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Abstract
Novel 2- or 4-phosphonated 13α-estrone derivatives were synthesized via the Hirao reaction. Bromo regioisomers (2- or 4-) of 13α-

estrone and its 3-benzyl or 3-methyl ether were reacted with diethyl phosphite or diphenylphosphine oxide using Pd(PPh3)4 as cata-

lyst under microwave irradiation. The influence of the new compounds on the transport function of the organic anion transporting

polypeptide OATP2B1 was investigated by measuring Cascade Blue uptake. Derivatives bearing a 3-benzyl ether function

displayed substantial submicromolar OATP2B1 inhibitory activity. The inhibitory effects of the compounds on human placental

steroid sulfatase (STS) and 17β-hydroxysteroid dehydrogenase type 1 isozyme (17β-HSD1) were investigated by in vitro radiosub-

strate incubation methods. None of the test compounds inhibited the STS markedly. The structure–activity relationship evaluation

revealed that 2-substituted 3-hydroxy derivatives are able to inhibit the 17β-HSD1 enzyme with submicromolar IC50 values. Dual

OATP2B1 and 17β-HSD1 inhibitors have been identified.
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Introduction
The biosynthesis of estrogens occurs via various enzymatic

routes. Cytochrome P450 aromatase catalyzes the conversion of

nonaromatic steroids to estrogens [1]. Moreover, hydrolysis of

estrone 3-sulfate, existing as a large circulatory reservoir cata-

lyzed by steroid sulfatase (STS), is one of the major alternative

sources of prehormone estrone for the local supply of estrogens
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[2]. The availability of free estrone on the cellular level depends

on the expression of STS and/or SULT, which catalyze the

sulfation of the phenolic hydroxy function. On the other hand,

estrone sulfate is not able to cross the cell membrane passively;

therefore, a carrier is needed to mediate its transport across the

lipid bilayer. These carriers are certain representatives of the

solute carrier superfamily (SLC), including members of the

organic anion transporting polypeptides (OATP) protein family

[3,4]. Human OATP2B1 is one of the OATPs transporting

estrone 3-sulfate, expressed in the intestine, blood–brain barrier,

liver and placenta [5-9]. Moreover, OATP2B1 is overexpressed

in certain malignancies, including breast cancer [10]. OATP2B1

transports its substrates, including estrone-sulfate in a sodium-

and ATP-independent manner [11,12]. After entering the cells,

estrone-3-sulfate is subjected to enzymatic conversions involv-

ing different cytosolic enzymes. The desulfation catalyzed by

STS is followed by stereospecific reduction of the 17-oxo func-

tion leading to 17β-estradiol. This last step of the estrogen bio-

synthesis is catalyzed by the 17β-hydroxy steroid dehydroge-

nase type 1 isoenzyme (17β-HSD1) [13]. Thus STS and 17β-

HSD1 became important drug targets in estrogen-dependent

diseases [1,14]. Their inhibition could be a powerful strategy

for the suppression of local estrogen production. Additionally,

the entry of estrone-sulfate into the cells by inhibition of

OATPs can be a good alternative [15,16]. Prior suppression of

cytosolic enzymes involved in the estradiol biosynthesis, the

transport of conjugated estrone derivatives, including estrone-3-

sulfate could be blocked. Inhibitors based on the estrane core

could have multiple inhibitory properties concerning the two

enzymatic steps of the sulfatase pathway and OATP2B1-medi-

ated membrane transport of estrone-sulfate.

