in regulating the

innate immunity of the respiratory system and preventing

infection from inhaled pathogens. Moreover, together with

alveoli ECs, RAMs can also contribute to maintaining lung

tissue homeostasis and the intensity of the inflammatory

response (34). The distributions of RAMs in the steady-state

microenvironment are in the dynamic equilibrium of “self-

sufficiency”. During endotoxin-induced acute inflammation or
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exposure to a large number of pathogens, RAMs are the first

sentinel of the respiratory tree and constitute the dominant

immune cell in the steady state to metabolize pro-inflammatory

effectors, including the recruitment of platelets, neutrophils, and

other inflammatory cells, which contribute to co-participating in

and regulating the onset and development of the disease (35).

RecAMs belong to the subpopulation of IMs that travel

towards the site of inflammation in the alveolar cavity in

pathological conditions. IMs originate in bone marrow

monocytes, circulating through the bloodstream into the

interstitial tissues of the lungs and being in transitional states.

IMs can patrol in the interstitium of different alveoli, where they

identify different inflammatory or necrotic and exfoliated cells

and exert a phagocytic effect, which, in turn, release IL-10 to

maintain microenvironment homeostasis (9, 36). In the acute

phase of infection, IMs will be chemotactic to the alveoli cavity

and recruited to become RecAMs (37). In addition, RNA gene

sequencing showed that the immunoprogramming of RecAMs

was dynamic (32, 35) and could develop into the same

phenotype and provide the same functionality as RAMs

during the peak inflammatory periods (38, 39), including the

production of pro-inflammatory cytokines and elimination of

pathogens. RecAMs release anti-inflammatory factors to repair

pathologically damaged tissues when the inflammation is
FIGURE 1

RSV activates APCs to express PRRs, including TLR and RLR, and release pro-inflammatory factors. In the acute phase, RSV-infected epithelia
express interferons, cytokines, chemokines, and antimicrobial factors involved in the airway inflammation reaction. The pathological lesions
caused by these inflammatory mediators experience two stages: bronchiolitis and post-viral AHR. APCs, antigen-presenting cells; RSV,
respiratory syncytial virus; PRRs, pattern recognition receptors; TLR, Toll-like receptor; RLR, retinoic acid-inducible gene 1 (RIG-I)-like receptor;
AHR, airway hyperresponsiveness; IFN, interferon; IL, interleukin; TNF-a, tumor necrosis factor-a; G-CSF, granulocyte colony-stimulating factor;
GM-CSF, granulocyte–macrophage colony-stimulating factor; NO, nitric oxide.
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subsiding. RecAMs program apoptosis after the inflammation is

gone, whereas RAMs will continue to survive and sustainably

replenish themselves. This causes the amount of AMs to form an

emergency dynamic cycle between the homeostasis phase and

the inflammatory phase (32).
Inflammation-activated AM
polarization

Both RAMs and RecAMs can be activated to divide into M1

and M2 phenotypes according to the microenvironment changes

(5). Conventional studies label nitric oxide synthase (NOS) and

arginase (Arg) to determine the activation states of M1 and M2,

respectively. However, recent studies have shown that both NOS

and Arg can be co-expressed within the same cell (32), and AM

polarization is not a distinct “dichotomy” but is multidimensional,

dynamic, and complex (40). Moreover, the classic “M1 and M2”

classification remains representative. M1-like macrophages

exacerbate the airway inflammatory response that may be

associated with long-term airway sensitization (41). In contrast,
Frontiers in Immunology 04
M2-like macrophages are capable of anti-inflammatory responses

and repairing damaged tissues to maintain immunity balance (5).

Once the microenvironment of the alveolars changes, the

phenotypes and the functions of M1 and M2 could be reversed.

Based on single-cell RNA sequencing, AMs can be identified

as five clusters with unique transcriptome characteristics and

presumed functions at three different stages (32): physiological

homeostasis, acute inflammatory phase, and convalescent phase.

The transcripts of clusters 1 and 2 are mainly upregulated in

RAMs, while clusters 3, 4, and 5 are predominantly

characteristics of RecAMs. Clusters 1 and 2 are dominated by

M2 gene expression profiles, while clusters 3 and 4

transcriptomes are dominated by M1 gene expression profiles.

