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Abstract: During pregnancy, most women are exposed to caffeine, which is a widely consumed
psychoactive substance. However, the consequences of maternal caffeine intake on the child remain
largely unknown. Here, we investigated the intergenerational effects of maternal caffeine intake
on offspring in a Caenorhabditis elegans model. We treated a young mother (P0) with 10 mM of
caffeine equivalent to 2–5 cans of commercial energy drinks and examined its reproduction and
growth rate from P0 to F2 generation. The fertility decreased and embryonic lethality increased by
defective oocytes and eggshell integrity in caffeine-ingested mothers, and F1 larval development
severely retarded. These results were due to decreased production of vitellogenin protein (yolk) in
caffeine-ingested mothers. Furthermore, effects of RNA interference of vitellogenin (vit) genes, vit-1
to vit-6, in P0 mothers can mimic those by caffeine-ingested mothers. In addition, RNA interference
(RNAi) depletion of unc-62 (human Meis homeobox), a transcriptional activator for vit genes, also
showed similar effects induced by caffeine intake. Taken together, maternal caffeine intake reduced
yolk production mediated by the UNC-62 transcription factor, thereby disrupting oocyte and eggshell
integrity and retarding larval development. Our study suggests the clinical significance of caffeine
intake for prospective mothers.

Keywords: caffeine; 1,3,7-trimethylxanthine; maternal effect; intergenerational effect; reproduction;
yolk protein; vitellogenin; UNC-62; eggshell integrity; Caenorhabditis elegans

1. Introduction

Caffeine is the most widely consumed bioactive molecule and its consumption has been increasing
worldwide. A clinical issue about caffeine intake during pregnancy is emerging owing to the possible
adverse impact of maternal nutritional status on child development [1,2]. However, the mechanism by
which information is shared between the mother and child remains largely unknown.

Caenorhabditis elegans is an excellent animal model to study intergenerational effects of nutrient
intake on the progeny because it is easy to examine embryonic and post-embryonic developmental
processes in a large population of progeny at the organismal level. Furthermore, owing to its relatively
small genome sequence and systematic phenotypic analyses, each process can be assessed at the
molecular level as well [3,4]. C. elegans is also an excellent animal model to study reproduction because
this hermaphrodite contains both egg and sperm. Thus, the entire reproductive progress from mitosis
and meiosis of germ cells, and gametogenesis can be observed in one gonad arm. After the production
of egg and sperm, the process of fertilization and even early embryogenesis are possibly observed
simultaneously [5]. Several studies on caffeine intake in the C. elegans model have shown both beneficial
and adverse effects on C. elegans development depending on the intake dose. At a high dose of caffeine
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(30 mM), stress responses were induced, larval development was inhibited, and even food-avoidance
behavior was elicited when fed at the early larval stage of C. elegans [6–8]. However, at doses <10 mM
of caffeine, the life span of C. elegans was extended [9,10]. Recent studies also suggest that caffeine has
neuroprotective effects [11].

In this study, we examined reproduction in a caffeine-ingested mother, and consequently its
embryonic and larval development in a C. elegans model. We found that 10 mM of caffeine intake
caused defects in oocytes, increased embryonic lethality, and larval growth retardation. We further
investigated the underlying molecular mechanisms and found that expression of unc-62 gene (human
Meis homeobox transcription factor) and its target genes, vit (vitellogenin) genes, was severely reduced.
This resulted in defects in oocytes and intergenerational effects, including disrupted eggshell integrity
and further retardation in larval development. Taken together, the results of this study suggest that
caffeine intake by the mother can affect development of the progeny due to the reduction in yolk
protein, which is a major source of nutrients in C. elegans oocytes and embryos.

2. Materials and Methods

2.1. Caenorhabditis Elegans Strains and Caffeine Treatment

Caenorhabditis elegans strains were maintained at either 15 or 20 ◦C on nematode growth medium
(NGM) agar plates seeded with Escherichia coli strain OP50, as described previously [12]. The following
strains were used in the present study: N2 (C. elegans wild isolate, Bristol variety), RB1982: vit-1(ok2616)
X, RB2365: vit-2(ok3211) X, RB2382: vit-5(ok3239) X, DH1033: bIs1 (vit-2::GFP+rol-6(su10060)) X, and
BC12843: dpy-5(e907) I; sIs11286(rCesK07H8.6(vit-6)::GFP+pCeh361). To examine the effects of caffeine
intake, caffeine (Sigma-Aldrich, St. Louis, MO, USA) was added to NGM before autoclaving to obtain
final concentrations of 5, 10, and 30 mM caffeine. Synchronized L4-stage animals were exposed to
caffeine for 24 h at 20 ◦C and then the adult-stage mothers and their progenies were examined.