The inhibitor design is usually based on the substrate of the

target protein. The literature reveals diverse synthetic estrone

derivatives as STS or 17β-HSD1 inhibitors [1,14], but to the

best of our knowledge, there are no reports on estrone-based

OATP2B1 inhibitors. Note that estrone itself has been shown to

slightly inhibit estrone-3-sulfate uptake by OATP2B1 [6]. None

of the steroidal STS or 17β-HSD1 inhibitors reached the clini-

cal trial, which is mainly due to their retained estrogenic activi-

ty. This side-effect could be eliminated by the inhibitor design

based on the 13-epimer of natural estrone (13α-estrone,

13αE1OH) [17,18]. Poirier et al. proved that 13α-derivatives of

3,17-estradiols have reduced binding affinity for estrogen recep-

tor alpha and display no uterotropic activity [19]. The confor-

mational change resulting from the inversion at C-13 leads to an

epimer unable to bind to its nuclear receptors. We have recently

established that 13α-estrone, irrespective of the substantial

structural changes, displays an affinity to 17β-HSD1 similar to

that of the natural substrate estrone [20]. This finding led us to

design novel 17β-HSD1 inhibitors based on the hormonally

inactive 13α-estrane core. Ring A of 13α-estrone was trans-

formed in order to get 2-substituted derivatives [21-23]. On the

basis of the crystal structure of 17β-HSD1 in its complex with

17β-estradiol, Möller et al. described, that there is an unoccu-

pied lipophilic tunnel located near the C-2 atom of the steroid

[24]. Their strategy for improving the inhibitory activity of

natural estrone derivatives was the introduction of large halo-

gens and phenethynyl or phenethyl functions onto C-2 of

estrone. Their most potent compounds displayed nanomolar

inhibitory activities. Our related previous work included the

synthesis and in vitro 17β-HSD1 determination of similar deriv-

atives of the hormonally inactive 13α-estrane core [21-23]. We

found that 2- and/or 4-substitution with large halogens (Br or I)

lead to submicromolar inhibitors irrespective of the position and

number of the introduced halogens. In the case of phenethynyl-

or phenethyl-13α-estrones, only 2-regioisomers displayed sub-

stantial inhibitory action, which did not depend on the hybrid

state of carbon attached to C-2 [22]. Phan et al. described that

halogenation of ring A of estrone is a powerful strategy in the

synthesis of effective STS inhibitors [25]. Certain 4-halo-

genated estrone derivatives displayed higher affinity to the en-

zyme than that of their parent compound estrone. Based on

these findings, we tested our halogenated 13α-estrone deriva-

tives against STS, too [23]. Both the nature and the position of

the introduced halogen influenced the STS inhibitory potential

markedly. The presence of large substituents in 4-iodo and 2,4-

diiodo compounds proved to be advantageous, since these com-

pounds inhibited the enzyme with IC50 values in the low micro-

molar range. It can be stated that introduction of large lipophilic

groups onto C-2 or C-4 of 13α-estrone might improve their

affinity to 17β-HSD1 and STS, respectively. In order to get

more structure–activity data concerning the effect of the nature

and the position of the introduced functional group onto

inhibitory activity, the synthesis and testing of novel ring A

substituted 13α-estrone derivatives would be of particular

interest. Taking into consideration that OATP2B1 is expressed

in certain human malignancies and it transports estrone-3-

sulfate effectively, it would be worth designing, synthesizing

and investigating potential 13α-estrone-based inhibitors against

this transporter protein, too. Ring A substituents differing in po-

sition, size and polarity are expected to have remarkable influ-

ence on the affinity for the target proteins. Investigation of the

influence of the nature of the atom attached directly to the aro-

matic ring A of 13α-estrone and the stereochemistry of the

introduced moiety would also be of high interest.

Here we disclose the synthesis of novel 2- or 4-substituted 13α-

estrone derivatives 8–13 via the Hirao reaction (Scheme 1).

Diethyl phosphite (7a) or diphenylphosphine oxide (7b) were

chosen as >P(O)H reagents and C–P couplings were planned

under microwave irradiation using Pd-based catalysis. Investi-
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Scheme 1: Pd-catalyzed C(sp2)–P couplings at C-2 or C-4 in the 13α-estrone series.

gation of inhibitory activities of the newly-synthesized com-

pounds 8–13 against the OATP2B1 transporter protein and 17β-

HSD1 or STS cytosolic enzymes was also aimed.

Results and Discussion
The Hirao reaction is a powerful tool for the synthesis of

arylphosphonates from aryl bromides or iodides using dialkyl

phosphites (H-phosphonates) as the reagents, Pd(PPh3)4 as the

catalyst and Et3N as the base [26]. Variations of the reaction

have recently been published to prepare diverse functionalized

phosphonates [27,28]. The C–P couplings have been performed

not only under traditional thermal conditions, but the important

benefits of microwave-irradiation have also been utilized in this

field [29].

The optimization of reaction conditions was carried out using

2-bromo- or 2-iodo-13α-estrone 3-methyl ether (1 or 1I) as

starting compounds and diethyl phosphite (7a) as the reagent

(Table 1, Scheme 1). Two Pd sources, namely Pd(PPh3)4 or

Pd(OAc)2 were used, the latter without the addition of any

mono- or bidentate P-ligand. Although Et3N can usually be

used successfully, the dealkylation of the phosphite reagent may

occur. In order to avoid this unwanted side reaction, K2CO3

was also involved in optimization. The selection of acetonitrile

as solvent was based on literature data [27-29]. Acetonitrile is

one of the most extensively used solvents in the Hirao reaction.

