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Semantic similarity is a useful approach for comparing patient phenotypes, and holds

the potential of an effective method for exploiting text-derived phenotypes for differential

diagnosis, text and document classification, and outcome prediction. While approaches

for context disambiguation are commonly used in text mining applications, forming

a standard component of information extraction pipelines, their effects on semantic

similarity calculations have not been widely explored. In this work, we evaluate how

inclusion and disclusion of negated and uncertainmentions of concepts from text-derived

phenotypes affects similarity of patients, and the use of those profiles to predict

diagnosis. We report on the effectiveness of these approaches and report a very small,

yet significant, improvement in performance when classifying primary diagnosis over

MIMIC-III patient visits.

Keywords: semantic similarity, phenotype profiles, ontology, context disambiguation, negation, differential

diagnosis

INTRODUCTION

Natural language text is a critical resource in healthcare, forming the primary mode of
communication and source of record (1). Analysis of clinical text resources can lead to novel
insights and improved patient outcomes (2). Biomedical ontologies are tightly interlinked with text
mining, since they provide sets of vocabularies that can be used to recognize concepts in text, and
can be linked back to consensus definitions of mentioned entities (3).

Ontologies also enable the semantic analysis of biomedical entities described by associations
with ontology classes. Semantic similarity is one such method, which leverages an ontology’s
subsumptive hierarchical structure to calculate similarity between concepts and groups of concepts
(4), controlling for ambiguity and variability in ontology-based descriptions of entities via
background knowledge encoded into the structural features of the ontology. Semantic similarity
has been heavily explored as a method for predicting protein-protein similarity (5), gene-disease
associations (6, 7), differential diagnosis for rare diseases (8), and disease stratification and
diagnosis in particular disease domains (9, 10). There are a wide range of semantic similarity
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and related measures, which may compare single terms, or
groups of terms. Gan et al. (4) distinguishes between methods
based upon measuring relatedness via semantic relatedness,
hierarchical structure, term features, information content, as well
as hybrid methods. Information content measures can also be
distinguished between those that are calculated via structural or
semantic features of the ontology, and those that are determined
through an external source (such as probability of appearing
in a corpus). Methods of computing distance between vector
embeddings, such as via cosine similarity, also constitute a kind
of semantic similarity, and more recent investigations have also
combined embedding and ontology approaches for semantic
analysis (11, 12).

Text-derived annotations associated with ontology concepts
can also be used as entity profiles for semantic similarity analysis.
Several previous works described methods that produced patient
phenotype profiles using a hybrid concept recognition approach
with human curation, which could then be passed to gene
variant prioritization software (13, 14). Our previous work
explored the use of uncurated text-derived patient phenotypes
produced by the Komenti semantic text-mining framework
(15), for classification of common disease classification, with a
view toward using the technology as a method for differential
diagnosis (16). Particularly, we used semantic similarity methods
for ranking and classification of primary diagnosis across
MIMIC-III patient visits, revealing a promising, albeit error-
prone, method. This implies that attention should be given to
optimization of methods, including the choice of which ontology
classes to include in a patient’s phenotype profile.

Information extraction systems typically associate
algorithmically-derived metadata with extracted concept
mentions for the purpose of context disambiguation, including
negation, uncertainty, and temporal status. This is of importance
in a clinical setting since the context with which a concept is
mentioned in a clinical narrative facilitates determination of the
nature of the relationship between the concept and the patient.
For example, the mere mention of a disease in clinical note for
a patient does not necessarily imply that the patient has that
disease. It may be negated, ruling out that disease, or it may refer
to the patient being tested for a disease, or it may refer to another
person entirely, such as a family member.

FIGURE 1 | Flow chart describing the experimental methodology.

Context disambiguation is, therefore, a major area of research
in natural language processing. In this article, we will focus on
negation and uncertainty detection. NegEx is a popular rule-
based context detection algorithm for clinical text (17), which
supports negation and uncertainty identification. More recent
approaches, such as NegBERT (18), apply machine learning
approaches to negation detection. Other approaches use methods
based on grammatical sentences models, such as negation-
detection (19). Our previous work described a heuristic-
based method, integrated into Komenti, which exhibited high
performance on MIMIC-III and on text associated with rare
disease patients at University Hospitals Birmingham (20).

In this work we explore whether removal of text-mined
patient-concept associations determined as negated or uncertain
from patient phenotype profiles, affects the performance of
similarity-based classification of shared primary diagnosis.
To do this, we repeat the patient-patient phase of the
experiment described by our previous differential diagnosis work,
and compare the performance when uncertain and negated
annotations are removed from the patient phenotype profile.