RecAM-labeled cells at peak inflammation are dominated by M1

gene expression, while RAM-tagged cells are predominantly

expressing the M2 gene at the homeostasis and inflammation

phases. The expression of both M1 and M2 genes in cluster 5 is

relatively low. RAMs are dominated by M2-like functions in the

steady-state phase and convalescent phase, while RecAMs are

mainly characterized by M1-like function in the inflammatory

phase only (Figure 3).
FIGURE 2

Sources and classification of AMs. In physiological homeostasis, AMs are equivalent to RAMs, which originate from embryonic yolk sacs and fetal
liver cells. In the event of a large number of microbial invasion or inhalation of allergens, IMs are recruited into the alveoli, known as RecAMs.
After the inflammation subsides, RecAMs coming from IMs will undergo programmed apoptosis, while RAMs maintain their original distribution
characteristics under the action of IL-34, M-CSF, and GM-CSF. AMs, alveolar macrophages; IMs, interstitial macrophages; RAMs, resident
airspace macrophages; RecAMs, recruited airspace macrophages; IL, interleukin; GM-CSF, granulocyte–macrophage colony-stimulating factor;
M-CSF, macrophage colony-stimulating factor; TNF-a, tumor necrosis factor-a.
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RSV infection and AM polarization

The mechanism by which RSV triggers AM polarization is

through promoting a regulatory immune mediator response in

three pathways (Figure 4): cytokines, intercellular communication

signaling (including epithelia–macrophages as well as

macrophages–lymphocytes), and RSV invades AMs and directly

triggers AM polarization.
Cytokines

It is well known that IFN-g is the classic pathway to cause

macrophage polarization. RSV infection might stimulate the

secretion of IFN-g from CD8 T cells and NK cells in lung tissues

(42–45), which, in turn, regulates inflammatory responses and

promotes immunopathology by initiating AM polarization (46).

AM polarization activated by IFN-g is age-related, with significant

differences among adults and infants. There is a high level of

expression of sialic acid-binding immunoglobulin agglutinin

(Siglec-1) ligand CD43 on the membranes of CD4 T cells in

adults through antagonizing signals from monocytes and

inhibiting the release of IFN-g by CD4 T cells, thus preventing

AMs from polarizing into M1 phenotype. In contrast, due to the
Frontiers in Immunology 05
lower CD43 expression on CD4 T cell membranes in infants, the

IFN-g secreted bymonocyte-mediated CD4 T cells is not affected by

Siglec-1 signaling in RSV infection (47). Although infants lack

specific memory T cells and their IFN-g expression is delayed, the

role of IFN-g on AMs gradually dominates as the RSV infection

progresses, with the increased CD43 expression being age-related.

Therefore, IFN-g has significant gradual age differences in M1-like

polarization effects (11, 48, 49), which is one of the main reasons

why the inflammatory response and pathological damage by RSV

are different from those of adults (12). GM-CSF also promotes AM

polarization in RSV infection, but it plays a secondary role (50).