Couplings were carried out under microwave irradiation. The

quantity of diethyl phosphite was selected according to litera-

ture data [29]; namely, 1 equiv in the case of Pd(PPh3)4 and

1.3 equiv when using Pd(OAc)2. It was earlier established that

in the microwave-assisted Pd(II)-catalyzed C–P coupling of aryl

bromides and dialkyl phosphites, an excess of the applied

dialkyl phosphite may serve as phosphorus ligand and reducing

agent [29].

The aryl bromide or iodide 1 or 1I was dissolved in acetonitrile,

the reagent, the catalyst and the base were added and then the

mixture was irradiated in a microwave reactor for 5 min. The

nature of the Pd source, the base, the reaction temperature and

the halogen substantially influenced the yields of the C–P

couplings. Reactions with catalyst precursor Pd(OAc)2 gave the

desired phosphonate 8a in moderate yields (Table 1, entries

1–8). Starting from 2-iodo compound 1I, dehalogenation, an

unwanted side reaction occurred, in particular, at elevated tem-

perature (Table 1, entries 3, 4, 7, 8). Pd(PPh3)4, used as catalyst

in the classical Hirao reaction [26], proved to be more efficient

concerning the yields of the desired arylphosphonate (8a,

Table 1, entries 9–16). K2CO3 as inorganic base seemed to be

superior to organic Et3N (Table 1, entries 1–4, 9–12). The

extent of dehalogenation could be suppressed by lowering the

reaction temperature (Table 1, entries 2, 4, 6, 8, 10, 12, 14, 16).

Conditions described in entry 10 proved to be optimal for cou-

pling of compound 1 with diethyl phosphite (7a). These condi-

tions were selected for extension of C–P couplings to other

steroidal scaffolds 2–6, which differ in regioisomerism and/or

nature of the C-3 substituent. In order to get certain functionali-

zed 13α-estrone derivatives with a different substitution pattern

for biological investigations, not only 2-bromo 1–3, but

4-bromo compounds 4–6 were also coupled with the two

reagents 7a and 7b differing in size and polarity (Table 2,

Scheme 1). In certain cases (Table 2, entries 2–6 and 8–12),

however, it was necessary to change the optimal conditions

(Table 1, entry 10) concerning reaction time and temperature.

2-Regioisomers 1–3 could successfully be transformed without

significant changes in reaction conditions (Table 2, entries 1, 7),

but the reaction time had to be prolonged in four cases (Table 2,

entries 3, 5, 9, 11). However, in the reactions of 2-bromo

3-benzyl ether 3 and the 4-regioisomers 4–6 higher temperature

(150 °C) was needed (Table 2, entries 2, 4, 5, 6, 8, 10, 11,12).
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Table 1: Effect of the reaction conditions on Hirao reaction of 2-bromo- or 2-iodo-13α-estrone 3-methyl ether (1 or 1I) with diethyl phosphite (7a).

entry (EtO)2P(O)H quantity [equiv] Hlg Pd source [mol %] base temperature [°C] yielda [%]

1 1.3 Br Pd(OAc)2 [10] K2CO3 150 65
2 1.3 Br Pd(OAc)2 [10] K2CO3 100 77
3 1.3 I Pd(OAc)2 [10] K2CO3 150 61
4 1.3 I Pd(OAc)2 [10] K2CO3 100 66
5 1.3 Br Pd(OAc)2 [10] Et3N 150 58
6 1.3 Br Pd(OAc)2 [10] Et3N 100 59
7 1.3 I Pd(OAc)2 [10] Et3N 150 60
8 1.3 I Pd(OAc)2 [10] Et3N 100 62
9 1.0 Br Pd(PPh3)4 [10] K2CO3 150 73

10 1.0 Br Pd(PPh3)4 [10] K2CO3 100 89
11 1.0 I Pd(PPh3)4 [10] K2CO3 150 69
12 1.0 I Pd(PPh3)4 [10] K2CO3 100 72
13 1.0 Br Pd(PPh3)4 [10] Et3N 150 70
14 1.0 Br Pd(PPh3)4 [10] Et3N 100 78
15 1.0 I Pd(PPh3)4 [10] Et3N 150 66
16 1.0 I Pd(PPh3)4 [10] Et3N 100 70

aObtained after flash chromatography.