METHODS

The overall methodology is described in Figure 1. The method
is based heavily upon (16), which investigates the use of
semantic similarity to predict shared diagnosis from phenotype
profiles produced from text records in MIMIC-III. As such,
the methodology is mostly equivalent. The difference is that
we also only test patient-patient comparisons, and thus also do
not consider any retraining in this work, and that we test the
performance of different subsets of profiles, via subsetting based
on results of context disambiguation of annotations.

Data Preparation and Information
Extraction
MIMIC-III (MIMIC) is a freely available healthcare dataset,
describing nearly 60,000 critical care visits across three hospitals
with a combination of structured and unstructured data,
including natural language text associated with patient visits (21).
Within MIMIC, diagnoses are provided in the form a canonical
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ICD-9 code, produced in the original care setting by clinical
coding experts.

We used the same set of patient visits described in our
previous work (16). In the previous study, 1,000 patient visits
were sampled from MIMIC, collecting their associated texts
together into one file per patient visit. Patient visit sampling
was limited to patients with primary diagnoses that contained
an ICD-9 mapping in the Disease Ontology (DO) (22). Patients
themselves were not considered as unique, which could be
considered a potential source of bias, since the same individual
may be hospitalized for the same or similar diseases.

We then used the Komenti semantic text mining framework
(15) to create a vocabulary based on all non-obsolete terms
in the Human Phenotype Ontology (HPO). Komenti is a tool
that queries biomedical ontologies for text-mining vocabulary,
and then implements the Stanford CoreNLP library (23) to use
those vocabularies to recognize ontology terms in text. As a
result of this process, sets of ontology terms describing texts
can be derived. HPO is a biomedical ontology that provides
formal definitions for a large range of human phenotypes (24).
Subsequently, we applied the Komenti framework to annotate
the texts associated with each sampled patient visit, producing
a list of HPO terms associated with each patient visit, or a
phenotype profile for each patient visit. Negation and uncertainty
of each concept mention was determined using the komenti-
negation algorithm (20), which has been tested specifically upon
a MIMIC-III cohort annotated with HPO terms, exhibiting high
performance upon manual validation.

The full set of patient phenotype profiles, including all
annotations derived from texts associated with each patient
admission, forms the baseline sample. This will subsequently
be referred to as PPALL. Then, different sets of phenotype
profiles were produced by subsetting the profiles given in
PPALL, based on context disambiguation stratification for each
annotation. PPNoNeg describes the set of patient phenotype
profiles with all negated annotations removed, PPNoUnc describes
the set of profiles with all uncertain annotations removed, while
PPNoNegNoUnc describes the set of profiles with all negated and all
uncertain annotations removed. Table 2 includes a list of these
subsets with descriptions and annotation counts.

Semantic Similarity and Evaluation
We then compared every patient visit phenotype profile with
every other patient visit phenotype profile, producing a ranking
of similar patient visits for each patient visit. To calculate
the semantic similarity scores, we used the Semantic Measures
Library (25), which implements a large range of semantic
comparison methods that can be used to derive measures
of relatedness between ontology terms or groups of ontology
terms. We applied the Resnik measure of pairwise similarity
(26), which is defined as the information content of the most
informative common ancestor of the classes being compared.
The information content used was also defined by Resnik,
defined as the negative log probability of the term appearing
a corpus, where in this case the corpus was formed of all
annotations making up phenotype profiles in the set currently
being considered (for example, only non-negated annotations

were considered in the corpus for PPNoNeg). The intent of this
measure is to downregulate terms appearing frequently, and
conversely upregulate terms that appear infrequently. Best Match
Average was used for groupwise similarity (27), which finds, for
each term in set A, the best matching term in set B. The same
process is repeated in the direction of sets B and A. The average
is then taken of all best matching terms, to produce the final
score. This measure is intended to capture similarity of groups
through several of their component terms (e.g., similarity of
cardiac phenotype, and similarity of respiratory phenotype).