RSV can also induce the production of pro-inflammatory

factors that mediate the expression of macrophage migration

inhibitor factor (MIF) through reactive oxygen species, 5-

lipoxygenase, cyclooxygenase, and PI3K signaling channels,

driving AM polarization to produce TNF-a, monocyte

chemoattractant protein-1, and IL-10 (51).
Intercellular communication

RSV-infected airway ECs might activate AM polarization

through intercellular communication such as the Notch–Jagged

pathway (24, 52–54). Notch is a ligand–receptor interaction that
FIGURE 3

Inflammation activates the polarization of AMs. Depending on functions, polarized AMs are roughly divided into pro-inflammatory M1 and anti-
inflammatory M2. Based on their single-cell RNA sequencing analysis, AMs can be identified as five clusters at three time points throughout the
inflammatory phase, indicated by the red square bracket and arrow. Clusters 1 and 2 contain cells with RAM markers that are present during
both homeostasis and inflammation and are dominated by M2-like functions in the homeostasis and convalescent phase, marked by blue
parentheses and arrows. Clusters 3, 4, and 5 exist only during inflammation and are predominantly characteristic of RecAMs (herein noted by
yellow arrows and square brackets). Among them, clusters 3 and 4 are dominated by M1 gene expression (herein annotated by the purple
square bracket and arrow). Cluster 5 has a relatively low expression of both M1 and M2 genes. Each cluster has corresponding cellular
characteristics that reflect the cell-derived sources and exhibits different functions. RAMs, resident airspace macrophages; RecAMs, recruited
airspace macrophages; M, macrophage.
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triggers a highly conserved signaling cascade with a family of

four members (Notch 1–4) (55). Notch–Jagged intercellular

communication initiates intracellular digestion and

modification of the Notch family, by forming a cross-nuclear

complex, to initiate AM polarization in coordination with NF-

kb signaling and regulates the development of lymphatic lines

such as thymus cells, NK cells, and regulatory T cells (Tregs) in

the thymus (56, 57). It has been shown that the signal exchange

between infected ECs and AMs not only affects the polarization

of AMs directly but also further regulates the differentiation and

functions of T cell subsets. In addition, ECs can also interact with

AMs through the ligand–receptor of CD200 and program death-

ligand-1 (24).
RSV direct activation

AMs can engulf RSV particles directly and recognize viral

RNA sequences by PAMPs. ViaMAVS and RIG-I-like receptors,

RSV replication activates AM nuclear transcription to release

type I and type II interferons and recruits inflammatory cells (12,

58). RSV infection can maintain inefficient replication within

macrophages, forming latent infections (15, 59). By inducing

immune cells to express MIF (51), it contributes to weakening

the migration of AMs subsequently (5). Through receptor-
Frontiers in Immunology 06
interacting protein kinase 1 and 3 and mixed-lineage kinase

domain-like, RSV upregulates TNF-a and the apoptotic-related

gene caspase-8 from the AMs’ autocrine pathway, thereby

exacerbating necrotizing apoptosis and lung tissue damage in

airway histiocytes (53). RSV invades AMs through inducing the

expression of type I IFN to promote the aggregation of

inflammatory monocytes (infMo) (12), which can drive M2-

like macrophages to express high matrix metalloproteinase-12

and thus exacerbating airway hyperresponsivity (60).
AM polarization in the different
stages of inflammation

To maintain homeostasis, AMs exert mainly immuno

suppressive effects by inhibiting the antigen presentation

functions of lung dendritic cells or inducing CD4 T cells

to be unresponsive (61). It can also secrete a variety of

immunomodulatory molecules such as IL-10, TGF-b, NO, and
prostaglandin to reduce lung inflammation. Polarized AMs have a

dual effect of pro-inflammatory and immune tolerance in the

different phases of RSV infection to maintain the intensity of the

inflammatory response and the stability of the internal environment

and promote tissue repair (34).
FIGURE 4

Three signaling pathways for AM polarization activated by RSV infection, cytokines represented by IFN and GM-CSF, intercellular communication
using the Notch-Jagged pathway as an example, and the direct activation signal by RSV. RSV, respiratory syncytial virus; NK, natural killer cells;
IFN, interferon; GM-CSF, granulocyte–macrophage colony-stimulating factor; AMs, alveolar macrophages; ECs, epithelial cells; M, macrophage;
infMo, inflammatory monocytes; MIF, macrophage migration inhibitory factor; TNF-a, tumor necrosis factor-a.
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Inflammatory period

Airway ECs and AMs, as the first defense cells of the respiratory

tract, can recruit neutrophils through the secretion of molecules to

synergistically eliminate pathogens. Damaged lung ECs can induce

the loss of the immunosuppressive ligand expression of AMs via

direct cell–cell contact, which may regulate polarized AMs to M1

phenotype (24). M1 produces pro-inflammatory functions in the

acute phase of infection and exhibits a stronger phagocytic activity

(62, 63). RSV-mediated AM polarization is mainly through

cytokine activation pathways, consisting of IFN-g, TLR-2, -4, and
-9 ligands, lipopolysaccharide, and GM-CSF, manifested as M1-like

