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Background: Anxiety-driven clinical interventions have been queried due to the nondeterminacy of pure 
ground-glass nodules (pGGNs). Although radiomics and radiogenomics aid diagnosis, standardization and 
reproducibility challenges persist. We aimed to assess a risk score system for invasive adenocarcinoma in 
pGGNs.
Methods: In a retrospective, multi-center study, 772 pGGNs from 707 individuals in The Affiliated Cancer 
Hospital of Zhengzhou University & Henan Cancer Hospital were grouped into training (509 patients with 
558 observations) and validation (198 patients with 214 observations) sets consecutively from January 2017 
to November 2021. An additional test set of 143 observations in Hainan Cancer Hospital was analyzed in 
the same period. Computed tomography (CT) signs and clinical features were manually collected, and the 
quantitative parameters were achieved by artificial intelligence (AI). The positive cutoff score was ≥3. Risk 
scores system 3 combined carcinoma history, chronic obstructive pulmonary disease (COPD), maximum 
diameters, nodule volume, mean CT values, type II or III vascular supply signs, and other radiographic 
characteristics. The evaluation included the area under the curves (AUCs), accuracy, sensitivity, specificity, 
positive predictive values (PPV), and negative predictive values (NPV) for both the risk score systems 1, 2, 3 
and the AI model.
Results: The risk score system 3 [AUC, 0.840; 95% confidence interval (CI): 0.789–0.890] outperformed 
the AI model (AUC, 0.553; 95% CI: 0.487–0.619), risk score system 1 (AUC, 0.802; 95% CI: 0.754–0.851), 
and risk score system 2 (AUC, 0.816; 95% CI: 0.766–0.867), with 88.0% (0.850–0.904) accuracy, 95.6% 
(0.932–0.972) PPV, 0.620 (0.535–0.702) NPV, 89.6% (0.864–0.920) sensitivity, and 80.6% (0.717–0.872) 
specificity in the training sets. In the validation and test sets, risk score system 3 performed best with AUCs 
of 0.769 (0.678–0.860) and 0.801 (0.669–0.933). 
Conclusions: An AI-based risk scoring system using quantitative image parameters, clinical features, and 
radiographic characteristics effectively predicts invasive adenocarcinoma in pulmonary pGGNs.
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Introduction

The increasing detection rate of pulmonary ground-glass 
nodules (GGNs) has attracted unprecedented attention in 
clinical practice owing to the widespread use of low-dose 
computed tomography (CT) for screening programs of lung 
cancer or physical examinations (1). GGNs are defined as 
nodules with a slightly increased density without obscure 
underlying bronchial structures or vascular margins on 
high-resolution CT (2). GGNs can be classified as pure 
GGNs (pGGN) without any solid components under the 
mediastinal window [window width: 300–500 Hounsfield 
units (HU); window level: 30–50 HU] of CT images and 
part-solid nodules in benign or malignant conditions (3). 
Most international guidelines adopt conservative approaches 
to pGGN treatment, owing to the stable or inert growth 
of pGGNs on CT follow-up and favorable prognosis (4-7).  
However, more than 40–55% of pGGNs are found to be 
invasive or metastatic lesions during follow-up and about 
20% of lung adenocarcinomas manifest as pGGNs on CT 
imaging (4,8-10), all of which may be explained by the 
imbalance of tumor cells with the rapid growth period. 
Therefore, as far as the pGGNs with or without invasive 
components are concerned, a similar strategy with CT 
follow-up or intervention is inappropriate.

Previous studies have suggested that the invasive 
lesions among pGGNs are related to certain CT imaging 
signs, such as the maximum nodule diameter, large 
volume, high voxel attenuation, vessel changes, history of 
extrapulmonary cancers, or chronic obstructive pulmonary 
disease (COPD) (10-15). However, using CT imaging or 
epidemiological characteristics for diagnosis is challenging 
mainly due to the complex mechanism underlying lung 
cancer, the overlap of features of invasive and non-invasive 
lesions, or observer experience. Recently, several studies 
about artificial intelligence (AI) with deep learning (DL) 
technology or radiomic features have reported that DL 
facilitates the detection, diagnosis, or follow-up of pGGNs 
with satisfactory results, which may be the best approach 
to reduce the bias of artificial measurement (16-18). 