Table 2: Scope of the reactiona of 2- or 4-bromo-13α-estrones 1–6 with diethyl phosphite (7a) or diphenylphosphine oxide (7b).

entry substrate >P(O)H solvent temp [°C] reaction time [min] product yieldb [%]

1 1 (EtO)2P(O)H CH3CN 100 5 8a 89

2 4 (EtO)2P(O)H CH3CN 150 30 11a 72

3 2 (EtO)2P(O)H CH3CN 100 15 9a 87

4 5 (EtO)2P(O)H CH3CN 150 30 12a 71
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Table 2: Scope of the reactiona of 2- or 4-bromo-13α-estrones 1–6 with diethyl phosphite (7a) or diphenylphosphine oxide (7b). (continued)

5 3 (EtO)2P(O)H toluene 150 30 10a 90

6 6 (EtO)2P(O)H toluene 150 30 13a 79

7 1 Ph2P(O)H CH3CN 100 5 8b 93

8 4 Ph2P(O)H CH3CN 150 30 11b 82

9 2 Ph2P(O)H CH3CN 100 15 9b 90

10 5 Ph2P(O)H CH3CN 150 30 12b 83

11 3 Ph2P(O)H toluene 150 30 10b 92

12 6 Ph2P(O)H toluene 150 30 13b 78

aReactions were performed on a 0.25 mmol scale with 10 mol % Pd(PPh3)4 and K2CO3 (1.5 equiv) under microwave irradiation. bFlash chromatogra-
phy yields are reported.

The steric hindrance resulting from the presence of ring B near

C-4 might be the main cause for the harsher reaction conditions.

This is in agreement with our recently published Sonogashira

coupling procedure, which required higher temperatures starting

from 4-regioisomers in comparison with those applied for their

2-substituted counterparts [22]. Concerning the nature of the

C-3 substituent, methyl ethers 1 and 4 were overally the most

reactive. Compounds bearing a 3-OH group 2 and 5 reacted

slower due to the more activated nature of the phenolic ring A.

It can be stated that the reaction time and temperature greatly

depends on the nature of the C-3 substituent and on the position

of the bromine, not on the size and polarity of the P-coupling

agent. In the case of 3-benzyl ethers 3 and 6, solvent change

from acetonitrile to toluene was required. This might be attri-

buted to the decreased polarity of the 3-benzyloxy compounds 3

and 6. We have recently disclosed our finding that toluene is an

appropriate solvent for C(sp2)–N coupling reactions of 2- or

4-bromo-13α-estrone 3-benzyl ethers [30]. The structures of the

newly-synthesized derivatives 8–13 were established through
1H, 13C, 31P, COSY, HSQC and/or HMBC measurements.

The influence of the basic (13αE1OH, 13αE1OMe and

13αE1OBn) and new compounds 8–13 on the transport func-

tion of OATP2B1 was investigated by measuring Cascade Blue
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Table 3: OATP2B1, STS and 17β-HSD1 inhibition data of C–P coupled products 8–13 and their basic compounds 13αE1OMe, 13αE1OH,
13αE1OBn.

compound OATP2B1 IC50 ± SD [μM] STS rel. conv. ± SDa [%] 17β-HSD1

IC50 ± SD [μM] rel. conv. ± SD [%]

13αE1OMe 3.4 ± 0.3 99 ± 3 5.5 ± 1.5 [20] 99 ± 3
13αE1OH >50 96 ± 1 [23] 1.2 ± 0.2 [20] 96 ± 1 [23]
13αE1OBn 1.7 ± 0.9 94 ± 3 94 ± 3

8a 1.8 ± 0.3 84 ± 4 60 ± 3
11a 2.8 ± 1.5 93 ± 7 100 ± 5
9a 2.1 ± 0.2 97 ± 5 1.5 ± 0.3

12a 1.4 ± 0.1 93 ± 6 84 ± 4
10a 0.2 ± 0.02 85 ± 7 64 ± 3
13a 0.3 ± 0.02 87 ± 5 92 ± 3
8b 1.2 ± 0.1 80 ± 8 4.1 ± 1.1
11b 2.5 ± 0.4 80 ± 5 106 ± 8
9b 2.6 ± 0.2 77 ± 10 0.18 ± 0.06
12b >50 93 ± 4 100 ± 5
10b 1 ± 0.1 85 ± 5 73 ± 3
13b 0.3 ± 0.02 105 ± 7 75 ± 2

aMean ± standard deviation, n = 3.