functions. While inhibiting IL-10 receptor signaling, polarized AMs

activate NF-kb nuclear transcription by JAK-STAT1/2

phosphorylation signal to express CD16, to release pro-

inflammatory cytokines TNF-a, IL-6, IL-1b, IL-12, and IL-23,

and to secrete inducible nitric oxide synthase, which can promote

the development of inflammation and upregulate the Th1-like

response (64–66). Moreover, in the mitogen-activated protein

kinase-dependent pathway, polarized AMs express IL-33 and are

capable of activating NF-kB signaling by the production of Th2-

related cytokines (13).

AMs are important effector cells to secrete IFN-I, and their

secretion levels are age dependent. RSV induces the

overexpression of IFN-I in adults but, contrarily, inhibits its

production in infants (58). IFN-I inhibits RSV replication by

upregulating antiviral gene expression and can also recruit

monocytes to differentiate into infMo to exert an antiviral

activity (12). Immaturity in the production of IFN-I by infants

is one of the molecular bases for their susceptibility to develop

severe lung inflammation after an RSV infection. During the acute

inflammatory phase, RecAMs are rapidly recruited into the alveoli

to participate in the removal of pathogens, promoting

inflammation, while RAMs inhibit this inflammation. During

the period of inflammation regression, most RecAMs are

programmed cell death, while RAMs persist. Within 2 months

of infection, the phenotypes and functions of some RecAMs are

gradually similar to those of RAMs to supplement the RAMs

consumed (67). The increased expressions of IFN-I receptor alpha

chain, IFN-induced GTP-binding protein Mx2, 2′–5′-
oligoadenylate synthetase 1 (OAS1), OAS2, ribonuclease L, and

IFN-induced transmembrane protein 3 in AMs also enhance RSV

clearance (68). This phenotype exists in the acute phase of other

respiratory virus infections, such as influenza virus (69–72).
Convalescent period

In the convalescent phase of infection, the AM phenotype is

more inclined to M2, which is manifested by the secretion of IL-

10 to modulate the Th17-mediated inflammatory response (9),

such as upregulating Tregs, inhibiting lung inflammation driven
Frontiers in Immunology 07
by inflammatory cells (including neutrophils), and promoting

tissue repair (68, 73).

AMs are polarized into M2 phenotype mainly under M-CSF

stimulation. According to the different cytokine expression

profiles, M2 can be divided into three subtypes: M2a, M2b, and

M2c. M2a releases a small amount of IL-10, the decoy receptor IL-

1RII, and the IL-1 receptor antagonist (IL1ra), predominated by

the inflammatory responses of type Th2, which might be

associated with airway sensitization. M2b releases the pro-

inflammatory factors TNF-a, IL-1, and IL-6 and a large number

of IL-10. Dominated by a high level of IL-10, M2b regulates the

signals of inactivated immunity and inflammation through

inhibiting the proliferation and differentiation of T cells to exert

anti-inflammatory and immune-regulating effects. As an anti-

inflammator, IL-10 regulates immune and inflammatory signals,

including inhibiting the proliferation and differentiation of T cells

to exert anti-inflammatory and immune-regulating effects. M2c is

activated by autocrine IL-10 and TGF-b, modulating the immune

response and assisting in tissue remodeling (65, 74–76).

Thus, during the convalescent phase of lung tissue

inflammation, the functions of RAMs and RecAMs gradually

switch to the phenotype of different M2 subtypes, promoting

tissue repair and pathogen clearance.
Post-viral AHR

The functional transformation of IMs in the transition from the

inflammation period to convalescence is a major intrinsic factor in

tissue repair. Early in the convalescent phase of inflammation, M2a

is dominated by IL-4 secretion, which, in turn, upregulate the Th2

type immune response leading to AHR, which is associated with

wheezing. In the middle and late phases of convalescence, AMs are

gradually converted to M2b, mainly secreting IL-10 and TGF-b,
regulating the Th17-like immune response negatively, which may

promote the production of functional Treg cells, form a positive

feedback loop, and inhibit the tolerance of effector T cells to

aspiration antigens. IL-10 is mostly secreted by activated IMs by

the TLR4/MyD88 pathway. IMs account for about 55% of CD45+

cells that secrete IL-10, compared with less than 5% of CD4 T cells.