However, the performance of previous studies using DL 
to differentiate between invasive and non-invasive lesions 
needs further improvement (19-24). Furthermore, Meng 
et al. (25) established a radiomics nomogram with good 
predictive ability with an area under the curve (AUC) 
of 0.940 and 0.946 in the training and validation sets, 
respectively, for evaluating the invasiveness of pulmonary 
adenocarcinomas manifesting as GGNs. However, the 
results are strongly limited by the lack of standardized 
acquisition parameters, inconsistent methods, and lack of 
reproducibility (26). Therefore, a simple, practical, and 
effective risk system for diagnosing the invasiveness of 
adenocarcinoma in pGGNs is needed. This study aimed to 
establish a novel risk-scoring system for diagnosing invasive 
adenocarcinoma in pGGNs based on traditional clinical 
features, CT signs, and AI-based quantitative image features 
and to provide a basis for rational clinical decision-making. 
We present this article in accordance with the STARD 
reporting checklist (available at https://qims.amegroups.
com/article/view/10.21037/qims-24-170/rc).

Methods

Study design and participants

This retrospective, multi-center cohort study was 
conducted in accordance with the Declaration of Helsinki 
(as revised in 2013), and the protocol was approved by 
The Affiliated Cancer Hospital of Zhengzhou University 
& Henan Cancer Hospital Ethics Committee (No. 2021-
KY-0022). The requirement for individual consent for 
this retrospective analysis was waived. Medical records, 
including epidemiological characteristics, histopathological 
results, clinical characteristics, and serial chest CT scans 
of 2,410 patients with ≥1 pathologically GGNs were 
reviewed retrospectively and consecutively in the Henan 
Cancer Hospital from January 2017 to November 2021. 
We included patients (I) with pGGNs without solid 
components on CT imaging; (II) with stable or enlarged 
GGNs after ≥2 years of follow-up, no biopsy, or anti-tumor 

Keywords: Pure ground-glass nodule (pGGN); lung cancer; artificial intelligence (AI); X-ray; computed 

tomography (CT)

Submitted Jan 27, 2024. Accepted for publication May 29, 2024. Published online Jun 24, 2024.

doi: 10.21037/qims-24-170

View this article at: https://dx.doi.org/10.21037/qims-24-170

https://qims.amegroups.com/article/view/10.21037/qims-24-170/rc
https://qims.amegroups.com/article/view/10.21037/qims-24-170/rc


Meng et al. A risk score system for pulmonary pGGNs4866

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(7):4864-4877 | https://dx.doi.org/10.21037/qims-24-170

treatment before CT imaging; (III) with thin-section CT 
scans (slice thickness ≤1.5 mm) acquired sequentially in a 
single examination within 2 weeks of pre-surgical resection; 
and (IV) pathologic confirmation by surgery. We excluded 
patients (I) without pathological diagnoses or follow-up; 
(II) with chest CT rejection by DL owing to incompatible 
scanning parameters (poor image quality or slice thickness of 
CT >1.5 mm); (III) with infective diseases of the lung or other 
organs. Finally, 707 patients (772 pGGNs) were included 
in this study, in which 506 patients with 561 GGNs from 
our prior study (10) were included and randomly assigned 
to training (509 patients, 558 observations) and validation 
(198 patients, 214 observations) sets. Data from 122 patients 
with 143 GGNs used as the test set were also operated and 
collected in The Hainan Cancer Hospital (Figure 1). 