uptake (Table 3) [31]. 13α-Estrone (13αE1OH) itself displayed

weak inhibitory action with an IC50 value above 50 μM. The

presence of the methyl group at the phenolic OH function in

compound 13αE1OMe increased inhibition dramatically. The

3-benzyl ether (13αE1OBn) exerted unexpected twofold

inhibitory potency compared with that of its 3-methoxy counter-

part 13αE1OMe. All newly-synthesized derivatives 8–13

displayed substantial inhibition on the transport function of

OATP2B1, except for 4-substituted 3-OH compound 12b. De-

rivatives 9a, 9b and 12a bearing a 3-OH function and 2- or

4-substituted 3-MeO compounds 8 and 11 suppressed the trans-

port in the low micromolar range. In the 3-OH series there

appeared to be significant difference between the IC50 values of

the potent derivatives 9a, 9b and 12a and that of 13αE1OH.

Furthermore, the inhibitory action of the basic reference com-

pound 13αE1OMe was improved in compounds 8 and 11. Sur-

prisingly, but in accordance with the data obtained for com-

pound 13αE1OBn, the most apolar 3-benzyl ethers 10 and 13

proved to be the best inhibitors with IC50 values in the submi-

cromolar range. Accordingly, the inhibitory action of

13αE1OBn could be improved with one order of magnitude by

the introduction of a diethyl phosphono group onto C-2 of

13αE1OBn. The most significant difference in IC50 values con-

cerning the regioisomerism was observed among 3-OH test

compounds 9b and 12b bearing the larger substituent. This

might be attributed to certain intramolecular secondary interac-

tions of the newly introduced substituent and the phenolic OH

function, which may prevent the binding of the steroid to the

transporter protein. Additionally, inhibitory potencies of the

newly-synthesized compounds on human placental STS and

17β-HSD1 have been tested in vitro (Table 3). None of the

newly-synthesized derivatives proved to be a potent STS inhibi-

tor, since the compounds suppressed the estrone-sulfate to

estrone conversion by less than 33% (applied in 10 μM test con-

centration). Henceforth we discuss the results of the 17β-HSD1

investigations. Compounds bearing phenolic OH function

displayed the most potent inhibitory action, but exclusively the

2-regioisomers 9a and 9b. Introduction of a larger and less

polar substituent onto C-2 seemed to be more advantageous,

since compound 9b displayed one order of magnitude lower

IC50 value than that of its 9a counterpart (IC50 values are 0.18

and 1.5 μM, respectively). A comparison of the IC50 values of

compound 9b and 13αE1OH indicates that introduction of a

large diphenylphosphine oxide moiety onto C-2 improves the

binding of the steroid to the enzyme. C-4-substituted 3-OH de-

rivatives 12a and 12b barely suppressed the estrone to 17β-

estradiol conversion. The same tendency showed up in our

previous works regarding the inhibitory potentials of certain 2-

or 4-halogenated or phenylalkynylated 13α-estrone derivatives

[22,23]. Among 3-ethers, only the methyl ether analog of com-

pound 9b proved to be potent inhibitor with an IC50 value of

4.1 μM. The data obtained here for 3-methyl ethers do not

correlate with those described earlier for 2- or 4-halogenated

3-MeO derivatives [21]. We established previously that 4-halo-

3-methoxy derivatives are more potent 17β-HSD1 inhibitors

than their 2-counterparts.
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Conclusion
In conclusion, we have developed an efficient microwave-

assisted Pd-catalyzed C–P coupling procedure for the synthesis

of 2- or 4-phosphonated 13α-estrone derivatives 8–13. The

elaborated methodology proved to be suitable for the facile

transformation of steroidal aryl bromides 1–6 containing OH,

OMe or OBn functions in ortho positions. 2-Regioisomers of

3-OH derivatives 9a,b appeared to be dual OATP2B1 and 17β-

HSD1 inhibitors. The most selective compounds are the

3-benzyl ethers 10, 13, which inhibit only OATP2B1 from the

three investigated targets. To the best of our knowledge, there

are no literature reports concerning potent estrone-based

OATP2B1 inhibitors.
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