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Virtually all cellular functions involve protein-protein interactions (PPIs). As an increasing number of PPIs
are identified and vast amount of information accumulated, researchers are finding different ways to
interrogate the data and understand the interactions in context. However, it is widely recognized that a
significant portion of the data is scattered, redundant, not considered high quality, and not readily accessible
to researchers in a systematic fashion. In addition, it is challenging to identify the optimal protein targets in
the current PPI networks. The GeneSense server was developed to integrate gene annotation and PPI
networks in an expandable architecture that incorporates selected databases with the aim to assemble,
analyze, evaluate and disseminate protein-protein association information in a comprehensive and
user-friendly manner. Three network models including nodenet, leafnet and loopnet are used to identify the
optimal protein targets in the complex networks. GeneSense is freely available at www.biomedsense.org/
genesense.php.

A
cell can be viewed as an information processing system, receiving signals from its environment and its

own internal state, interpreting these signals, and making appropriate cell-fate decisions1 by regulating a
network of interactions among the proteins encoded by its own genes. Interaction maps rather than

individual genes and proteins provide insights to protein functions and are valuable in identifying ways to fight
diseases2. Large amounts of human protein-protein interactions (PPIs) have been reported by experimental
techniques, manual curation of literatures, and numerous computational prediction methods3. Protein-protein
associations have proven to be an instrumental approach that led to the emergence of systematic and large-scale
usage scenarios for functional association networks4. Ideally, the complete set of associations is assembled into a
large network that captures the up-to-date knowledge on the functional modularity and interconnectivity in the
cell. For example, PPIs have been used to interpret the results of genome-wide genetic screens5, functional
genomics data6,7 and elucidation of disease genes8. Such expanding knowledge base has the potential to improve
the often time-consuming and cost-intensive process of biomedical analysis, and becomes a major thrust in
systems biology research. However, this information is widely scattered and the rapid accumulation of data also
renders it difficult to retrieve threads of information concurrently and correctly. The majority of public protein-
protein interaction databases such as IntAct9, HPRD10, MINT11 and BioGRID12 archive PPI records from literat-
ure curation or direct user submissions. Databases such as PINA13, APID14, STRING4, MiMI15 and UniHI16

integrate information from these curated PPI databases to provide comprehensive sets of public PPIs. In addition,
the PINA database integrates six public PPI databases, including IntAct9, MINT11, BioGRID12, DIP17, HPRD10,
and MIPS Mpact18. Each of these databases has its own unique features with a large variation in architectural
design and annotation. Meanwhile, these databases are heavily relied upon to facilitate studies of biological
activities and formulate hypotheses on protein functions and cellular processes as a result of rapidly growing
amount of public PPI data.

With the ever increasing importance of PPIs, the challenge researchers face at this point is to efficiently
organize and retrieve useful information from the data, which raises the following questions: (i) Can the different
data sources be integrated in order to gather a comprehensive set of information? A major imperfection across
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various databases is the implementation of multiple identification
systems depending on the applications the individual database was
designed to support or based on developer’s preferences. Although
some databases attempted to integrate multiple public databases, e.g.,
PINA, the curated information only represents partial scientific
information, or focuses on a specific subset of biological character-
istics. For example, the use of p53 and c-Jun in PINA whose names
are TP53 and JUN in HGNC (the HUGO Gene Nomenclature
Committee), respectively, does not allow for updates in future for
the inconsistent names. A better way to integrate the existing PPI
databases, eliminate redundancy, and prevent the compilation of
inaccuracies is clearly needed. (ii) What are the methods to identify
and reduce false-positive PPIs data? Suspicion has been raised about
the quality and reliability of protein interaction data with the increas-
ing size of available PPI databases. There are two distinct classes of
false positives; one is biological false-positives in which the interac-
tions can be confirmed by multiple computational methods, but the
two proteins are in fact never present in the same cell or subcellular
compartment at the same time; the other is technical false-positives
that can occur in any experimental system19. Both computational and
experimental methods for identifying PPIs generate some extent of
false positives. (iii) How to identify the best associated proteins for
in-depth query and research? Cellular functions are often critically
dependent on the correct assembly of proteins to become functional
multi-protein complexes through dynamic interactions of various
components in response to signals, from internal cellular demands
or a cell’s external environment20. For example, the PPI network of a
tumor suppressor kinase LKB1 and its 14 substrate kinases consisting
of 131 proteins and 203 interactions provides hypotheses on the links
and pathways critical for tumorigenesis following LKB1 deficiency13.
However, it is difficult to identify the appropriate LKB1 target genes
from the complex network.