CT scanning

Chest CT of the apex to the base of the lung with the 
patient in a supine position was performed using 1 of 3 

CT systems (GE Revolution, GE Healthcare, Chicago, 
IL, USA; Philips iCT256 or Icon, Philips Healthcare, 
Eindhoven, Netherlands). The scan parameters were as 
follows: tube voltage, 120 kV; tube current, 50–200 mA; 
rotation time, 0.5–1.0 s; pitch, 1.0–1.5; conventional layer 
thickness, 5.0 mm; reconstruction layer thickness, 1.25 mm. 
A nonionic contrast agent was used for the multiphase-
enhanced scanning process. 

AI algorithm and quantitative parameters

Commercially available AI software (approved by the China 
Food and Drug Administration), based on multi-stage 
3-dimensional (3D) deep convolutional neural network 
(DCNN) algorithms (10) was used to process the arterial 
phase of enhanced CT with 1.25-mm datasets. The DL 
framework was based on ResNet101 combined with false 
positive reduction as the backbone. The fully convolutional 
one-stage object detection head and focal loss were used 
as the model to detect nodule boxes. Voxel segmentation 

Data of 2,410 patients with pulmonary GGNs from  
January 2017 to November 2021

Exclusion criteria
(I) 1,628 patients with part-solid nodules;
(II) 58 patients were rejected by DL owing to 

the incompatible image parameters;
(III) 17 patients had a previous therapy history

Included criteria:
(I) patients with pure GGNs on CT scans; 
(II) pGGNs were stable or increased in 

size after follow-up; 
(III) thin-section CT scans availablly (slice 

thickness ≤1.5 mm and acquired 
within 2 weeks of surgical section; 

(IV) surgical pathologic confirmation

707 patients with 772 pGGNs enrolled in this study

Training set (509 patients, 
558 observations)

Validation set (198 
patients, 214 observations)

Radiographic 
characteristics

AI characteristic
Epidemiological 
characteristic

Risk scores model based 
on clinical characters and 

AI-based CT features

Test set (122 patients, 
143 observations) from 
Hainan Cancer Hospital

Figure 1 Flowchart of the patient selection procedure. GGN, ground-glass nodule; CT, computed tomography; pGGN, pure ground-glass 
nodule; DL, deep learning; AI, artificial intelligence.
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was performed using a 3D U-Net model with small 
images segmented by the nodule box. After windowing 
and mask processing, we used ResNet18 and self-attention 
as classification models (Figure 2). AI was used to detect 
nodules with boundary contours and venous phase CT 
values (in HU), minimum and maximum dimensions, and 
volume. A risk stratification model with low, medium, and 
high risk was scored for GGN malignancy by using the 
commercial DL approach, and the risk scores of positive 
nodules were those lesions with medium or high malignancy 
risk stratification of DL.

pGGN risk scoring system with AI-based quantitative 
parameters, clinical features, and radiographic 
characteristics

pGGN radiographic characteristics on lung windows 
(width, 1,500 HU; level, −500 HU) of venous phase-
enhanced CT images were assessed independently by 3 
experienced thoracic radiologists (7–17 years of chest CT 
interpretation experience; blinded to the pathological 
results); interpretation discrepancies were resolved 
through consensus. Radiographic characteristics included 
spiculation, bubble-like lucency, pleural indentation, and 
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Figure 2 Frame structure of AI based on 3D-DCNN algorithms. 3D, 3-dimensional; Conv, convolution; Max, maximum; AI, artificial 
intelligence; 3D-DCNN, 3-dimensional deep convolutional neural network.
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the vascular supply sign. The spiculation was defined as the 
presence of the margin of the nodule stranding extending 
into the lung parenchyma without reaching the pleural 
surface. The bubble-like appearance was defined as vesicle-
like lucency, air-attenuated within the nodule. Pleural 
indentation was defined as the high-attenuation linear 
areas extending peripherally to contact the pleura, which 
originated from the nodule (Figure 3). The vascular supply 
sign was grouped into 3 types (Type I, normal traveling path 
or size vessels passed through the lesions; Type II, dilated/
distorted vessels within lesions; Type III, more complicated 
vasculature than that of Types I and II (Figure 4). According 
to the International Association for the Study of Lung 
Cancer (IASLC)/American Thoracic Society (ATS)/
European Respiratory Society (ERS) (3) and the fifth 
edition of the classification of thoracic tumors issued by 
World Health Organization (WHO) in May 2021 (27), 
atypical adenomatous hyperplasia and adenocarcinoma in 
situ were categorized as adenomatous precursor lesions and 
all pGGNs were divided into non-invasive (benign, atypical 
adenomatous hyperplasia, and adenocarcinoma in situ) and 
invasive (minimal invasive adenocarcinoma and invasive 
adenocarcinoma) groups.