2.2. Analysis of the Number of Progenies, Embryonic Lethality, and Percent Larval Development

L4-stage wild-type N2 hermaphrodites were individually cloned onto either caffeine-containing
(5–30 mM) or caffeine-free (0 mM) NGM agar plates and grown at 20 ◦C. They were transferred to
new plates in 24 h intervals for 4 days to allow embryo production. Laid embryos were considered
dead if they did not hatch after 48 h at 20 ◦C. The number of progenies was calculated as the total
number of non-hatched and hatched embryos produced by a single mother. Embryonic lethality was
calculated as the percentage of non-hatched embryos of the total number of embryos produced for 4
days. Percent larval development was calculated as the percentage of larvae of the total number of
hatched embryos that reached each developmental stage, as previously described [6]. We distinguished
the developmental larval stages as follows: L1, the smallest larvae <0.3 mm; L2, larvae larger than L1
(body length, 0.3–0.4 mm) but with no characteristics of L3; L3, larvae with a white spot in the vulva
region (body length, 0.4–0.6 mm); L4, larvae with a characteristic half-moon-like shape in the vulva
region (body length, 0.6–0.8 mm); adults, animals with an opened vulva with eggs in the uterus.

2.3. Western Blot Analysis

Western blot analysis was performed using whole animal protein extract obtained from ca. 200
gravid adult hermaphrodites of each condition per gel well. Antibodies bound to a nitrocellulose
membrane (PROTRAN BA83, Whatman, Sigma-Aldrich, St. Louis, MO, USA) were visualized with
Chemiluminescence (ECL) Western blotting detection kit (Amersham, GE Healthcare Life Sciences,
Pittsburgh, PA, USA), and the respective band intensities were measured with LAS-3000 image analyzer
using Multi Gauge software (v.3.0, Fuji Film, Tokyo, Japan). The following primary and secondary
antibodies were used: rabbit anti-GFP (1:1000, Novus, St. Charles, MO, USA), mouse anti-α-tubulin
(1:1000; Sigma-Aldrich, St. Louis, MO, USA), HRP-conjugated goat anti-rabbit IgG (1:1000; Santa
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Cruz Biotechnology, Dallas, TX, USA), and HRP-conjugated donkey anti-mouse IgG (1:1000; Jackson
ImmunoResearch, PA, USA).

2.4. Analysis of Oocyte and Eggshell Integrity

To investigate oocyte and eggshell integrity after caffeine intake, membrane permeability was
assessed using FM4-64 dye (Sigma-Aldrich, St. Louis, MO, USA), as previously described [13]. In brief,
caffeine-ingested mothers were dissected in 150 mM KCl with 30 µM of FM4-64 dye to observe oocytes
and embryos. The proportion of either embryos or oocytes infiltrated by FM4-64 was measured using a
Zeiss microscope at 40×magnification. For each case, three independent experiments were performed.

2.5. RNA Interference (RNAi) Assays

RNAi experiments were performed using the soaking method, as previously described [14].
dsRNAs of vit-1, vit-2, vit-3, vit-4, vit-5, vit-6, and unc-62 genes were synthesized in vitro using
the respective cDNA template. The cDNA templates flanked by T7 promoter sequences were
generated by PCR using T7 primer, 5′-GTAATACGACTCACTATAGGGC-3′ and CMo422 primer,
5′-GCGTAATACGACTCACTATAGGGAACAAAAGCTGGAGCT-3′. Soaking buffer without dsRNA
was used as the negative mock RNAi control. L4-stage animals were soaked in dsRNA solution for
24 h, then transferred onto caffeine-containing NGM agar plates to grow for 24 h until the animals
reached the adult stage. The adult-stage animals were evaluated by membrane integrity assay.

2.6. DNA Staining in Oocytes

To observe whether oocytes of caffeine-ingested mothers have six pairs of homologous
chromosomes (bivalents), DNA staining was performed, as previously described [14]. Animals
were dissected to extrude gonads in 10 µL of M9 buffer containing 100 µg/mL tetramisole on a
poly-L-lysine-coated slide, covered with a coverslip, freeze-cracked with liquid nitrogen, and fixed with
cold methanol and cold acetone. The specimens were then stained with 1 µM TO-PRO-3 (Molecular
Probes, Eugene, OR, USA) for 1 h at 20 ◦C to stain DNA and then observed under a confocal microscope
(Olympus, FV1000 Spectral, Tokyo, Japan).