To address these challenges, we developed a web-based platform
called GeneSense with the following three main objectives: (i) To
provide gene annotation and integrate different data sources based
on HGNC in which all genes are manually curated, and the HGNC
symbols and names assigned represent a standard, acceptable to be
used in all publications and databases where a specific gene is dis-
cussed or referenced21. (ii) To build the PPI networks based on lit-
erature and experimental data without the false-positives. (iii) To
build a user-friendly tool comprising nodenet (node network), leaf-
net (leaf network) and loopnet (loop network) to assist efficient
identification of regulatory factors.

Results
GeneSense is developed to support and integrate gene annotation
and the protein level network analysis. The goal of GeneSense’s team
is to design a friendly, intuitive user interface and a clear presentation
of the results. GeneSense requires a JavaScript-enabled browser, such
as Google Chrome and Internet Explorer. It allows users to enter the
database via a gene of interest using its approved symbol, alias names,
approved name or descriptions. Once users submitted the gene of
interest, they retrieve the gene’s descriptions and are informed of
similarly described genes. Subsequently, the users can choose to
continue with a gene summary page (Fig. 1) or abort the process
and return to the data entry page. The results page is divided into five
main sections: a search button to search a new gene of interest, the
gene summary (Fig. 1), the node network for the gene of interest
(Fig. 2A), the leaf network for the gene of interest (Fig. 2B), and the
loop network for the gene of interest (Fig. 2C). In the PPI network
section, a JavaScript applet will launch and the networks will be
displayed.

Application to gene annotation. The web page for summary (Fig. 1)
displays the general information of the queried gene, its homologs
information, clinical information, gene information, reference

information, pathway information, and protein-protein interaction
information. The general information such as the approved symbol
and name is mainly based on HGNC21 and implemented by Uni-
prot22 which provides richly and accurately annotated protein sequ-
ence knowledgebase. Biologists studying a gene in human organisms
often wish to transfer functional information between species and
homologs information that helps to elucidate how the gene is related
to other genes in a family, such as that demonstrated in TreeFam23,
MGI24, RGD25, and HCOP26. Others databases such as GeneTests27,
UCSC28, CiteXplore (www.ebi.ac.uk/citexplore), GeneCards29 and
pathway information are also linked to GeneSense. Gene informa-
tion is based on gene definitions from HGNC21 and related links via
both HGNC-curated data and mapped data provided by the external
databases. A group of homology-related links, including TreeFam23,
mouse genome informatics (MGI)24, rat genome databases (RGD)25,
and HGNC comparison of orthology predictions (HCOP)26 are used
to specify the homologs information in GeneSense. Clinical infor-
mation links include GeneTests27, DECIPHER30, COSMIC31, and
OMIM (http://omim.org/). Four widely used gene and genome
browsers Entrez Gene32, Ensembl33, UCSC28, Vega34 are also linked
in GeneSense. PubMed35 and CiteXplore (www.ebi.ac.uk/citexplore)
hyperlinks are included in the references to provide active links to
articles that first described the gene in question or that are parti-
cularly relevant to the nomenclature of the gene. Additional links
such as GeneCards29, GENATLAS36, GOPubmed37 and H-InvDB38

are included in GeneSense based on HGNC. KEGG39 information is
used for pathway analysis in GeneSense. The threads of basic
protein-protein interaction information fetched from different data
sources are also listed in the summary and the associated proteins can
also be clicked on to retrieve the corresponding gene summary
information.

Application to protein-protein interaction networks. PPI data-
bases in GeneSense were integrated by IPI40 that mapped a variety
of accession numbers from different databases, subsequently unified
to HGNC accession numbers. It includes a non-redundant database
based on integration of data from IntAct9, MINT11, HPRD10 and
other databases, such as MEROPS41 that can be integrated by IPI.
The architecture of GeneSense based on HGNC and various types of
web services offers great advantages of being easily expandable with
different PPI data sources. The network visualization is used to
evaluate the regulatory relationship between the queried protein
and associated proteins, such as the network analysis of MAPK8
gene in Fig. 2. The nodenet of MAPK8 gene (Fig. 2A) shows the
interactions of MAPK8 and 44 downstream proteins. The leafnet
model was further used to evaluate the interactions of downstream
proteins in Fig. 2B. A regulatory network can exist under the
identified post transcriptional modifications in either of two stable
states (‘upstream’ or ‘downstream’). The loopnet model (Fig. 2C)
shows the visualization of MAPK8 PPI network, including down-
stream and upstream proteins that may contribute to the under-
standing of the mediated communication between interacted proteins.
GeneSense can also be used to analyze larger complex networks of
PPIs, such as the SRC PPI network (Supplementary Fig. S1).