Statistical analysis

Statistical analysis was performed using SPSS 19.0 (IBM 
Corp., Armonk, NY, USA) and MedCalc 15.2.2 (MedCalc 
Software, Ostend, Belgium). Inter-reader reliability of 
the types of vascular supply sign, pleural attachment, 
spiculation, or bubble lucency among the 3 readers was 
calculated using the intraclass correlation coefficient (ICC). 
For continuous predictors of pleural attachment, bubble 
lucency, spiculation, maximum diameter, volume, CT value, 
and vascular supply sign for pGGN differentiation were 
determined by optimal cutoff values of receiver operating 
characteristic (ROC) curves. Pearson’s correlation analysis 
was conducted between the type of vascular supply sign 
and invasive adenocarcinoma of the lung. Performances of 
different risk scoring systems were assessed using AUCs and 

accuracy ( TP TNACC
TP FP TN FN

+
=

+ + + ), sensitivity ( TPSensitivity
TP FN

=
+

),  
specificity ( TNSpecificity

TN FP
=

+
), positive predictive value 

( TPPPV
TP FP

=
+ ), and negative predictive value ( TNNPV

TN FN
=

+ ),  
(where ACC is accuracy, TP is true positive, FP is false 
positive, TN is true negative, and FN is false negative). 
We considered P values with 2-sided <0.05 statistically 
significant.

A B C

Figure 3 CT signs of pGGN. (A) Bubble-like appearance in the right upper lobe of the lung (red arrow). This appearance is characterized 
by air-attenuated, vesicle-like lucency within the pGGN. (B) Spiculation in the left upper lobe of the lung (red arrow). Spiculation is 
defined as the presence of strands extending from the margin of the pGGN into the lung parenchyma without reaching the pleural surface. 
(C) Pleural indentation along the horizontal fissure (red arrow). Pleural indentation is characterized by linear areas of high attenuation 
originating from the pGGN, extending peripherally to contact the horizontal fissure. CT, computed tomography; pGGN, pure ground-
glass nodule.
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Results

Dataset characteristics

Table 1 shows the baseline data of the patients. There 
were 13, 59, and 757 patients with 3, 2, and 1 nodule(s), 
respectively. Eventually among all the lesions in our 
study, 155 (16.94%) had non-invasive lesions [including 
36 (3.93%) of atypical adenomatous hyperplasia, 66 
(7.21%) of adenocarcinoma in situ, and 53 (5.79) of other 
benign lesions such as interstitial fibrosis, inflammation, 
and so on] ,  and 760 (83.06%) had lung invas ive 
adenocarcinomas (including minimally invasive and invasive 
adenocarcinomas). Some 58 participants had a family 
history of carcinoma, and 86 had COPD. There were 72 
observations of Type I vascular supply signs, 145 of Type II, 
and 639 of Type III. Family history of carcinoma, COPD, 
bubble lucency, or spiculation on CT images, and volume 
significantly differed between the training, validation, and 
test sets (P<0.05 in all cases), and the sex, age, distribution of 
nodules in patients, pleural attachment, mean CT value, lung 
disease spectrum, long diameter, and types of vascular supply 
sign showed no statistical differences among the 3 sets (P>0.05 
in all variables).