2.7. Real Time RT-PCR (qRT-PCR)

Adult hermaphrodites of wild-type that were treated or not treated with caffeine (10 mM) were
collected in TRIzol (Invitrogen, Waltham, MA, USA), and total RNA was extracted using a phase
lock gel (MaXtract High Density, Qiagen, Germantown, MD, USA). cDNA was synthesized using
oligo-dT primer and M-MLV reverse transcriptase (Invitrogen, Waltham, MA, USA). qRT-PCR assays
were performed using SYBR Green PCR Master Mix (Applied Biosystems, Waltham, MA, USA). The
final PCR volume was 10 µL. act-1 mRNA was used as an endogenous control for data normalization.
The primers used for the measurement of expression of the unc-62 gene were as follows: forward,
5′-TAAGACATACCCAAGAGAATGCTG-3′ and reverse, 5′-TTTGCCTTTCAGACAGACCA-3′.

2.8. Statistical Analysis

All experiments were repeated more than three times for statistical evaluation of the data.
Two-tailed Student’s t-test was used to calculate p-values; p < 0.05 was considered significant. The
data are expressed as the mean ± standard deviation (SD).
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3. Results

3.1. Maternal Caffeine Intake Causes a Reduction in Fertility and Retardation in the Developmental Growth of
Progeny in C. elegans

To investigate whether caffeine intake by the mother has intergenerational effects on offspring, we
fed caffeine only to P0 mothers, as shown in Figure 1, and measured the fertility and the developmental
growth of offspring. It has been previously reported that the effects of caffeine treatment are dose
dependent [6]. Therefore, we first examined the effect of doses of caffeine intake on reproduction by
feeding 0, 5, 10, and 30 mM of caffeine to hermaphrodites of wild-type L4-stage animals for 24 h. The
number of progenies was significantly decreased and embryonic lethality was increased when mothers
were fed 10 or 30 mM of caffeine (Figure 2A,B). These results indicate that >10 mM of caffeine intake
seriously reduced fertility. In this study, the effects of 10 mM of caffeine intake were examined in the
subsequent experiments because some mothers fed 30 mM of caffeine became sick.

Nutrients 2020, 12, x FOR PEER REVIEW 4 of 17 

on reproduction by feeding 0, 5, 10, and 30 mM of caffeine to hermaphrodites of wild-type L4-stage 

animals for 24 h. The number of progenies was significantly decreased and embryonic lethality was 

increased when mothers were fed 10 or 30 mM of caffeine (Figure 2A,B). These results indicate that 

>10 mM of caffeine intake seriously reduced fertility. In this study, the effects of 10 mM of caffeine 

intake were examined in the subsequent experiments because some mothers fed 30 mM of caffeine 

became sick. 

 

Figure 1. Caenorhabditis elegans P0 mothers were fed single compound caffeine (1,3,7-

trimethylxanthine). 

To determine whether caffeine intake by the mother has intergenerational effects, fertility 

including the number of progenies and embryonic lethality was assessed from P0 to F2 generation in 

C. elegans (Figure 2C). The number of progenies decreased in P0 mothers fed 10 mM caffeine, but not 

in F1 and F2 generation mothers. In addition, embryonic lethality increased in F1 embryos produced 

by the caffeine-ingested P0 mother, but not in F2 and F3 embryos (Figure 2D,E). These results suggest 

that caffeine intake reduced fertility in P0 mothers, but not in F1 or F2 mothers. 

Figure 1. Caenorhabditis elegans P0 mothers were fed single compound caffeine (1,3,7-trimethylxanthine).

To determine whether caffeine intake by the mother has intergenerational effects, fertility including
the number of progenies and embryonic lethality was assessed from P0 to F2 generation in C. elegans
(Figure 2C). The number of progenies decreased in P0 mothers fed 10 mM caffeine, but not in F1 and
F2 generation mothers. In addition, embryonic lethality increased in F1 embryos produced by the
caffeine-ingested P0 mother, but not in F2 and F3 embryos (Figure 2D,E). These results suggest that
caffeine intake reduced fertility in P0 mothers, but not in F1 or F2 mothers.