Activated IMs can impair neutrophil inflammation, mucus

production, and the expression of neutrophil-activated cytokines

(IL-17, GM-CSF, and TNF-a) in alveoli, negatively regulating the

Th2- and Th17-mediated responses (9). In contact with harmless

antigens, AMs co-express TGF-b and retinal dehydrogenase 1/2

(77), inducing the production of nTreg cells to maintain immune

tolerance (78).

The responses caused by RSV have shown antithesis in

immune inflammation and immune tolerance as well as in viral

clearance (78). A moderate inflammatory response helps the host

defend against pathological harm caused by harmful

microorganisms. Decreased immune tolerance can lead to
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chronic inflammation such as asthma. When infants are re-

infected with RSV, the Th1-type immune response might

produce IFN-g, TNF-a, IL-1b, and IL-22 (68, 79), thereby

activating CTL and NK cells to clear the virus (10). However,

infants are mainly characterized by the Th2- and Th17-like

response (80), and the Th2-type immune memory expresses IL-

4, IL-5, and IL-13, which down-regulate Th1, leading to reduce the

virus clearance rate and increase the inflammation (9, 81). It means

that the pathological basis of AHR may be closely related to an

excessively unbalanced immune response. During convalescence or

RSV re-infection, infants fail to develop airway immune tolerance

due to the formation of Th2 immune memory and the down-

regulation of Treg cells, which may induce eosinophilic asthma.

In addition, platelets are also involved in the recruitment of

immune cells in the regulation of the conversion of AMs’

functions. Stimulated by sCD40L of CD4 T cells, platelets-

expressed P-selectin binds to PSGL-1 on the Treg cell

membrane to form platelet–Treg aggregates. It is one of the

keys to promoting the recruitment of Treg cells to the lungs and

releasing anti-inflammatory factors IL-10 and TGF-b. The
interaction of platelets with Treg cells is involved in regulating

the transcriptional reprogramming of AMs and initiating the

polarization of AMs towards anti-inflammatory phenotypes,

which effectively relieve lung inflammation (82). At different

stages of RSV infection, the phenotypes and functions of AMs

change to play a pro-inflammatory and steady-state role, balance

and protect the local alveolar microenvironment, and avoid

excessive immunopathological damage (59).
AM-mediated T cell differentiation

Intercellular signaling interactions between airway epithelial

cells, AMs, and T lymphocytes may be associated with airway

sensitization. RSV might upregulate the expression of Notch

signaling protein ligand Dll4 in APCs and lung ECs. The

blockade of Dll4 (Notch–Jagged ligand of the signaling pathway)

might promote the production of Th2-like cytokines (IL-5 and IL-

13), mainly through inducing IL-17A+CD4+T cells to

differentiation and IL-17A expression. Thus, it might result in

excessive immunopathological damage (57). Upregulated Dll4

promotes T cells to express SET and MYDN domain containing

protein 3 through the classic Notch signaling pathway, which

contributes to Foxp3 gene methylation and Treg cell

differentiation and promotes IL-10 expression (83). Furthermore,

RSV promotes the upregulation of Jagged-1 and the

downregulation of Jagged-2 in bronchial epithelial cells, which is

beneficial to the differentiation of Th2 cells. Besides this, if the

expression of Jagged-1 is inhibited, it promotes Th1 and inhibits the

differentiation of Th2 cells (54). Thus, the species activity of Notch

ligands affects the direction of differentiation of T cells. Whether

there are differences in the expression levels of different Notch

ligands and whether they are age-related are still unclear.
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Polarized AMs affect T cell differentiation in many ways—

for example, ultra-fine particles induce AMs to express Jagged-1

and promote allergen-specific T cell differentiation into Th2 and

Th17 through the Jagged 1–Notch 4 pathway (84). Lung damage

caused by mechanical ventilation upregulates the expression of

Notch signal-related proteins and promotes the polarization of

AM to M1 phenotype, which, in turn, aggravates airway

inflammation (85). Therefore, given the important role of AM

polarization and T cell differentiation, experimental evidence is

still needed to confirm if RSV infection regulates T cell

differentiation through AM polarization, of which it is

involved in the later body’s sensitization state. However, after

RSV infection, conclusive evidence is needed on how AM

polarization affects the imbalance differentiation of T cell

associated with the formation of AHR.
Prospect of AMs as target for the
treatment of AHR-related viral
infection