Radiographic characteristics based on CT scan analysis of 
pGGNs

To evaluate the inter-reader reliability of the types 
of vascular supply signs, 150 pGGNs were selected 
randomly and pleural attachment, spiculation, and bubble 
lucency were assessed independently by 3 experienced 
thoracic radiologists, and their ICCs were analyzed. 
The interobserver agreement for the measurements is 
summarized in Table 2. The ICCs for pleural attachment, 
bubble lucency, and types of vascular supply signs were 
0.915, 0.807, and 0.807, respectively; however, the ICC 
for spiculation was 0.596. The performance of pleural 
attachment, spiculation, or bubble lucency in diagnosing 
pGGN lung cancer was evaluated using AUCs, and they 
achieved AUCs of 0.615 [95% confidence interval (CI): 
0.560–0.670], 0.612 (95% CI: 0.558–0.667), and 0.563 (95% 
CI: 0.504–0.622), respectively. Under the cutoff value for 
Type II, the vascular supply sign yielded the highest AUC 
of 0.744 (95% CI: 0.681–0.808) among the radiographic 
characteristics, as presented in Table 3. A positive correlation 
was observed between the type of vascular supply sign and 
pulmonary invasive adenocarcinoma (r=0.442, P value <0.001).

A B

C

D E

Figure 4 Types of vascular supply sign in pulmonary lesions. (A,B) Type I: pass-through, vessels passed through lesions with normal 
traveling path or size. (C,D) Type II: distorted/dilated vessels within lesions. (E) Type III: complicated, more complicated vasculature than 
type I and II.
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Table 1 Comparison of clinical characteristics of patients between training and validation sets

Characteristics Training set Validation set Test set P value

Sex 0.241

Male 191 63 34

Female 367 151 88

Age (years) 56.09±10.07 56.31±9.05 57.11±10.32 0.550

Family history of carcinoma <0.001

Yes 27 8 23

No 531 206 120

Chronic obstructive pulmonary disease <0.001

Yes 46 12 28

No 512 202 115

Distribution of nodules in patients 0.315

One 467 184 106

Two 35 12 12

Three 7 2 4

Pleural indentation 0.749

Yes 141 51 32

No 417 163 111

Bubble-like lucency 0.012

Yes 109 41 13

No 449 173 130

Spiculation <0.001

Yes 126 49 7

No 432 165 136

Mean CT value (HU) −(450.3±156.2) −(463.3±154.4) −(467.9±133.3) 0.062

Volume (mm3) 1,608±2,243 1,761±2,976 1,035±1,728 0.012

Maximum diameter (mm) 13.55±6.06 13.84±6.53 13.11±6.39 0.555

Vascular supply sign 0.437

Yes

Type I 44 21 7

Type II 81 39 25

Type III 399 138 102

No 34 16 9

Disease spectrum of lung 0.320

Non-invasive lesions

AAH 25 7 4

AIS 42 20 4

Benign lesions 31 13 9

Invasive adenocarcinoma 460 174 126

Data are represented as means ± standard deviations or n. Type I, vessels passed through lesions with normal traveling path or size; Type 
II, distorted/dilated vessels within lesions; Type III, more complicated vasculature than Types I and II. CT, computed tomography; HU, 
Hounsfield unit; AAH, atypical adenomatous hyperplasia; AIS, adenocarcinoma in situ.
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Table 2 Radiographic characteristics for intra- and inter-readers reliability assessment

Variables Numbers Reader-1 Reader-2 Reader-3 ICC P value

Radiographic characteristics

Pleural indentation 45 47 46 44 0.915 <0.001

Bubble lucency 16 17 17 18 0.807 <0.001

Spiculation 35 39 36 35 0.596 <0.001

Types of vascular supply sign 0.807 <0.001

Type I 13 11 14 13

Type II 17 18 18 19

Type III 111 108 111 109

Type I, vessels passed through lesions with normal traveling path or size; Type II, distorted/dilated vessels within lesions; Type III, more 
complicated vasculature than Types I and II. ICC, intraclass correlation coefficient.