We then measured the ability of ranked similarity scores to
be predictive of primary diagnosis. Each pairwise comparison
between admission profiles was labeled with true or false, based
on whether or not (respectively) those patients shared a primary
diagnosis, constituting a set of “predictions” formed from the
ground truth label, and both global and local similarity rankings.
Global similarity rankings were ordered by the ranking of
similarity scores between phenotype profiles across all pairwise
rankings. Local similarity rankings were produced for each
profile, ordered by ranking of similarity scores for every
profile that the considered profile was compared to. The global
ranking was used to produce Area Under the receiver operating
characteristic Curve (AUC), while local rankings were used to
produce Mean Reciprocal Rank (MRR), and Top Ten Accuracy
(the percentage of profiles for whom the correct diagnosis was in
the top ten most similar entities). P-values were calculated using
theMann-Whitney-U test on the ranks of patients with matching
primary diagnoses compared with the baseline set of patient
profiles with all phenotypes included, andwe identify significance
at a 0.01 cutoff. The software we created to run the experiment is
freely available at https://github.com/reality/miesim.

RESULTS

We created phenotype profiles for 1,000 patient visits sampled
fromMIMIC-III, by associating them with HPO terms identified
in their associated text narrative using Komenti’s concept
recognition features. Each annotation was also evaluated for
uncertainty and negation using the komenti-negation algorithm,
with the counts for each modifier summarized in Table 1.

We used the full set of annotations to create four sets of patient
phenotype profiles, including all annotations (PPAll), discluding
negated annotations PPNoNeg , discluding uncertain annotations
PPNoUnc, and discluding both negated and uncertain annotations
PPNoNegNoUnc. These are summarized with their annotation
counts in Table 2. For each of of the patient phenotype profile
sets, all profiles were compared to all other profiles using
semantic similarity. Using the resultant similarity matrix, we

TABLE 1 | The number of annotations across the text records associated with the

1,000 sampled patients, and associated modifiers.

Total annotations Negated Uncertain Negated and uncertain

43,953 8,057 3,102 317

Each annotation was evaluated for uncertainty and negation, which are not mutually

exclusive.

Frontiers in Digital Health | www.frontiersin.org 3 December 2021 | Volume 3 | Article 781227

https://github.com/reality/miesim


Slater et al. Context Disambiguation and Phenotype Similarity

evaluated how well the ranking of similar profiles for each patient
visit was predictive of shared primary diagnosis.

Table 3 summarizes the results, showing that, overall, there
was a very small difference in the performance between all
settings. The PPNoNeg and PPNoNegNoUnc profiles led to moderate
increases in AUC, MRR, and A@10, with a significantly different
ranking of shared diagnoses. In the PPNoUnc setting, AUC was
increased in comparison to PPAll, though MRR and A@10, were
reduced, with the rankings of shared diagnoses not significantly
different to those in PPAll.

DISCUSSION

While the margins are small in the cases of improved
performance observed when negated, uncertain, or both,
annotations were removed from phenotype profiles, the rank
of correct pairings was shown to have changed significantly
in the case of PPNoNeg and PPNoNegNoUnc, while there was
either no crossover in 0.95 confidence interval boundaries on
AUC measures, indicating that these are statistically significant
improvements (except in the case of true case rankings for
PPNoUnc. Even small improvements in performance can be
impactful in a clinical environment, since even the correct
diagnosis of one more patient is desirable. To put the
Accuracy@10 results in perspective, the PPNoNegNoUnc set found
a correct diagnosis in the top ten in 13 more cases than
PPAll, accounting for 1.3% of the total sample of patient
visits. Since the running-time costs of Komenti’s context
disambiguation algorithm are small, removal of negated and
uncertain annotations can therefore be seen as worthwhile.

TABLE 2 | Summary of each set of patient phenotype profiles considered as an

experimental setting.

Identifier Description Annotations

PPAll All phenotypes included 43,953

PPNoNeg Negated annotations removed 35,896

PPNoUnc Uncertain annotations removed 40,851

PPNoNegNoUnc Negated and uncertain annotations removed 33,111

The phenotype profiles are formed from the list of annotations associated with each

patient. Different sets were formed by removing sets of annotations depending on the

contextual uncertainty and negation modifiers associated with them by Komenti.

TABLE 3 | Results of classification of shared primary diagnosis, compared

between different sets subsets of patient phenotype profiles.

Setting AUC MRR A@10 p-value

PPAll 0.7743 (0.7724–0.7762) 0.423 0.606 –

PPNoNeg 0.7795 (0.7776–0.7814) 0.442 0.615 3.588e-09

PPNoUnc 0.7804 (0.7786–0.7823) 0.421 0.599 0.4463

PPNoNegNoUnc 0.7888 (0.7869–0.7906) 0.437 0.619 3.3e-15

A@10 refers to the percentage of patient visits whose ten most similar patient visits

contained at least one patient visit sharing a primary diagnosis. P-value is calculated by

Mann-Whitney-U test on rank of true matches compared to PPAll .