Discussion
Most public PPI databases adopt diverse practices to annotate gene
and protein-protein interaction information. These databases gather
partial scientific information that is available, or focus on a specific
subset of biological characteristics. The use of inconsistent names
exists in these databases that often does not allow for later updates or
correction of gene annotation and PPI integration from validated
external sources. For example, c-Jun, of which the approved symbol
name is JUN in GeneSense and HGNC, also has another synonym
AP-1 in HGNC21; the use of c-Jun in PINA does not allow for
straightforward update or correction for network analysis with
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references to a variety of external resources13,42 lacking the consid-
eration of AP-1. Furthermore, inconsistent names also cause the use
of the partial scientific information. Han et al43 found that JNK (also
named MAPK8) plays a key role in the metabolic response to obesity,
but Pal and coworkers’ research showed that JNK1 (also named
MAPK8) activation does not account for the major diet-induced
effects in some other experiment44. The discrepancy exists between
different researches as a result of the lack of uniform nomenclature
and the asymmetric information. Genesense prevents the use of the
partial scientific information by using MAPK8 to unify the incon-
sistent names. In GeneSense, the primary identifier for each record is
the approved and updated gene symbol, which is an acronym or
abbreviation of the associated gene name based on HGNC21. As a
result, inconsistent names are unified and partial access to existing
data is prevented. It also enables easy data tracking regardless of
updates in the nomenclature of any given entry by assigning each
entry to a unique ‘HGNC ID’21. On the basis of the unified gene
symbol name, different databases, such as IntAct9, MINT11,
HPRD10, MEROPS41 and other databases can be integrated into
GeneSense.

GeneSense is also dedicated to visualization of PPI networks of
the coded proteins based on HGNC, IPI and PPI databases.

Visualization can be greatly enhanced by interactive presentations
and animation; however, high-level abstractions may limit a devel-
oper’s ability to execute fast incremental scene changes if the system
lacks necessary information to avoid redundant computation. To
address this problem, GeneSense cooperated with Data-Driven
Documents (D3) seamlessly, which results in significantly faster
page loads: twice as fast as Protovis and over three times as fast as
Flash. Nodenet, leafnet and loopnet were built based on D3. The
nodenet model can be useful in highlighting understudied molecu-
lar interactions of proteins. For example, the nodenet model shows
the interactions of MAPK8 and downstream proteins (Fig. 2A), and
it may guide the formulation of meaningful hypotheses with regard
to signaling pathways critical to tumorigenesis following MAPK8
deficiency. The leafnet model helps to identify specific proteins that
regulate the genes or proteins of interest by the leaf networks. The
leafnet (Fig. 2B) showed that some downstream proteins such as
MAPK1 and JUN having many interactions with other downstream
proteins may be involved in important yet complex mechanisms in
MAPK8 related signaling pathways; Some downstream proteins,
such as REL and GSTP1 that do not show much interaction with
other downstream proteins, may have a simple yet unique function
with MAPK8. The loopnet model (Fig. 2C) can be used to assist the

Figure 1 | A screen shot of gene MAPK8 information summary page in GeneSense. The table is divided into sections that show MAPK8’s general

information, homologs information, clinical information, gene information, reference information, pathway information, and protein-protein

interactions, respectively, with links to additional information.
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design of experiment that aims to distinguish between alternative
mechanisms involved in the complex networks, such as the
upstream protein MAP3K7 and downstream protein REL of
MAPK8 can be designed to regulate MAPK8 to present bistable
regulatory mechanisms in different ways. Moreover, a force-direc-
ted layout algorithm45 and D3 were applied to visualize the large
complex networks in GeneSense, and they make the analysis of
complex disease associated-genes relatively easy. To give another
example, SRC kinase is a common signaling node in trastuzumab
resistance caused by different mechanisms in HER2-positive breast
cancers46. Our previous study showed that an intrinsic 40-gene set
can be used to classify breast cancer subtypes and assist in optim-
izing therapeutic management47; however, the association between
SRC and the intrinsic characteristic genes are unknown. Using

GeneSense, two intrinsic genes, ESR1 and ERBB2 were identified
as SRC downstream genes (Supplementary Fig. S1). Understanding
the complex ways SRC interacts with its downstream genes ESR1
and ERBB2 in specific breast cancer subtypes maybe crucial for
discovering and analyzing mechanisms involved in trastuzumab
resistance.

In practice, GeneSense aims to frame the complicated PPI net-
works in precise terms and use computer simulations to derive impli-
cations about how the networks function in normal cells and in the
malfunction of diseased cells supported by gene annotation. The
following outcomes can be expected from using GeneSense: (i) to
gain an accurate overview of genes information of interest; (ii) to
build different models to highlight understudied molecular interac-
tions of proteins coded by user-entered genes.