Table 3 The diagnostic value of AI-based quantitative image features and CT features for malignant pGGNs in the training set

Test result variable(s) AUC Standard error Cutoff value
Asymptotic 95% confidence interval

Lower bound Upper bound

Maximum diameter (mm) 0.789 0.025 12.45 0.740 0.839

Volume (mm3) 0.805 0.024 441.25 0.758 0.853

Mean CT value (HU) 0.653 0.032 −487.5 0.591 0.715

Bubble lucency 0.563 0.030 – 0.504 0.622

Vascular supply sign 0.744 0.032 Type II 0.681 0.808

Spiculation 0.612 0.028 – 0.558 0.667

Pleural indentation 0.615 0.028 – 0.560 0.670

Type II, distorted/dilated vessels within lesions. AI, artificial intelligence; CT, computed tomography; pGGNs, pure ground-glass nodules; 
AUC, area under the curve; HU, Hounsfield unit.

AI-based quantitative parameters and analysis of CT signs 
of pGGNs

All the pGGNs were labeled and stratified automatically 
by the AI platform based on the DL algorithm. Similarly, 
quantitative parameters, including the 2-dimensional (2D) 
maximum diameter, 3D volume, and mean CT value, 
were calculated. The maximum diameter of the pGGNs 
achieved an AUC of 0.789 (95% CI: 0.740–0.839) with a 
cutoff value of 12.45 mm; volume yielded an AUC of 0.805 
(95% CI: 0.758–0.853) with a cutoff value of 441.25 mm3; 
and the AUC of the mean CT value was 0.653 (95% CI: 
0.591–0.715) according to the cutoff value of −487.5 HU. 
Their performances were better than those of radiographic 
characteristics, as shown in Table 3.

Performance of AI-based risk scoring systems with different 
combinations in discriminating invasive adenocarcinoma 
presenting as pGGNs and ROC curve analysis

The radiographic characteristics of the bubble-like lucency 
with the lowest AUCs of 0.563 and spiculation with the 
lowest ICC of 0.596 were excluded from the novel risk 
score model. To individualize precision therapy for pGGN 
and enhance its applicability for clinicians in China, we 
adopted a simple grading system in our risk score system, 
instead of using multi-factor risk models. Therefore, 
based on high-risk factors for lung cancer in epidemiology 
(1,3,11,15), as well as the results of the analysis of 
radiographic characteristics or AI-based quantitative 
parameters [including maximum diameter (≥12.45 mm), 
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volume (≥441.25 mm), mean CT value (≥−487.5 HU)], 
the variables, including a history of carcinoma, COPD, 
long diameters, volume of lesions, mean CT values, and 
other radiographic characteristics (spiculation, bubble-
like lucency, and pleural indentation), were each assigned 1 
score in the risk score system for pGGN. However, type III 
vascular supply sign was assigned 2 scores due to its positive 
correlation with pulmonary invasive adenocarcinoma, as 
presented in Table 3. To validate the diagnostic value of long 
diameters and volumes of pGGN, all variables were grouped 
into 3 models: Risk scoring system 1 = history of carcinoma 
× 1 + COPD × 1 + maximum diameters (≥ cutoff value) × 
1 + volume of lesions (≥ cutoff value) + mean CT values  
(≥ cutoff value) × 1 + type II vascular supply sign × 1 or type 
III × 2 + other variables of radiographic characteristics × 1; 
Risk scoring system 2 = history of carcinoma × 1 + COPD 
× 1 + volume of lesions (≥ cutoff value) × 1 + mean CT values  
(≥ cutoff value) × 1 + type II vascular supply sign × 1 or 
type III × 2 + other variables of radiographic characteristics 
× 1; and Risk scoring system 3 = history of carcinoma × 1 
+ COPD × 1 + maximum diameters (≥ cutoff value) × 1 + 
volume of nodule (≥ cutoff value) + mean CT values (≥ cutoff 
value) × 1 + type II vascular supply sign × 1 or type III × 2 + 

other variables of radiographic characteristics × 1, as shown 
in Table 4. The total risk scores for different risk models 
ranged from 0 to 9, and the risk score cutoff for diagnosing 
lung cancer presenting as pGGNs was set at ≥3. 