Next, we tested the possibility that caffeine intake could affect growth of hatched offspring
produced by caffeine-ingested mothers. We evaluated the developmental growth rate in F1 and F2
generations of caffeine-ingested P0 mothers. Interestingly, caffeine-ingested P0 mothers showed a
significantly retarded developmental growth rate in the F1 generation (Figure 3A). However, in the F2
generation, no growth retardation was observed (Figure 3B). These results suggest that caffeine intake
by the mother delays growth of the subsequent F1 generation (ca. 70% adult without caffeine intake,
but 0% adult with caffeine at 72 h growth), but not of the F2 generation (ca. 70% adult in both 0 mM
and 10 mM caffeine intake at 72 h growth).
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Figure 2. Caffeine intake caused a reduction in fertility of P0 mothers and an increase in F1 embryonic
lethality in Caenorhabditis elegans. (A) Total number of progenies by caffeine-ingested mothers (5, 10, and
30 mM) compared to mothers with a caffeine-free diet (0 mM). * p < 0.05. (B) The percentage of embryonic
lethality among the total number of progenies produced by caffeine-ingested P0 mothers that were fed 0, 5,
10, and 30 mM of caffeine at the L4 stage for 24 h. * p < 0.05. (C) A scheme of assays for intergenerational
effects of caffeine intake by P0 mothers. The P0 mothers were fed 10 mM of caffeine, and reproduction
and growth were measured from P0 to F2 generation for analysis of intergenerational effects of caffeine
intake by P0 mothers. (D) The total number of progenies produced by caffeine-ingested P0 mothers and
their offspring (black bars) compared to caffeine-free diet P0 mothers and their offspring (white bars).
* p < 0.05. (E) The percentage of embryonic lethality among the total number of progenies produced by
caffeine-ingested P0 mothers and their offspring (black bars), and caffeine-free diet P0 mothers and their
offspring (white bars). Error bars represent SD. * p < 0.05.
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Figure 3. Caffeine intake by P0 mothers affected development in the subsequent generation of
Caenorhabditis elegans. (A,B) Synchronized L4-stage animals (n = 30) of C. elegans wild-type were fed
either 0 or 10 mM of caffeine for 24 h, and embryos were transferred to respective OP50-seeded nematode
growth medium plates and further cultured at 20 ◦C. The developmental stage of each individual in the
F1 and F2 generations was determined based on its size and stage-specific morphological characteristics
(see Section 2 for details) during development by either caffeine-ingested (10 mM) or caffeine-free diet
P0 mother (0 mM).

3.2. Maternal Caffeine Intake Reduces Yolk Production in C. elegans

Vitellogenin (yolk proteins) plays an important role in the normal development of the animal’s
offspring by supplying nutrients [15–17]. To understand the molecular mechanism underlying the
retarded growth rate of offspring produced by caffeine-ingested mothers, we investigated the possibility
of association with the expression of vitellogenin. We measured the expression level of vitellogenin gene
6 (vit-6) and vitellogenin gene 2 (vit-2) after caffeine intake using transgenic animals with a transgene
vit-6::gfp or vit-2::gfp. Adult-stage transgenic animals expressing either VIT-6::GFP or VIT-2::GFP were
examined following exposure of caffeine and expression levels of both VIT-6::GFP and VIT-2::GFP were
found to be reduced (Figure 4A–D). We confirmed a significantly reduced level of VIT-6::GFP compared
to the control by Western blot analysis (Figure 4B). VIT-2 and VIT-6 are exclusively expressed in the
intestine at the adult stage and VIT-2 is transported into oocytes and eventually to the embryonic cells,
whereas VIT-6 remains in the intestine [18]. We thus observed oocytes and embryos for VIT-2::GFP
expression and found a significantly decreased level of VIT-2::GFP both in oocytes and embryos after
caffeine intake (Figure 4C,D). These results demonstrate that the expression of vitellogenin genes is
suppressed by caffeine intake.
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Figure 4. Maternal caffeine intake reduces vitellogenin (yolk proteins) in Caenorhabditis elegans.
(A) VIT-6::GFP transgenic animals synchronized at the L4-stage were exposed to caffeine for 24 h
at 20 ◦C. VIT-6::GFP expresses in the intestine. The reduced level of VIT-6::GFP in the intestine
was observed in caffeine-ingested mothers. (B) Western blot analysis of VIT-6::GFP protein levels in
caffeine-free diet mother (0 mM) and caffeine-ingested mother (10 mM). Respective GFP band intensities
were normalized against those of α-tubulin in the same lane. Then the normalized GFP band intensity
was converted to a relative value compared to the normalized GFP band intensity of 0 mM, as shown
in the right graph with mean ± SD values. These GFP band intensity values were obtained from three
independent Western blot analyses. Statistical significance was calculated using Student’s t-test. * p <