Immunomodulatory therapies target AMs that exist in multiple

potential sites during a viral infection of the respiratory tract. In the

case of rhinovirus infection, AMs can be M1/M2 polarized by GM-

CSF/M-CSF or IFN-g/IL-4 stimulation (86, 87). M1/M2 herein can

be likewise classified by their functions and origins rather than

dichotomy. In rhinovirus-induced asthma exacerbations, M1-like

monocyte-derived macrophages (MDMs) can produce antiviral

IFN, while M2-like MDMs significantly enhance the production

of Th2-type chemokines (88), where MDMs are commonly

classified as RecAMs (89). Furthermore, the inception of

rhinovirus-induced AHR may share the analogical pathways with

RSV-induced AHR in adaptive immunity—for example, the

synergistic interactions between Th2 and Th17 immune

responses, in which cytokines (including but not limited to IL-33,

IL-13, and IL-17A) are released, mediate eosinophilic and

neutrophilic aggregation, jointly inducing AHR (90, 91). After

inflammation is controlled, AHR is often characterized by

eosinophilic AHR mediated by Th2-like cytokines (IL-5 and IL-

13) mediated by immune memory (92). Whether associated with

viral infections or the inflammatory cascade, immunomodulatory

therapies for AMs will be quite promising and potential.

In the case of homeostasis or M-CSF stimulation, AMs

produce anti-inflammatory factors such as IL-10, which result

in tissue repair and remodeling similar to those of M2-like

functions (93, 94). The current clinical studies of GM-CSF and

its receptors are relatively numerous (95)—for instance, the

outcomes of severe COVID-19 patients who received a single

intravenous dose of mavlimumab to inhibit GM-CSF signaling

were relatively better compared with the normal controls (96).

However, most of these preclinical research models that inhibit

GM-CSF signaling to control inflammation are used in adults
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and few for infants. Therefore, for RSV infection in infants, a

large amount of experimental data is required to prove that GM-

CSF and M-CSF signals can target AM polarization. Considering

that AMs’ functions in different microenvironments can be

reversed, it is necessary to be cautious when using cytokines

such as M-CSF to promote the proliferation and polarization of

AMs. In homeostasis and convalescence, most AMs are RAMs

with M2-like characteristics. Perhaps it is possible to try to

obtain RAM-like cells in vitro from embryonic liver cells, which

have been reported to have similar functions to primary RAMs

(97, 98). This may be clinically applied to alveolar lavage therapy

(replenishing RAMs) to promote lung repair. In addition, in

intercellular signalings, AMs, as APCs, can regulate immune

response types that follow through Notch signaling. Combined

with Part-6, upregulating Dll4 and Jagged-2 and blocking or

downregulating Jagged-1 may inhibit the production of Th2 and

Th17-like cytokines and promote Treg cell differentiation.

The desired scenario is to increase virus clearance while

maintaining the stability of the lung microenvironment to avoid

excessive immune damage. Further studies may be considered

from the perspective of IL-10 modulating the adaptive immune

response (99, 100). There are currently reports of a hydrogel-

based approach to deliver IL-10 to the lung locally without

bleeding or other complications (101). This may be a promising

clinical treatment strategy.
Conclusion

In conclusion, RSV infection can affect the polarization of

AMs in a variety of ways. At different stages, AMs can regulate

the differentiation of T cell by expressing different cytokines to

maintain a moderate inflammatory response and homeostasis

(102, 103). AMs manifest as M1-like functions, perform pro-

inflammatory functions during the early phase of RSV infection,

and gradually change to M2. Immunomodulatory therapy

targeting AMs is a potential direction for preventing wheezing

associated with RSV infection.
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