Compared with the AI model, risk score system 1 and 
risk score system 2, risk score system 3 achieved the best 
performance with an AUC of 0.840 (0.789–0.890); 88.0% 
(0.850–0.904) accuracy; 95.6% (0.932–0.972) PPV; 62.0% 
(0.535–0.702) NPV; 89.6% (0.864–0.920) sensitivity; and 
80.6% (0.717–0.872) specificity in the training and with an 
AUC of 0.769 (0.678–0.860); 83.2% (0.776–0.876) accuracy; 
92.6% (0.875–0.957) PPV; 53.9% (0.405–0.667) NPV; 
89.7% (0.842–0.936) sensitivity; and 72.5% (0.572–0.839) 
specificity in the validation sets. Furthermore, risk score 
system 3 yielded the best performance with an AUC of 0.801 
(0.669–0.933) in the test set. However, of all the risk scoring 
systems, the AI model achieved the highest sensitivity of 
94.1%, 94.3%, and 96.8% in the training, validation, and 
test sets, respectively, and the lowest specificity of 16.3%, 
10.0%, and 17.7% in the training, validation, and test sets, 
respectively, as shown in Table 5 and Figure 5.

Discussion

The results showed that risk score system 3 (including 
pleural attachment, vascular supply sign type II or III, 
maximum diameter, volume, and mean CT value; and family 
history of carcinoma and COPD) was superior to the AI 
model as well as risk score systems 1 and 2 in differentiating 
invasive adenocarcinoma that appeared as pGGNs, which 
can save the number of scans in the lung cancer screening, 
reduce the time to diagnosis for earlier resection, and 
therefore decrease the anxiety of patients.

 Several studies have found that the long diameter, 
volume, and average CT value could be independent 
predictors of pGGN invasiveness (25,28,29). In this study, 
AI based on DL outperformed manual observation, required 
fewer labor hours, and decreased measurement error (30). 
The maximum diameter, volume, and mean CT value 
with cutoff values of 12.45 mm, 441.25 mm3, and −487.5, 
respectively, performed best in diagnosing lung cancer that 
appeared as pGGNs with AUCs of 0.789, 0.805, and 0.653, 
respectively. The mean CT cutoff value in our study was 
similar to that of the study by Ikeda et al. (31) and higher 
than that of the prior study (29,32), which might be due to 
differences in the measurement techniques accompanying 
arterial phase-enhanced CT images, grouping, or other 
factors. 

Table 4 Chart of risk scores with variable parameters 

Variable parameters Yes/no Scores

Epidemiological characteristics

Family history of carcinoma Yes/no 1/0

Chronic obstructive pulmonary disease Yes/no 1/0

Quantitative image features by AI

Maximum diameter (≥12.45 mm) Yes/no 1/0

Volume (≥441.25 mm3) Yes/no 1/0

Mean CT value (≥−487.5 HU) Yes/no 1/0

Radiographic characteristics

Pleural indentation Yes/no 1/0

Vascular supply sign

Type II Yes/no 1/0

Type III Yes/no 2/0

Total scores 0–9

Type II, distorted/dilated vessels within lesions; Type III, more 
complicated vasculature than Types I and II; Type I, vessels 
passed through lesions with normal traveling path or size. AI, 
artificial intelligence; CT, computed tomography; HU, Hounsfield 
unit.
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Figure 5 Diagnostic value of the AI model and the risk scores systems. The ROC curve corresponding to risk scores system 3 showed 
the highest performance among the four risk models for determining cases in which invasive adenocarcinoma appeared as pGGNs in the 
training set (A), validation set (B) and test set (C). ROC, receiver operating characteristic; AI, artificial intelligence; pGGNs, pure ground-
glass nodules.