0.05. (C,D) VIT-2::GFP transgenic animals synchronized at the L4-stage were exposed to caffeine for
24 h at 20 ◦C. The caffeine-ingested mother showed a reduced level of VIT-2::GFP intensity in oocytes
and embryos, as shown in the right graph with mean ± SD values. (E) Synchronized L4-stage animals
(n = 30) of wild-type were treated with RNA interference (RNAi) of vit-3 gene for 24 h and recovered to
OP50-seeded nematode growth medium (NGM) plates for 24 h. The embryos produced by P0 mothers
were transferred to respective NGM plates and further cultured at 20 ◦C. The developmental stage of
each individual in the progenies was determined based on its size and stage-specific morphological
characteristics (see Section 2 for details) during development by either the vit-3 RNAi-treated P0 mother
(10 mM) or non-treated (mock) P0 mother (0 mM). (F) VIT-6::GFP transgenic animals synchronized
at the L4-stage were exposed to caffeine for 24 h at 20 ◦C. Then their F1 generation grew under the
caffeine-free diet (0 mM) condition, and VIT-6::GFP transgenic F1 animals were observed at the adult
stage. Statistical significance was calculated using Student’s t-test. n.s., p > 0.05.
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We further assessed a possible association between the reduction in vitellogenin and developmental
growth of offspring by examining the developmental stages of F1 worms produced by P0 mothers treated
with RNA interference (RNAi) of the vitellogenin gene vit-3. We observed a retarded developmental
growth rate in vit-3 RNAi depleted worms (Figure 4E), indicating that the presence of vitellogenin is
required for the normal growth of offspring. Taken together, these results suggest that caffeine intake
by the mother reduces the production of vitellogenin, which causes retarded growth of offspring. We
further examined whether the reduced level of vitellogenin observed in caffeine-ingested P0 mothers
sustains in the adult-stage F1 offspring. Interestingly, F1 generation adults expressed VIT-6::GFP
similarly to that in the caffeine-free diet control group (Figure 4F), suggesting that the effect of reduced
levels of vitellogenin on the development of offspring is limited to F1 generation. These findings
suggest that the decreased level of vitellogenin in the caffeine-ingested mother caused retarded larval
growth of the F1 offspring, but the expression of vitellogenin in the adult stage of the F1 generation
was not altered and no further effects were observed in F2 generation (Figures 3B and 4F).

3.3. Maternal Caffeine Intake Disrupts Eggshell Integrity in C. elegans

Caffeine-ingested mothers showed an increased level of embryonic lethality (Figure 2B).
Chromosomal alterations in oocytes have been reported as the primary cause of embryonic lethality in
C. elegans [19]. Therefore, we examined DNA morphology in −1 position oocytes of caffeine-ingested
mothers under a fluorescent microscope after DNA staining with TO-PRO-3 fluorescent dye. The
majority of mature oocytes in caffeine-ingested mothers contained six pairs of aligned and condensed
chromosomes in their nuclei, which are characteristic of the diakinesis stage in meiotic prophase I in
normal −1 position oocytes (Figure 5A). As little as 8.4% of oocytes showed a chromosomal abnormality,
which was not statistically significant (p = 0.068). This result indicates that caffeine intake by mothers
did not affect chromosomal integrity in oocytes.

The eggshell, which provides a protective structure with the extracellular matrix, is an important
factor in many early developmental events [13,20] and recent studies have suggested the pivotal
role of the eggshell during embryonic development and survival [21,22]. Therefore, we next
examined eggshell integrity in F1 embryos produced by caffeine-ingested mothers. We isolated
embryos from dissected caffeine-ingested and caffeine-free diet mothers and examined their integrity.
Approximately 17% of embryos isolated from caffeine-ingested mothers were ruptured (Figure 5B,C);
the remaining embryos were examined with lipophilic dye FM4-64 staining for visualizing embryonic
morphology [13,23]. Surprisingly, approximately 38% of the embryos out of the 83% non-ruptured
embryos from caffeine-ingested mothers were permeable to FM4-64 and their embryonic membrane
was stained, whereas embryos produced by caffeine-free diet mothers were not permeable to FM4-64
and their embryonic membrane was not stained at all (Figure 5D). Lipophilic FM4-64 dye binds to
the embryonic membrane and stains it if the eggshell is disrupted. Taken together, maternal caffeine
intake disrupted eggshell integrity, causing the eggshell to rupture and become permeable.

3.4. Reduced Vitellogenin Production in Caffeine-Ingested Mothers Causes Defective Oocyte and Eggshell
Integrity in C. elegans