Bold values indicate the greatest values for AUC, MRR, and A@10.

Unlike the other reduced sets, PPNoUnc performance is lower
than PPAll. It’s possible that the Komenti uncertainty algorithm
is unsuitable for the critical care MIMIC-III domain, as unlike
the negation algorithm it relies on an uncertainty dictionary
that was adapted for rare disease outpatients, and cannot fall
back upon evaluating dependency resolution relation types
to identify uncertainty (15). It’s also possible that uncertain
concept mentions are more informative and relevant to the
primary diagnosis than the negated annotations, although the
PPNoNegNoUnc set indicates that there is a combined positive
effect to removing both negated and uncertain annotations
from phenotype profiles, implying a dependent relationship
between the two, likely that removal of uncertain annotations
alone enables increased information content and contribution to
similarity of errant inferences drawn from negated annotations.

This brings up the greater problem that negated and uncertain
annotations do actually provide additional information. For
example, patients who have the same disease may be tested for
the same or similar conditions, or be suspected of other diseases
that have a similar presentation. Lack of certain symptoms may
also be diagnostic, such as lack of pain when a patient has nerve
damage or certain neurological conditions. Negative mentions
may also indicate what is typical for a patient in their condition,
even if that particular patient does not have that phenotype.
For example, in our previous work (16), we reported a strong
prevalence of pain-related discussion throughout the dataset.
A patient suffering a disease that often causes pain may be
asked regularly about pain, even if they deny it (causing a
negative annotation). Therefore, the negated mention of pain in
the clinical notes is actually relevant, and may provide useful
information in identifying the patient’s diagnosis.

This indicates that instead of simply discluding negated and
uncertain mentions, there may be value in identifying ways
to take the contextual indicators into account for similarity
calculation. To our knowledge, this has not been widely
explored in the context of biomedical ontologies. However, recent
approaches have investigated richer use of semantic similarity,
including vector-based approaches, which could potentially
permit expression of more advanced expressions of the context
of instances (11). It is also possible that these influences could be
implanted directly into a novel comparison method, by encoding
a quantitative influence into the semantic similarity measure, or
by calculating separate similarity scores from affirmed, negated,
and uncertain annotations, and finding a beneficial way to
combine them into a groupwisemeasure. Such an approach could
also use the quantity of negated or uncertain annotations across
the corpus in the information content calculation, which could
also provide benefits to phenotype associations outside of that
class (e.g., strong weighting to an uncommon affirmed case, in
a corpus with many negated cases).

The role of passed-on error must also be considered. Our
previous work showed that the negation algorithm was very
accurate in this context (20), however it and all negation
algorithms evaluated involved some level of error. In addition,
the performance of negation algorithms may vary wildly when
applied to different datasets, depending on the application
domain, adaptation performed, and transferability of the model.
To some extent, this effect is mitigated by the use of all
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annotations in the patient phenotype profile. An important
patient phenotype is likely to appear several times in a patient’s
associated text narrative, and the relatively low rate of error
in detecting negatives means that it is unlikely that multiple
instances of the phenotype are incorrectly classified (although in
some cases it may be dependent upon the context with which a
condition is mentioned, making multiple errors more likely).

Performance of the algorithm in general will also be affected
by the clinical domain and setting. Different kinds of diseases,
text data, language, coding priorities, and more will be expressed
in different datasets. Thus far, the method has only been
applied to MIMIC-III datasets, and thus the transferability of the
approach (as well as the utility of removing negated or uncertain
annotations in other settings) is untested. This speaks to the
necessity of investigating the methods on other datasets and
clinical settings.

Other metadata may also be helpful for optimization,
such as temporal information. Indeed, like most classification
approaches, the inclusion, disclusion, manner or weighting of use
of certain kinds of annotation, should be treated as a process of
hyper-parameter optimization. However, given the relatively few
applications of the technology in the clinical space, more research
must be done on the influence of these different properties, such
that knowledge of effective hyperparameters can be established.

CONCLUSIONS

We showed that exclusion of negated and uncertain annotations
from text-derived patient phenotype profiles leads to a small but
significant improvement in performance, when ranking patients
for shared primary diagnosis with semantic similarity. We expect
that these modified annotations are actually informative, but a
more expressive semantic similarity method could be needed to
properly leverage this information.
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