Figure 2 | Network analysis of MAPK8 protein. The green circle indicates the node protein. The purple circles indicate leaf proteins, and the orange lines

indicate interactions. (A) The node network of MAPK8 protein. Fig. 3A shows the interactions of MAPK8 and 44 downstream proteins. (B) The leaf

network of MAPK8 protein. The leafnet model in Fig. 3B is used to evaluate the interactions of downstream proteins. (C) The loop network of MAPK8

protein. The loopnet model in Fig. 3C shows the visualization of MAPK8 PPI network including downstream and upstream proteins that helps

researchers to understand the mediated communication between interacted proteins.
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Methods
Distributed architecture and data sources. GeneSense is a web-based platform that
allows users to visualize, manipulate and analyze gene information and to find the
optimal gene regulatory factors by corresponding protein networks. GeneSense
database contains two parts (Fig. 3): the first part consists of gene annotation and the
second part consists of PPI database. The gene annotation part includes homologs
information, clinical information, and gene related information from HGNC21.
Pathway information from KEGG39 was also integrated to GeneSense by transferring
identical records based on HGNC. PPI databases in GeneSense were integrated by
international protein index (IPI)40 that mapped a variety of accession numbers from
different databases, subsequently unified to HGNC accession numbers. It includes a
non-redundant database based on integration of data from IntAct9, MINT11, HPRD10

and other databases, such as MEROPS41 that can be integrated by IPI. Interactions
and protein information were integrated with GeneSense assuming that two proteins
from different databases are the same if they have the same IPI accession. With
reference to IPI, GeneSense merges results from data sources that employ different
but compatible identifier systems. Unique PPI records in different databases were
identified by IPI to gather a comprehensive and non-redundant protein-protein
interaction dataset, and the protein names were subsequently unified based on
HGNC21 to offer consistent names and non-redundant data sets of PPI information.
In-house gene information and in-house PPI databases include scattered data that is
not included in the existing databases, and would be integrated into GeneSense
manually. When users query the genes of interest in GeneSense, the integrated
information is retrieved and presented in the gene summary part, including the
downstream and upstream proteins according to the post transcriptional
modification events. Furthermore, among the key features of GeneSense, three
different network models were developed to analyze the function of proteins coded by
the retrieved genes: Node network (nodenet) is used to observe the associated
downstream proteins interactions with the target proteins; leaf network (leafnet) is
used to calculate the complexity of associated downstream proteins with one another
and assist in the identification of probable regulatory factors; loop network (loopnet)
is used to provide an overview of the upstream and downstream relationships of
associated proteins with the target proteins. The architecture of GeneSense based on
HGNC and various types of web services offers great advantages of being easily
extendable with different PPI data sources.

Network construction and implementation. In GeneSense, queried protein (node
protein) is represented by the central green node, and interacted proteins (leaf
proteins) are represented by purple nodes. A node can be dragged around to change
the arrangement of the nodes. Edges are the connections between nodes and each
edge is associated with the reference corresponding to the interactions. GeneSense
adopts a number of methods to annotate protein-protein interactions. First, nodenet
in GeneSense supports basic queries of PPI network for a single protein, which can be
used to rapidly verify whether in-lab generated PPIs are already in the public domain
or potentially being novel. Second, GeneSense provides the leafnet network model to
visualize the complexity of the queried protein and its substrate proteins that can be

used to find the unique or optimal substrate proteins. Third, GeneSense provides
loopnet to visualize the upstream and downstream targets of the queried protein,
which reveals biological events in cells at the protein-protein interaction level.

GeneSense platform runs on a Linux server and uses Data-Driven Documents
(D3), an embedded domain-specific language for transforming the document object
model (DOM) based on the data. The DOM combined a number of technologies,
mainly, CSS for aesthetics, PHP for page content, JavaScript for interaction, SVG for
vector graphics, and so on. Force-directed algorithm45 and D3 was used to generate
graphs and to determine the position of each node. Each node is subject to a repulsive
force from every other node, yet constrained by the edges that keep nodes connected
together. It results in a flexible layout that appears inviting as it unfolds, as exemplified
by the nodenet that displays the pictures of the queried protein (or node) and its
interacted proteins (or leaf). Although the nodenet model appears to be a promising
way to display queried protein and interacted protein datasets, it does not describe
leaf-leaf relationships and their degrees of influence. The leafnode was built based on
the iteration process of force-directed algorithm for each leaf. The leafnode model is
constructed in such a way that high complexity corresponds to layouts in which
adjacent leafs are close to each other, and in which non-adjacent leafs are well-spaced.
The high complexity leafs may play a crucial role in the signaling network, while low
complexity leafs may participate in the regulation of the node in a relatively simpler
way. With the aim to visualize the proteins upstream or downstream, modifications to
the basic nodenet model were made and the loopnet model that adds the directions to
the nodenet model was built. Loopnet reflects the upstream and downstream events
involved in the post transcriptional modifications.
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