We found that caffeine intake reduced vitellogenin production (Figure 4A–D) and disrupted
eggshell integrity (Figure 5B–D). On the basis of these findings, we investigated the relationship
between vitellogenin and eggshell integrity to determine whether disrupted eggshell integrity could
be due to the reduction in vitellogenin production. The vitellogenin family is comprised of six genes:
vit-1 to vit-6 [24]. We performed the respective RNAi of the six vit genes to knock down vitellogenin
production and observed eggshell permeability of embryos produced by RNAi-treated mothers
(Figure 6A). Approximately 20% of embryos were permeable to FM4-64 by depletion of vit genes,
whereas a majority of mock RNAi-treated embryos were not permeable to FM4-64 (Figure 6A). The
eggshell permeability defects in the vit RNAi experiments were likely due to simultaneous knockdown
of more than one vit gene, due to the RNAi target sequence similarity to more than one vit gene.
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Off target effects likely occur because vit-1 is 82% identical to vit-2, vit-3 and vit-4 are 99% identical,
vit-5 is 96% identical to vit-3, and vit-6 is 50% identical to vit-2 [17]. Indeed, a single vit mutant only
showed subtle phenotype, suggesting the functional redundancy among vit genes. We observed that
approximately 10% of embryos in vit-1(ok2616) and vit-2(ok3211) mutants, and approximately 1.7%
of embryos in vit-5(ok3239) mutant were permeable to FM4-64 dye (Figure 6B). Here we presented
results from vit RNAi and mutant analyses (Figure 6), which suggest that the reduction in yolk proteins
disrupts eggshell integrity.
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Figure 5. Maternal caffeine intake disrupted eggshell integrity in Caenorhabditis elegans. (A) Oocytes
at the −1 position in a gonad arm of wild-type adult hermaphrodites grown without or with 10 mM
caffeine. DNA was stained with TO-PRO-3 and then six bivalents were examined. The percent of intact
six bivalents is shown in a bar graph on the right. (B–D) DIC images (B) and lipophilic dye FM4-64
staining images (C,D) of embryos from the dissected caffeine-free diet (0 mM) and caffeine-ingested
mothers (10 mM). The caffeine-free diet (0 mM) mother produced intact and ovoid embryos and only
polar bodies (white arrowheads) were stained, but the caffeine-ingested mother produced ruptured
embryos (C) and their eggshells were permeable to FM4-64, and the cell membranes of the embryos
were stained (D). Statistical significance was calculated using Student’s t-test. * p < 0.05.
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Next, we examined whether disrupted eggshell integrity is associated with oocytes in
caffeine-ingested mothers. We hypothesized that disruption in eggshell integrity is possibly due
to defective oocytes in caffeine-ingested mothers and thus we examined permeability of oocytes
using lipophilic dye FM4-64. Interestingly, caffeine-ingested mothers exhibited approximately 20% of
gonads with permeable oocytes, unlike oocytes produced by caffeine-free diet mothers (Figure 6C).
Furthermore, we also performed RNAi of respective vitellogenin genes to test whether the reduction
in vitellogenin can also allow oocytes to be permeable. The respective vitellogenin gene (vit-1, -2,
-3, -4, -5, and -6) RNAi-treated mothers produced approximately 18–22% of permeable oocytes in
gonads (Figure 6D). These findings indicate that maternal caffeine intake caused defective oocytes and
disrupted eggshell integrity through the reduction in vitellogenin production.
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Figure 6. Vitellogenin is required for eggshell and oocyte integrity in Caenorhabditis elegans. (A) Eggshell
permeability was examined by lipophilic dye FM4-64 staining in the embryos produced by mock RNAi-
or vit-1 to vit-6 RNAi-treated mothers. Statistical significance was calculated using Student’s t-test.
* p < 0.05 against mock RNAi-treated animals. (B) Eggshell permeability was examined by FM4-64
staining in the embryos produced by vit-1(ok2616), vit-2(ok3211), and vit-5(ok3239) mutants. Statistical
significance was calculated using Student’s t-test. * p < 0.05 against N2 control. (C) Oocyte permeability
examined with lipophilic dye FM4-64 staining in the caffeine-ingested mother (10 mM) and caffeine-free
diet mother (0 mM). Gonads were extruded by dissecting adult animals in 150 mM of KCl. Statistical
significance was calculated using Student’s t-test. * p < 0.05. (D) Oocyte permeability was examined
by FM4-64 staining after treatment with RNAi of the vitellogenin genes from vit-1 to vit-6. Statistical
significance was calculated using Student’s t-test. * p < 0.05 against mock RNAi-treated animals.

3.5. Maternal Caffeine Intake Reduces unc-62 Expression and the Reduced Level of unc-62 Causes Defective
Oocyte and Eggshell Integrity in C. elegans