 Due to the differentiation of tumor margin cells, 
different growth rates or contraction of fibrous tissues are 
present within tumors, and the lesions including benign 
and malignant may grow with different patterns, resulting 
in irregular shapes, mixed ground-glass opacity, lobulation, 
higher frequency of pleural indentation, air bronchograms, 
spiculation, and abnormal dilation and distortion of the 
blood vessels. Therefore, it is worth questioning the role 
of CT signs in diagnosing malignant pGGNs, which 
might be attributable to the natural processes of pGGNs 
(12-14,29,31). Regarding the CT features, the vascular 
supply sign type has a positive relationship with pGGN 
malignancy (10). The AUC of the vascular supply sign type 
II was 0.744 in the training set; therefore, the type II and 
type III vascular supply signs were assigned scores of 1 and 
2, respectively. The AUC of pleural attachment (0.615) was 
higher than that of bubble lucency (0.563) and spiculation 
(0.612). Notably, the interobserver correlation of vascular 
supply sign was lower than that of the other CT signs, 
which might due to the differentiation between type I and 
II vascular supply signs and that vascular post-processing 
technology was needed to improve it. Above all, the CT 
features of the type of vascular supply sign and pleural 
attachment were selected as variables of the risk score 
model. As far as the ICC among the different CT features 
was concerned, the spiculation with the lowest ICC of 0.596 
in this study might be due to the lowest incidence rate of the 
malignant pGGNs and further study should be conducted 
for accurate cognition among different radiologists. 

To improve individual stratification management of 
pGGNs in clinical practice, a total of 772 patients with 

adenocarcinomas appearing as pGGNs were investigated, 
which was more than in most recent studies, and the novel 
risk scoring system in our study was also designed based 
on pleural attachment, type II or III vascular supply signs, 
long diameter ≥12.45 mm, volume ≥441.25 mm3, mean 
CT values ≥−487.5 HU, a family history of carcinoma, and 
COPD according to the risk degree of malignant pGGNs 
to validate the performance between the long diameter 
and volume of pGGNs. Risk score system 3, including 
the variables of long diameter and volume, had the best 
performance in the training (AUC =0.840), validation (AUC 
=0.769), and test (AUC =0.801) sets, which confirmed a 
synergistic effect of the long diameter and the volume 
owing to the different growth rates in different directions in 
the tumor cells.

This study has some limitations. First, as the study 
was retrospective, some selection biases, for example, the 
smoking status of patients was not recorded in this study 
due to insufficient data, although it is currently recognized 
as the most important risk factor for lung cancer. Second, 
the pGGNs number of benign lesions was small, which 
might be biased for the distribution of pathological subtypes 
of pGGNs. This was because benign lesions are mostly 
followed-up due to lack of vascular supply signs and they 
are rarely excised via surgery. We will continue to collect 
data on benign lesions with pathological confirmation 
in the future. Third, non-contrast CT scans are often 
used for lung cancer screening or follow-up, but only 
the enhanced CT scans were used for this retrospective 
study, and therefore the differentiation in diagnosing the 
types of vascular supply sign between the non-contrast 
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CT scan and the enhanced CT scan will be validated in 
future prospective research. Additionally, the improved 
AI algorithm or large language models in medical image 
processing may enhance the diagnosis of the invasiveness of 
pGGNs in clinical practice (33,34), and iterative upgrading 
of the algorithm is needed in the future.

In conclusion, various quantitative and qualitative 
variables showed different degrees of statistical difference 
in discriminating the malignant pGGNs. The predictive 
value of the risk score system based on AI parameters, 
clinical features, and radiographic characteristics of pGGNs 
was remarkably higher than the independent use of each 
variable; therefore, effectively improving the diagnostic 
accuracy of pGGNs in patients with lung adenocarcinoma. 
In future, a prospective clinical trial with more pGGN cases 
is warranted to validate the diagnostic value of the findings 
in this study.
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