It has been reported that VPE1 (TGTCAAT) and VPE2 (CTGATAA), the cis-elements in the vit
promoter, are important for vitellogenin (vit) gene expression (Figure 7A), [25,26]. VPE1 is bound by
the UNC-62 (human Meis homeobox) transcription factor, which is highly expressed in the intestines
of adult C. elegans, where vit genes are specifically expressed; and expression of vit genes is suppressed
in unc-62 RNAi-treated animals [27]. Therefore, we investigated whether unc-62 expression is affected
by caffeine intake by measuring the mRNA level of unc-62 gene in caffeine-ingested and caffeine-free
diet mothers using qRT-PCR (Figure 7B). We found that the mRNA level of unc-62 gene significantly
decreased in caffeine-ingested mothers (Figure 7B) and the reduced unc-62 level by RNAi led to
a decreased level of VIT-2::GFP (Figure 7C). These results suggest that the reduced vitellogenin
production by caffeine intake is caused by the decreased level of transactivator unc-62.
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Figure 7. Caffeine intake reduces unc-62 expression and the reduced level of unc-62 exhibits defects
in embryo and oocyte integrity in Caenorhabditis elegans. (A) UNC-62 binding sites in the genomic
structures of vitellogenin genes. The thin black lines indicate the promoter and introns of each of
six vitellogenin loci, and the thick black lines indicate exons of six vitellogenin genes. The blue lines
indicate UNC-62 binding sites, and the red bars indicate VPE-1 (ATTGACA) vitellogenin regulatory
motif previously described [25,27]. (B) Fold induction of mRNA level of unc-62 in caffeine-ingested
mothers (10 mM) than caffeine-free diet mothers (0 mM). The mRNA level of unc-62 was determined
by three independent qRT-PCR using the mRNA level of act-1 in each sample as an internal control
for normalization. T-bars represent SD. Approximately 150 adult animal individuals were used to
prepare total RNA for respective conditions. Statistical significance was calculated using Student’s
t-test. * p < 0.05. (C) VIT-2::GFP transgenic animals synchronized at the L4-stage were treated with
unc-62 RNAi. The unc-62 RNAi-treated mothers showed the reduced level of VIT-2::GFP intensity both
in oocytes and embryos, as shown in the right graph with mean ± SD values. (D) Eggshell permeability
examined by lipophilic dye FM4-64 staining of the embryos produced by unc-62 RNAi-treated mothers.
Statistical significance was calculated using Student’s t-test. * p < 0.05 against mock RNAi-treated
animals. (E) Oocyte permeability examined by lipophilic dye FM4-64 staining in the dissected gonad
from the unc-62 RNAi-treated mothers. Statistical significance was calculated using Student’s t-test.
* p < 0.05 against mock RNAi-treated mothers.
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Next, we addressed whether the reduced level of unc-62 can cause defects in eggshell and oocyte
integrity. We performed unc-62 RNAi in mothers and observed eggshell and oocyte integrity by
FM4-64 dye staining. The unc-62 RNAi-treated embryos and oocytes also became permeable to FM4-64
dye (Figure 7C,D), indicating that the reduced level of unc-62 induced by caffeine intake results in
defective eggshell and oocyte integrity possibly through the reduction in vitellogenin production.
Taken together, we propose that maternal caffeine intake affects the survival and growth of offspring
through the reduction in yolk protein production, which is mediated by the repression of unc-62 gene
expression (Figure 8).
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Figure 8. Model of the intergenerational effects of maternal caffeine intake in Caenorhabditis elegans.
Caffeine intake decreased the production of yolk proteins by reducing unc-62 expression. The decreased
levels of yolk proteins disrupted oocyte and eggshell integrity and induced embryonic lethality and
growth retardation of the next generation.

4. Discussion

The physiological effects of caffeine intake in C. elegans are highly dose dependent [6]. Previous
reports about the effects of caffeine using a C. elegans model indicate that the intake of a high dose of
caffeine (>10 mM) showed adverse effects, such as developmental arrest, activation of stress-response
pathways, and stimulation of food-avoidance behavior [6–8], whereas animals treated with a low
dose of caffeine (<10 mM) generally showed beneficial effects such as lifespan extension, antioxidant
effects, and protection of neurodegeneration [10,28,29]. However, the mechanism by which maternal
caffeine intake affects not only the mother but also the offspring remains largely unknown. In this
study, we examined the intergenerational effects of caffeine intake (10 mM) by mothers on reproduction
and offspring development in a C. elegans model. We found that 10 mM of caffeine intake by the
mother caused reduced fertility with defective oocytes and eggshell integrity, and an increased level of
embryonic lethality and retardation in larval development (Figure 2A,B; Figure 3A).

There are six vit (vitellogenin) family genes and their expressions are stage-, sex-, and tissue-specific
in C. elegans, which are exclusively and highly expressed in the adult hermaphrodite intestine [24].
Therefore, vit gene expression should be regulated by specific transcription factors. There are two
major binding sites known as VPE1 and VPE2 in all six vit genes in C. elegans [25]. UNC-62, a
VPE1-binding transcription factor, is highly expressed in the intestinal nuclei during the adult stage of
C. elegans observed by UNC-62::GFP, and it activates vit gene expression [27]. unc-62 is an ortholog of
human MEIS1 (Meis homeobox 1) and MEIS2 transcription factor that functions in normal human
development [30]. In this study, we found that unc-62 expression was repressed by caffeine intake. How
does caffeine intake regulate unc-62 expression? It has been reported that caffeine intake influences
metabolic rate and lipid oxidation [31–33]. In addition, it was suggested that nutrients can control
transcription factors [34]. Since unc-62 appears to be an upstream gene to control the developmental
processes as a homeobox transactivator, this gene is possibly regulated by the nutritional state during
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the development of C. elegans. Considering that caffeine intake modulates the metabolic pathways and
changes nutritional state in an animal, the developmental regulators are the possible targets responding
to the alterations in metabolism. To investigate this possibility, the changes in the metabolic pathways
in caffeine-ingested mother and the relation between these pathways and unc-62 repression needs to
be determined. Vitellogenin (YP170) is transported from the intestine, where it is produced, to the
oocytes by receptor-mediated endocytosis; it becomes enriched in the yolk and provides nutrients to
the next generation in C. elegans [35]. Therefore, vitellogenin is considered as an intergenerational
molecule that is transferred from the mother to the offspring. Suppression of vit gene expression after
caffeine intake suggests that food signals are possibly involved in vitellogenesis. C. elegans vit genes
are homologous to those in vertebrates [36]. In vertebrates, vitellogenin is produced in the female
liver responding to estrogen signals and transported to the oocytes in the ovary through the blood.
Furthermore, environmental estrogenic chemicals can induce vitellogenin production. Therefore,
vitellogenin production is sensitive to the environmental status; thus, it can be used as a biomarker
of environmental stress during reproduction [37]. The novel finding that vitellogenin is required for
eggshell integrity and lack of vitellogenin causes embryonic lethality in approximately 20% of the
embryos observed in this study suggests that the presence of vitellogenin is important for embryonic
development of the next generation. Vitellogenin is mainly associated with lipid droplets in which
phosphatidylcholine (PC, 23%) and phosphoethanolamine (PE, 28.2%) are over half of the total lipid
content [17]. PC and PE are a major class of phospholipids that are the main constituents of the cell
membrane [38]. Therefore, the reduction of vitellogenin along with PC and PE in oocytes may cause
defects in the vitelline layer of oocytes and permeability. However, we propose that vitellogenin can
partially contribute to the survival of embryos and other factors can compensate for the requirement
of vitellogenin during embryogenesis. This is supported by the findings that 23% of live embryos
were retained even with complete loss of vitellogenin in oocytes in rme-2 mutants [35]; and that
vitellogenin production was remarkably decreased under dietary restriction in C. elegans, causing
increased embryonic lethality that was suppressed by methionine supplement [39]. In addition, larval
growth retardation in the F1 generation of caffeine-ingested mothers in the present study reveals that
vitellogenin is indeed an intergenerational protein. A large amount of vitellogenin from the mother
was observed in the early F1 larval stage of C. elegans, suggesting that maternal vitellogenin remains
in the larval stage and provides nutrients for larval development in the F1 progeny [40]. However,
in the present study, we found that the decreased level of vitellogenin in the mother affected the F1
generation, but not further generations, suggesting that it did not affect vitellogenin production in the
adult-stage intestine and germ cells in the F1 generation.

The eggshell plays an important role in protecting the embryo by maintaining proper osmotic
conditions and preventing the entry of potentially harmful molecules from the environment. In
addition, the permeability barrier of the embryo also allows it to maintain the substances required
for embryogenesis [41–43]. Previous studies have shown that fatty acid synthesis and modifications
of enzymes are required for the formation of the permeability barrier in the embryo [23], and lipid
metabolism is strongly associated with eggshell integrity [43]. It has been reported that in zebrafish,
caffeine intake has a role in the suppression of fatty liver by downregulation of genes associated with
lipogenesis, and enhancement of lipid oxidation and autophagy activity [44]. A relationship between
caffeine intake and fat metabolism has also been observed in a rat model system, which has shown
that caffeine intake reduces body fat by lipolysis and has an anti-obesity effect [45]. These findings
suggest that caffeine intake affects lipid metabolism, which in turn possibly controls eggshell formation.
Therefore, in addition to vitellogenin production, lipid metabolism appears to be involved in eggshell
and oocyte integrity after caffeine intake. Further analysis of the direct relationship between caffeine
intake and lipid metabolism in eggshell integrity remains to be determined. Dietary habit is one of
the external stimulations to induce internal physiological effects. Caffeine intake can be an effective
external stimulator. It has previously been described that caffeine intake causes global deacetylation of
proteins and mimics caloric restriction through autophagy induction [46]. It will be worthwhile to
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examine whether the mode of action in oocyte and eggshell integrity after caffeine intake is related
to autophagy.

In summary, our results suggest that caffeine intake by the mother affects reproduction in a
dose-dependent manner. We demonstrated that maternal caffeine intake reduces yolk production by
regulating unc-62 expression. The reduced vitellogenin production by caffeine intake, in turn, decreases
embryonic survival by disrupting eggshell integrity, and inhibits larval development. As reported,
vitellogenin expression is highly specific at the adult stage of C. elegans females. Therefore, further
investigation of the consequences of caffeine intake in males to understand paternal effects is required.

5. Conclusion

This study provides several evidences showing the intergenerational effects of maternal caffeine
intake. These effects were attributed to the suppression of yolk protein production mediated by a
transcriptional activator, unc-62 (human Meis homeobox). These findings support that the mother’s
diet during pregnancy is critical for the survival and growth of progeny.
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